
PHYSICAL REVIEW B VOLUME 51, NUMBER 8 15 FEBRUARY 1995-II

Electron-electron correlations in diamond: An x-ray-scattering experiment
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The inelastic-scattering cross section integrated over the energy has been measured in diamond from
an x-ray-scattering experiment. The static structure factor and the exchange and correlation energy of
the electrons in diamond have been determined. From the static structure factor, the electron-electron
pair correlation function has been deduced. Comparisons have been carried out with both recent quan-
tum Monte Carlo calculations in diamond and calculations for the jellium model.

I. INTRODUCTION

The quantitative understanding of the electron correla-
tions in real many-electron systems still represents a chal-
lenge in condensed-matter physics. A correct description
of the ground state, as well as the excited states, cannot
leave the role of the electron correlations out of con-
sideration. Many properties of real solids, among which
the cohesive energy, the bulk modulus, and the size of the
band gap in semiconductors, are known to be inadequate-
ly accounted for by one-electron-approximation treat-
ments. Moreover, settling in of a magnetic phase, even in
the simplest system such as a transition metal, depends
on a competition between intra-atomic exchange interac-
tions and interatomic electron correlations. Therefore,
accurate ab initio calculations in solids must include, as a
fundamental contribution, a treatment of the electron
correlations. This problem is now relatively well under-
stood in a model system like the homogeneous electron
gas' and not only in the two limiting cases of very high
and very low densities. ' Indeed Fermi Monte Carlo
simulations allowed for a description of the electron gas
also at intermediate values of r„ that is in the metallic re-
gion.

A direct measure of the correlations between pairs of
electrons is offered by the two-body correlation function.
Since the Coulomb interaction, which embodies the
whole of the electron-electron interactions, is a purely
two-body one, the behavior of the electron system is fully
described by the two-body correlation function. In prin-
ciple, with the knowledge of this function the ground-
state potential energy of the interacting electron system,
and hence the ground-state energy via the virial theorem
at zero external pressure, can be calculated. The rela-
tionship between the two-body correlation function and
the ground-state energy, which is trivial for the model
system of the homogeneous electron gas, can be general-
ized and applied to electrons in real solids, properly tak-
ing into account the external periodic potential of nuclei.
Finally, the basic role of the two-body correlation func-
tion in fully describing the interacting electron system,
has been enlightened by the density-functional formal-
ism. Generalization of the Hellmann-Feynman
theorem' '" within the density-functional theory, shows

that the exact exchange-correlation energy of the in-
teracting electron system with density n (r) and Coulomb
interaction A. V„ is given by an integration of the two-
body correlation function over the coupling constant A, .
Of course the knowledge of the two-body correlation
function as a continuous function of the coupling con-
stant A, would require the solution of the many-electron
problem, which is currently very difficult. Nevertheless,
extensive calculations of this function in several real
solids should be afforded in order to get a deeper under-
standing of the Coulomb and Fermi hole surrounding
each electron and describing the effect of the electron-
electron interaction. The computational complexity of
the problem has however limited the calculations to very
few solid systems. '

On the other hand, the experimental determination of
electron-electron correlations has been carried out in few
and light elements like solid Be, ' Al, ' and Si, ' and only
in the case of Be (Ref. 15) a rather extended investigation
of the two-electron correlation function is available. This
circumstance can be explained considering that the only
efficient way to measure the pair correlation function is
through a properly designed x-ray-diffraction experiment.
By this technique the static structure factor, which is the
Fourier transform of the pair correlation function, can be
measured. Since the most important contribution to the
pair-correlation function comes from the valence or con-
duction electrons, the core electron contribution
representing a sort of less interesting background, experi-
ments have been confined to light elements where the
number of core electrons is relatively small as compared
with the total number of electrons. An additional con-
straint to the experimental study of heavy elements is
represented by the considerable increase of the photoab-
sorption cross section with increasing the atomic number.
Furthermore, the contribution to the scattering due to
the thermal nuclear motion, which has to be subtracted,
represents a limitation and experiments can be carried
out in systems characterized by a high Debye tempera-
ture.

