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Dislocations and the reconstruction of (111) fcc metal surfaces
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It is shown that a pair of hexagonal dislocation structures can be used as a basis for understanding the

herringbone pattern and the node networks that have been observed in the structure of several (111) metal

surfaces and overlayers. The hexagons are composed of the dissociation patterns of perfect edge dislocations,
which are derived from the well-known concepts of the Thompson tetrahedron. At each corner there is a unit

threading dislocation; the actual location of this dislocation alternates between the inner and outer Shockley
partial dislocation. One of the hexagons will form when there is an excess of vacancies in the surface layer, the

other when there are excess atoms. The hexagons can each be reduced to give a corresponding threefold node

also terminated by threading dislocations. From such a model, structural characteristics of (111) surface
reconstructions such as the presence of perfect edge dislocations on only one side of the stacking fault, can be
understood. Whether the herringbone pattern or the node array will be observed in a particular case will depend
on the details of the specific systems. In particular, the balance between the mechanisms of the dislocation

pattern formation and the equilibrium configuration may be important. The threading dislocations play a

critical role in these processes.

The (111) surfaces of several pure metals and metallic
overlayers have been observed to exhibit strain-induced sur-
face structures. These structures result from the density dif-
ferences between the surface layer and the underlying sub-
strate. An interesting characteristic of the patterns is that they
can be categorized into two general types of patterns: (a) a
striped pattern that, following previous work, we will refer to
as the herringbone and (b) triangular networks. Examples of
these two categories can be found in a number of systems
such as the extensively studied Au(111) surface reconstruc-
tion, the Pt(111) surface reconstruction, and several thin-film
systems. We will refer to the Au(111) and Pt(111), respec-
tively, as examples of these two types of patterns. In this
paper we propose a hexagonal model of (111) surface dislo-
cations that provides a basis for the understanding of both
types of structures. In particular, it will demonstrate the im-
portance of surface threading dislocations to the formation of
these patterns.

The most extensively studied of these systems is that of
the herringbone structure of Au(111). The surface-layer den-
sity difference, to our knowledge, was first observed by
transmission-electron-microscopy (TEM) measurements. '

Later diffraction studies ' identified the TEM features as be-
ing due to a pX1 reconstruction, where p=23~1 (also
known as the 23X +3 structure). This results from a
surface-layer contraction of approximately 4%%uo. Along the
close-packed (110) direction, 23 surface atoms are matched
with 22 substrate (second layer) atoms. In the orthogonal
(112) direction, the surface spacing is in close registry with
the bulk. This results in the formation of domains of the
pX1 structure, which can occur in each of three allowed
directions on the threefold-symmetric (111)surface. The do-
mains link to form the herringbone pattern as shown sche-
matically in Fig. 1(a). In this figure the pairs of bold lines
represent Shockley partial dislocations, which have their
cores located between the surface layer and the second layer
in the bulk material. The second and subsequent layers are

not reconstructed although TEM observations show that
the strain fields of these dislocations do extend into the bulk,
i.e., the surface layer does in fact infiuence the bulk (sub-
strate) crystal.

The straight segments of these partial dislocations are
both in 60 orientations, with respect to their Burgers vec-
tors, and are separated by a stacking fault that corresponds to
atoms of the surface layer located at hcp sites. The nomen-
clature used throughout this paper to identify the regions of
misfit will be that of dislocation theory and the Burgers vec-
tors will be denoted with reference to Thompson's
tetrahedron as summarized by Hirth and Lothe. ' These
Shockley partial dislocations have been referred to elsewhere
as solitons and domain walls separating differently oriented
elastic stresses. The domain-wall terminology comes from
the fact that the partial dislocations separate regions of fcc
and hcp stacking of the surface layer.

These dislocations accommodate the misfit between the
surface layer and the bulk so they are also referred to as
misfit dislocations, a term that we will use. The straight
lengths consist of two 60' Shockley partial dislocations giv-
ing a total dislocation of edge character. Such a perfect dis-
location is then in the most efficient orientation to accommo-
date misfit.