Recently, theoretical calculations of the ground-state
wave function, from which the pair correlation function
can be deduced, have been performed in diamond' ' and
hydrogen, ' based on the quantum Monte Carlo ap-
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proach. For both these systems the experimental infor-
mation on electron correlations is to our knowledge, still
lacking. In order to provide the experimental data
against which these calculations can be checked, we car-
ried out the measurement of the electron-electron corre-
lations in diamond by an x-ray-scattering technique that
yields a direct determination of the static structure fac-
tor. Diamond, as Be, is particularly suited for this sort of
investigation because of its simple structure and high
symmetry. Moreover, as in Be, the number of valence
electrons is large as compared with the total number of
electrons. On the contrary, diamond represents a proto-
type of a covalent insulating solid, where the valence
electrons have a rather anisotropic distribution with a
high electron density along the tetrahedral bonds. This
feature makes the comparison with Be interesting, where
the valence electrons are almost homogeneous electron
gas at the appropriate density. Finally, diamond is rela-
tively transparent to medium energy photons (10—20
keV) and its very low thermal motion, refiected in the
high Debye temperature, makes the corrections for
thermal diffuse scattering (TDS) fairly small.

In the following sections the basic relationship between
the x-ray scattering cross section and the static structure
factor in a single crystal is briefly outlined and discussed
in close connection with the experimental procedure. Fi-
nally, results are presented and discussed.

II. EXPERIMENTAL DETERMINATION
OF THE STATIC STRUCTURE FACTOR

where ro is the classical electron radius, ko and k are the
incoming and outgoing photon wave vectors, eo and e are
the corresponding polarization unit vectors, N is the
number of atoms within the sample, SrDs(Q) is the TDS
structure factor, and $(Q) is the static structure factor
one is looking for. df is a kinematic correction related to
the number of Anal states' and given by

ak
df =Ac

OE 28=const
(2)

where Ef is the total energy of the Anal state and the
derivative has to be performed at constant scattering an-
gle 28-. A reasonable approximation to df is offered, as in
the case of Be, ' by the following relationship:

The relationship between the x-ray cross section and
the two-body correlation function has been discussed in
detail in Ref. 15 and we will closely follow the formalism
there developed. The x-ray differential scattering cross
section in a light element like diamond, for incoming
photon energies much greater than the typical excitation
energy in the system (that is greater than the energy of
the IC absorption edge) and for momentum transfers Q
different from all the reciprocal-lattice vectors (that is
when the orientation of the crystal is such that no Bragg
diffraction occurs), is given by'

= r P' df(eo'e ) $ (Q)+$TDs(Q)
do. 2 k
dQ ko

(3)

with klko given by the result for the free-electron case,
namely the Compton formula. It should be remarked
that such an approximation is appropriate for light ele-
ments only since, in such a case, the electron binding en-

ergy is negligible in comparison with that of the incoming
photon. The validity of Eq. (3) relies also on the limiting
behavior df —+1, with decreasing the scattering angle.
The factor df can differ appreciably from 1 at high
scattering angles only, that is, in a region where the cross
section is dominated by the single-particle regime or by
the Compton scattering. For instance, employing the
Compton formula in Eq. (3), results in df =0.959 at

bucko =22keV and 28=90'. Therefore, df is always very
close to 1 and hence the proposed approximation can be
considered as a meaningful one.

It should be remembered that the validity of Eq. (1) re-
lies on the approximations' that an efficient integration
over all the inelastic-scattering events is performed and
that the final photon energy is confined within a relatively
small range around the average value Ack. This average
final energy, according to the above discussion on df, can
be assumed equal to that derived by the Compton formu-
la. Therefore, an experiment devoted to the measure-
ment of $(Q) should be performed employing an incom-
ing photon energy as high as possible and a detector sys-
tem having a wide and uniform acceptance band for the
scattered photons.

In order to measure the cross section described by Eq.
(1), we performed an x-ray-diffraction experiment em-

ploying Ag Ea radiation, whose energy is high enough as
compared with the E absorption edge of carbon. By this
choice of wavelength, a still acceptable momentum
transfer resolution could be obtained. An intense and
clean incoming beam was produced using a pyrolitic
graphite Bat monochromator, which avoided the contam-
ination of the beam from E& radiation. The take-off an-
gle at the monochromator was rather small and, as a
consequence, the incoming beam was unpolarized, as as-
certained by a direct measurement of the linear polariza-
tion. ' Since the measurement of $(Q) implies the in-
tegration over the energy of the scattered photons, the
scattered intensity was collected employing a broad band
device. A 0.2 cm thick NaI:Tl scintillator detector fol-
lowed by a pulse-height analyzer was used for photon col-
lection. The energy resolution we obtained was about 5
keV. The energy bandwidth of the system was set from
10 to 35 keV. In such a way the contribution from half-
wavelength contamination, present in the incoming
beam, was almost completely rejected, while the unifor-
mity of the counter efficiency was expected to be better
than 0.1%. The incoming beam was vertically collimated
by a tungsten Soller slit having 3 full width at half max-
imum (FWHM), while it was horizontally defined by a
slit matched to the mosaic spread of the monochromator,
so that the beam had 0.6 FWHM. A tungsten Soller slit,
1 cm wide, was used before the detector. The Soller slit
allowed for an optical configuration with a rather sharp
angular resolution and, at the same time, with all the
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bathed portions of the sample to be seen with the same
weight by the detector. The incoming beam profile was
experimentally determined by measuring the intensity of
the (111)reliection from a copper wire having a 0.008-cm
diameter. The FWHM of the beam profile turned out to
be 0.12 cm with a little asymmetry.

The sample employed in the present experiment was a
natural diamond of grade 3 supplied by Drukker Inter-
national. It was disk shaped, 0.3-cm diameter, and 0.05-
cm thickness, with the extended face parallel to the (110)
crystallographic plane. Six kinds of coupled (co —28)
scans were performed on the sample after initial misset-
ting of the crystal +5' and —5' off the three principal
crystallographic directions, namely, [100], [110], and
[111]. It should be noted that the quasielastic scans cor-
responding to positive and negative missettings collected
along each of the three maximum symmetry directions,
with the present crystal in symmetric transmission,
should be equal, that is they should yield the same static
structure factor S(Q) and the same TDS structure factor
STDs(Q). However, some of the corrections to be applied
to the raw data depend on the angle and they are not the
same for positive and negative missettings. With the pro-
posed scan configuration it is possible to avoid the ex-
tremely intense Bragg-peak contributions and to check
the validity of the various angle-dependent corrections as
well. In Fig. 1, the scan geometry superimposed to the
reciprocal lattice is shown.

The raw data were corrected for background, transmis-
sion, and multiple scattering employing a Monte Carlo
program similar to that successfully applied to neutron-
diffraction data reduction. ' Effects due to the finite size
of both the beam and the sample and effects due to par-
tial polarization of the beams propagating inside the crys-
tal were also taken into account by inserting the experi-
mental shape of the incoming beam and the appropriate
scalar product of the polarization vectors in the Monte
Carlo program. The program also requires as input data
the total linear attenuation coefficient, set equal to 11.4
cm ', the static structure factor and the TDS structure
factor. Since the true structure factor is unknown and it
should result from the present experimental investigation,
we employed as reference input the structure factor of
the carbon free atom. Of course, x-ray-scattering mea-
surements of this function do not exist as the sample
would be a low-density carbon atom gas. The static
structure factor of the atom is then supplied by accurate
first-principles approach, one of the most common being
the Hartree-Fock one, which, however, accounts for the
Pauli repulsion only. Another theoretical treatment
where effects beyond Hartree-Fock, i.e., correlation
efFects, are included is that known as configuration in-
teraction (CI), based on the use of an improved many-
particle function. However, only systems with relatively
few electrons can be calculated with high accuracy be-
cause of the large increase in the number of
configurations required with increasing the atomic num-
ber. In the specific case of diamond, both the Hartree-
Fock and the CI (Ref. 20) calculations of the atomic
static structure factor are available. In order to minimize
the error introduced by the use of calculated quantities,
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FIG. 1. Reciprocal-lattice sections showing the line followed
by the (co—28) scans for both +5' and —5' missetting of the
crystal out of the three crystallographic directions [110] (upper
panel), [111](central panel), and [100] (lower panel).