(a)

FIG. 1. Schematics of the reconstructed (111)surface of Au. (a)
The herringbone structure; (b) the appearance of a node network.
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A critical contribution to the understanding of this surface
structure was provided by scanning tunneling microscopy
(STM) through the demonstration that end-on perfect dislo-
cations are present at the bends in the herringbone
pattern. ' ' Furthermore, these dislocations, which are rec-
ognized by the terminating surface lattice planes in the STM
image, not only reverse their sign at alternating bends, but
are always associated with only one side of the stacking-fault
ribbon as indicated in Fig. 1. Since these dislocations run

from the interface to the surface, we will refer to them as
threading dislocations to conform to the standard terminol-

ogy of epitactic growth. It is clear that these threading dislo-
cations are a necessary complement to the herringbone ar-

rangement of misfit dislocations.
One reason that these end-on dislocations are important is

that they have been shown directly to influence the growth of
subsequent material. ' For example, it has been shown
that at —,',-ML coverage of Ni on Au(111), every dislocation
site was already decorated by a Ni island. It will also be
shown in a subsequent extended paper that these end-on dis-
locations directly inhuence the further rearrangement of the
surface layer.

While the geometry described above is found for the re-
constructed Au(111) surface and for heteroepitaxial
systems, ' ' it has been found that when Pt is grown on the
Pt(111) surface ' threefold star-shaped features appear.
These "stars" can eventually link together to form a hexago-
nal network of dislocations as illustrated in Fig. 1(b). The
question arises as to whether these two structures are related.
Evidence suggesting that they are has been provided by a
study of the effect of depositing partial layers of alkali metals
on reconstructed Au(111) surfaces; the effect is a transfor-
mation from the herringbone pattern to a node network.

Our model of these reconstruction patterns is based on the
two nonequivalent hexagonal dislocation loops shown in Fig.
2 together with a Thompson tetrahedron. The tetrahedron is
labeled ABC clockwise and D is directly below 8,

'

the mid-
point of the triangle. (Unfortunately the corners of the
Thompson tetrahedron are always labeled ABCD and this
has no relation to the ABCABC notation used to denote the
fcc stacking sequence; this sequence will be QRSQRS in the
notation given in Fig. 2.) From an atomistic viewpoint this
corresponds to the second layer having atoms at the R sites
and the reconstructed fcc first layer having atoms at the S
sites. If the first-layer atom is moved to an S site, it will be in
the hcp position relative to the bulk material.

The Thompson tetrahedron rotating gives us a simple way
to remember the order and sign of the partial dislocations
present along dissociated dislocations. The rule is that if we
look at the dislocation on its glide plane from outside the
tetrahedron as in Fig. 2, then the greek letter must be placed
outside the stacking-fault ribbon for the stacking fault to be a
simple intrinsic stacking fault as required here, i.e., a surface
layer located in the hcp site relative to the second and third
layers. Thus the dislocation with Burgers vector AB in Fig.
2(a) is composed of two partial dislocations A 8 and 88 with
BB appearing on the left side and A6 on the right. The two
hexagons have been labeled accordingly. The reader is re-
ferred to Ref. 12 for a detailed discussion of the Thompson
tetrahedron.

58
58 85

85

(a) (b)

FIG. 2. A pair of hexagons summarizing the location and Bur-
gers vectors of both the misfit Shockley partial dislocations and the
threading dislocations. The Thompson tetrahedron is shown in (c)
together with a schematic showing the three positions that can be
occupied by close-packing atoms. The sequence QRSQRS here
corresponds to fcc stacking.

Threading dislocations are present in Fig. 2 wherever the
label on the Shockley partial dislocation changes. For ex-
ample, when 88 and BC meet (Burgers vectors bB and CB
when both are viewed looking into the node), a threading
dislocation with Burgers vector CB (looking out of the node)
is formed. In either case there are three threading disloca-
tions on the inner partial-dislocation hexagon and three on
the outer one.

It is important to remember that the finish to start right-
handed/perfect-crystal convention for the Burgers circuit is
implicit throughout this discussion. When the dislocation is
viewed along its line direction with its glide plane being
horizontal, the extra half plane is above the plane if the Bur-
gers vector points to the left and below the glide plane if its
points to the right. The important difference between the two
hexagons is that in one case all the extra half planes (denotes
by the upright in the T) point towards the center of the hexa-
gon, while in the other case they all point away from the
center. This difference is crucial. The Shockley partial dislo-
cations can glide on the (111) plane, a feature that will be
important in interpreting the threefold star configuration.
However, the threading dislocations cannot; their glide
planes are determined by their Burgers vectors since they
have unit length. For example, any two of the three thread-
ing dislocations could, in principle, coalesce by glide but
they can never meet the third threading dislocation by glide
alone. Furthermore, the hexagonal loops cannot form by
glide alone even though the dislocations in the (111) plane
are all Shockley partial dislocations.