we preferred to make use of the more accurate CI calcula-
tion. The TDS structure factor was calculated as the
sum of one-phonon and multiphonon terms, the one-
phonon contribution being calculated in an harmonic ap-
proximation using the experimental phonon dispersion
relations of diamond as fitted in Ref. 23, and the multi-
phonon term being evaluated by means of the static ap-
proximation and using the phonon density of states still
from Ref. 23. Finally, the calculation of the TDS struc-
ture factor requires, as input, the scattering factor of the
crystal. Since this function does not differ substantially
from that of the free atom (the average ratio being = 1.01
over the sin8/1, range corresponding to the first 9 Bragg
rejections in the crystal), the scattering factor of the free
carbon atom, as calculated in Ref. 21, was employed.
This computational procedure is expected to be fairly
good considering that the Debye temperature of diamond
is much higher than the room temperature and hence the
TDS cross section is dominated by the one-phonon con-
tribution. As an example, Fig. 2(a) shows the calculated
one-phonon and multiphonon TDS structure factors
along the [100]crystallographic direction. The total TDS
structure factor amounts to =0.2—0.4 and this value has
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FIG. 2. (a) The TDS static structure factor versus the scatter-
ing angle calculated along the [100] direction. Both the multi-
phonon (dashed line) and the one-phonon (full line) contribu-
tions are shown (see text). (b) Di6'erent contributions to the
measured intensity. Free-atom structure factor (Ref. 20)
(dashed line), TDS total structure factor (short-dashed line),
core electron structure factor (Ref. 25) (full line), free-atom
scattering factor (Ref. 21) (dotted line). The horizontal full lines
are reference levels.
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to be compared with 6, i.e., the limiting value of the static
structure factor at high-momentum transfer. In Fig. 2(b)
the various contributions to the measured intensity are
shown, namely, the free atom and the TDS structure
factors, the free-atom scattering factor ' and, for cornpar-
ison purposes, the core structure factor that will be dis-
cussed in the following. In such a figure the multiple-
scattering contribution is not reported since it is almost
Rat and of the order of 0.2%. The accuracy of the whole
correction procedure was checked by comparing the vari-
ous scans collected for both positive and negative rnisset-
tings. The agreement between the two sets of data was in
all cases better than 2%. The so-corrected data were
then put on an absolute scale by normalizing the experi-
mental cross section to the free-atom theoretical one at
high-momentum transfer, where solid-state effects are ex-
pected to be very small and it holds,

lim S(Q)=Z,
Q~ oo

Z being the atomic number. The normalized data, after
subtraction of the TDS and multiple-scattering contribu-
tions, are shown in Fig. 3. Considering the sharp peaks
exhibited by the TDS cross section and the rather smooth
behavior of the curves shown in Fig. 3, one can be quite
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FIG. 3. Measured static structure factor (dots) versus the
scattering angle and for [111] (upper panel), [110] (central
panel), and [100] (lower panel) directions. The free-atom static
structure factor is also shown: CI calculation (Ref. 20) (full line)
and Hartree-Fock calculation (Refs. 20—22) (dashed line).

confident that the various corrections were treated accu-
rately. In this figure, the experimental data are also su-
perimposed to the Hartree-Fock and CI (Ref. 20)
structure factors calculated for the free atom. Such a
comparison enhances the inadequacy of the Hartree-Fock
calculation, which produces a systematically higher
atomic structure factor in the region of low exchanged
momentum and hence an expected value of the cohesive
energy too high, this latter being roughly proportional to
the difference between the experimental and the atomic
structure factors.
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III. DISCUSSION can write

The measured structure factors embody the electron-
electron correlations of all the electrons in diamond.
However solid-state effects are expected to be more pro-
nounced for valence electrons. The distinction between
core and valence electrons is somewhat arbitrary but, in
view of the large energy separation between E and L exci-
tation energies, a meaningful separation can be tempted.
Therefore, the static structure factor can be written as
the sum,

and

S(Q)=Z+ fdrdr'n(r')n(r'+r)

X [g (r', r'+r) —1]e

&"='2 f f '~, ,.
~

X [(O~p+(r)p(r') 0) —n (r)n (r')]

(6)

S (Q) =S„,i(Q)+S„„(Q) . (5)
e S(Q)—Z

4m. Q
(7)

In Eq. (5) the core-orthogonalization contribution is
neglected considering that it is, in any case, fairly
small. ' Through Eq. (5), S„,i(Q) can be obtained
along the three maximum symmetry directions, provided
an adequate representation of S„„(Q).In particular, we
assumed that core electrons were well described by the
configuration-interaction wave functions calculated for
the C + ion in Ref. 25. S„„(Q)thus deduced is shown in
Fig. 2(b), while the resulting valence-electron static struc-
ture factor is shown in Fig. 4. The most striking feature
of S„,i(Q) is its anisotropy as revealed in Fig. 4 by the
well-defined dependence on the direction of the momen-
tum transfer. This dependence agrees with the guess that
more charge is accumulated along the [111] direction,
which is parallel to the first-nearest-neighbor bonds.
Moreover, S„,i(Q) extends towards high g according to
the fact that the Fermi momentum is proportional to the
cube root of the density in the homogeneous electron gas.
This behavior is also in agreement with that exhibited by
the pair correlation function calculated by the quantum
Monte Carlo method in Refs. 12 and 14. Indeed the cal-
culated Fermi and Coulomb holes were found more con-
tracted along the [111]direction, especially when the first
electron was at the bond center. ' '

In order to understand the effects of the electron corre-
lations in diamond, in view of the anisotropy exhibited by
the valence structure factor, the relationships linking
S(Q) to the pair correlation function g(r, r') and to the
expectation value of the exchange-correlation energy
should be exploited. According to Refs. 8 and 15, one

where n (r) is the electronic ground-state number density
and P(r) is the electronic number density operator.
Equation (6) shows that in an inhomogeneous system,
where the pair-correlation function depends on the indi-
vidual electron coordinates and not simply from their
difference and the density is a varying function of the po-
sition, it is not possible to derive the pair correlation
function from a scattering experiment. Nonetheless a po-
sition averaged correlation function, which is a measure
of the probability of finding two electrons at the distance
r independently of their individual positions relative to
the crystal, can be defined. One has

g(r) = fdQ[S(Q) —Z]e'o'
(2n. ) nZ

=1= —f dr'n (r')n (r'+r)[g (r', r'+r) —1],
n

(8)

8S (Q, )+6S(Q2)+ 12S (Q3)
S,„(Q)= (9)

where g(r) is the averaged pair-correlation function and
n is the average number density.

The use of Eqs. (7) and (8) still requires the knowledge
of S(Q) everywhere in the reciprocal space, whereas the
measurement of S(Q) is limited to few high-symmetry
directions. A practical use of these equations would
resort to some appropriate approximation for the angular
dependence of S(Q), once such dependence is known for
a finite set of directions as it is in the present investiga-
tion. The simplest way to proceed is substituting S(Q)
by an appropriate spherical average, that is

~aarPOhr~ w n-
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FICz. 4. Valence-electron static structure factor. Experimen-
tal data collected along [100] (dots) and [111] (circles) direc-
tions, free-atom CI calculation (Ref. 20) (full line), and Hartree-
Fock (Refs. 20—22) calculation (dashed line).

where Q„Q2, and Q3 refer to the three maximum-
symmetry directions, namely [111], [100], and [110], re-
spectively, and the weights are given by the multiplicity.
Alternatively, general symmetry arguments can be ap-
plied in order to provide an interpolation formula be-
tween the data experimentally collected. For the
present purposes, we preferred to analyze the data by
means of the approximate average of Eq. (9).

The value of the exchange and correlation potential ob-
tained by integrating Eq. (7) with S,„(Q) given by Eq. (9)
is reported in Table I. We note that the integration over
the momentum transfer Q, virtually extending from 0 to
~ cannot be carried out by simply using the experimen-
tal data that are collected over a finite Q range. This
difficulty was overcome by exploiting either the close
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TABLE I. Exchange and correlation ( V„,), electrostatic Har-
tree (VH„„„),and total (V„,) interaction potential. Results
from the present experiment are compared with those obtained
for the free atom and with the quantum Monte Carlo calculated
values in diamond (Refs. 12 and 14). The cohesive energy
(E„h) is also quoted.

Present
experiment

C atom
Theory (Ref. 14)

V„,
(Ry)—11.91

—11.27

VHartree

(Ry)—140.09

—139.85

(Ry)—152.00

—151.12
—152.21

Ecoh
(Ry)
0.44

0.55

0
0. 0

I

0. 5

( )/ ( & ')
1. 0

resemblance of S,„(Q) with the atomic structure factor
at momentum transfers Q &6 A ' or the limiting para-
bolic behavior of S(Q), when Q~O as dictated by gen-
eral arguments. ' Therefore the number quoted in Table
I refers to the integration over the full Q range. For sake
of comparison, the purely electrostatic Hartree term,
VH,~„, was calculated for the crystal following the for-
malism of Ref. 8 and making use of measured scattering
functions as quoted in Ref. 27. This term is reported in
Table I, together with the total interaction potential V„,.

A theoretical estimate of V„, can be obtained from the
quantum Monte Carlo calculation' ' on diamond.
From Table I, a difference of =0.2 Ry between the
theoretical and the experimental values of V„, is ob-
served. The value of this difference represents a very
small percentage of the total interaction potential and it
could be due to inaccuracies in both the numerical simu-
lation and the experimental estimate of the large Hartree
term for which the measured data from Ref. 27 were
used.

In the case of the free atom, the interaction potential
can be evaluated following the same scattering function
approach as for the solid and making use of the appropri-
ate static structure factor. The relevant relationships are
reported in Refs. 8 and 15. Results of the calculation
performed using the carbon free-atom scattering factor,
as calculated in Ref. 21, are reported in Table I. Taking
the difference of the total interaction potential between
the solid, and the atom yields the double of the cohesive
energy. The value 0.44 Ry for the cohesive energy as de-
duced from the scattering approach applied to both the
solid and the atom is compared in Table I with the exper-
imental value 0.54 Ry, deduced from thermodynamic
measurements, which is in very good agreement with the
Monte Carlo calculation (0.55 Ry). '

From the present data, a spherical pair correlation
function g(r) might be calculated by using the experi-
mental average structure factor. In order to avoid the
numerical difhculties implied by the direct Fourier trans-
form of S,„(Q), we followed a procedure similar to that
applied in the case of Be.' In particular, a model pair
correlation function containing four free parameters and
quite similar to that introduced in Refs. 28 and 29 was as-
sumed. Such a function must obey a number of con-
straints ' that provide explicit relationships among the
free parameters, in fact reducing the number of effective

FIG. 5. Experimental average static structure factor [see Eq.
(9)]. The full line is the best-fit result for the model structure
factor (see text). The initial dashed portion of the curve is a
guide to the eye.

parameters to two. The values of the two parameters
were chosen as those giving the best agreement between
the experimental S,„(Q) and that calculated by analytic
Fourier inversion of the model pair correlation function
itself. Figure 5 shows the comparison between S,„(Q)
and the best S(Q) model function. The agreement be-
tween the two curves is quite satisfactory with a root-
mean-squared error equal to =0.05 on the difference.
The model pair correlation function with the parameters
fixed by this fitting procedure is shown in Fig. 6 in com-
parison with the Hartree-Fock result for the homogene-
ous electron gas. ' The two curves exhibit a remarkable

0
difference in the region r & 1 A. In particular, the value
of the model pair correlation function at r =0, as de-
duced from the best-fit procedure, turns out to be 0.285.
The difference from the corresponding Hartree-Fock
value, i.e., 0.5 that follows from the absence of correla-
tions between electrons of antiparallel spin, shows that
correlations among opposite-spin electrons cannot be
neglected. Therefore a description of electrons in dia-
mond, based on the Pauli principle correlations only,
would be inadequate. A much better agreement is found
when comparing the r =0 value of the model g(r) with
the Monte Carlo results for the anisotropic pair correla-

l. 5

g( ~)---- g HF( ~)

1. 0-

0. 5-

0. 0

FICx. 6. Model pair correlation function g(r) (full line) de-
duced from the experimental data. The Hartree-Fock result
(dashed line) for the homogeneous electron gas calculated at the
best-fit value r, = 1.15 is also shown.
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tion function. ' ' In Refs. 12 and 14 the authors found
for the pair correlation function the value =0.35 when
the first electron is at the bond center and the value
=0.25 when the first electron is at the tetrahedral inter-
stitial site. A final observation regards the best-fit value
of the parameter r„which was also employed in the cal-
culation of the Hartree-Fock pair correlation function
(Fig. 6). A value r, = 1.15 was found which is lower than
the value 1.32 resulting from the assumption of a homo-
geneous electron gas for the valence electrons in dia-
mond. Such a discrepancy can be explained by consider-
ing the definition of g(r) as given in Eq. (8). Since an
average over the density is performed, the behavior of the
function g(r) will be dominated by the high density re-
gions, which correspond to lower values of r, .

Finally, the information contained in the present
scattering experiment can be used to further describe the
valence electrons in diamond by calculating the integral,

0. 7-

0. 5-
Be

a

mond�}

0.
0

ra

FIG. 7. y(r, ) versus r, . Full line: theoretical curve for the
homogeneous interacting electron gas (Ref. 5). Dots: experi-
mental results for diamond and Be (Ref. 15). y (dashed curve)
is the theoretical result expected at very high r, values.

y(r, )= f dQ [I—S(Q)],
2QF o

(10) IV. CONCLUSIONS

with Q~ being the Fermi momentum. The function
y(r, ), which is a function of r, alone for the homogene-
ous electron gas, enters the Hellmann-Feynman
theorem' and its behavior versus r, is well known for the
electron gas. ' Then y(r, ) calculated through Eq. (10)
using the experimental S,„(Q) and assuming r, =1.32 to
represent the valence electrons in diamond as they were a
homogeneous gas, can be compared with the value ex-
pected for the homogeneous electron gas at the same den-
sity. In Fig. 7 the so-calculated value of y ( r, ) is super-
imposed to the curve characteristic of the homogeneous
electron system. In such a figure, the experimental value
deduced in Be is also reported. Within the quoted error
bars, the measured data do not deviate from the theoreti-
cal curve The y. (r, ) parameter, whose experimental
determination represents an important check to the in-
teracting electron gas theory, is, however, not enough
sensible to reveal the anisotropies in the electron distribu-
tion as, on the contrary, does the static structure factor.

The analysis of the present experimental data allows us
to focus mainly on two aspects of the electron-electron
correlations in diamond. A relevant result concerns the
exchange and correlation contribution to the cohesive en-
ergy. Such a contribution amounts to =70%%uo of the to-
tal, thus featuring the dynamic correlations as the leading
mechanism of cohesion in light elements. An even more
pronounced effect was indeed found in the case of Be for
which the experimental exchange and correlation contri-
bution to the cohesive energy was about 0.28 Ry, to be
compared with the thermodynamic total value 0.25 Ry.

The effect produced by the dynamic correlations is fur-
ther enhanced by the short-distance behavior of the mod-
el pair-correlation function. In particular, an approxi-
mate width of the Fermi and Coulomb hole equal to
=0.6 A is found. This finding agrees with the results of
the Monte Carlo calculation' ' as it also does the value
of the pair-correlation function at r =0. Both the experi-
mental and the Monte Carlo results emphasize the inade-
quacy of accounting for the Fermi hole when describing
the valence electrons in diamond.
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