This implies that in order for the loops to expand the
threading dislocations must climb by absorbing vacancies
[Fig. 2(a)] or interstitial atoms [Fig. 2(b)]; i.e., each pair of
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FIG. 3.A pair of threefold star nodes derived from the hexagons
in Fig. 2 by removing the inner hexagon and allowing the outer one
to relax.

two hexagons (inner and outer) could only have expanded to
the size shown in Fig. 2 by the appropriate mechanism of
absorbing point defects. Thus the hexagon shown in Fig. 2(a)
can only form and grow if the surface layer contains an ex-
cess of vacancies. Similarly the hexagon shown in Fig. 2(b)
can only form and grow if the surface layer contains excess
atoms, which is precisely the situation that occurs in the
Au(111) and Pt(111) surfaces.

Although the pairs of configurations in Figs. 2 and 3 ap-
pear to be very similar, they cannot be related to one another
by a simple 180' rotation about the t111] axis because the
(111) surface only has a threefold rotation axis, as can be
readily appreciated by considering the tetrahedron in Fig.
2(c). Only one orientation of the defect will appear in a par-
ticular surface.

We can construct a related pair of dislocation configura-
tions as shown in Fig. 3 by removing the inside hexagons in
Fig. 2. If we keep the outer threading dislocations fixed in
place (i.e., not changing the number of excess point defects
associated with their outer hexagon), the convex Shockley
partial dislocations will become concave moving inwards to
minimize the total surface energy associated with the hcp
(surface stacking fault) region but the apexes will be un-

changed. The resulting three-pointed star corresponds to the
defect reported in Pt films grown on Pt(111) and Cu grown
on Ru.(0001) 22,25—27

A

(b)

FIG. 4. A pair of herringbone segments, one constructed from
the hexagon in Fig. 2(a) and the other from that in Fig. 2(b).

An interesting feature of these star configurations is that,
as borne out by the experimental observations, the Shockley
partial dislocations each curve through the edge orientation
while changing from one 60 orientation to the other. This
observation implies that the misfit Shockley partial disloca-
tion have a line energy (line tension) analogous to the corre-
sponding line defect in the bulk crystal although, of course,
the actual magnitude of this energy is expected to be differ-
ent. The defects shown in Fig. 3 correspond to extended P
nodes in the terminology of Frank (as defined in Ref. 12). If
the threading dislocations at the tops of three such nodes
come together, a threefold node can be formed that does not
contain any threading dislocations. This defect is referred to
as the K node and corresponds to the "bright star" reported
by Bonn et al.

We are now able to understand the details of the herring-
bone pattern shown in Fig. 1(a). Looking as the inclined
segments of the hexagons in Fig. 2 we notice that the two
dislocations AC and CB are present on both the top and
bottom sloping segments. We can therefore form herringbone
chains by alternating these segments as shown in Fig. 4. In
fact, all three orientations of the herringbone can be created
by using opposing dislocation segments of the hexagon.
From this construction it is again clear that we cannot mix
segments from Fig. 2(a) with segments from Fig. 2(b) since
the order of the partial dislocations does not match. The re-
sult is that the threading dislocation always appear on only
one side of the stacking fault as is experimentally observed.
Again the configuration in Fig. 4(a) cannot be rotated to give
that in Fig. 4(b).

The configurations in Fig. 4 can only arise under the same
circumstances as could lead to the presence of the corre-
sponding hexagon, i.e., Fig. 4(a) results from an excess of
surface vacancies while 4(b) is created by an excess of sur-

face atoms. This conclusion can be confirmed by the gedan-
ken experiments of increasing the amplitude (A) of the her-

ringbone pattern from zero to that shown in Fig. 4(b) while
keeping the wavelength (2L) constant. The threading dislo-
cations along the misfit dislocation can only move to the
configuration shown in Fig. 4(b) by absorbing interstitial at-
oms, i.e., extra atoms present in the Au(111) surface.

The existence of the threading dislocations is crucial to
the overall strain-relief mechanisms in these systems. The
extra half planes of atoms or vacancies allow the misfit to be
accommodated in a more symmetric mode. The details of the
role of the dislocations in this misfit accommodation is be-
yond the scope of this paper and will be addressed in a forth-
coming paper.

The arrays of threading dislocations also influence the
surface structure in a more subtle way. Each array is a tilt
grain boundary with the angle of tilt being opposite for
neighboring arrays. The effect of a tilt boundary is to rotate
the grains on either side relative to one another. Since the
threading dislocations are only present in the surface layer,
this means that the surface layer is rotated relative to the
second layer (i.e., the bulk crystal). These tilt boundaries are
usually symmetric although exceptions have been reported
(e.g. , Ref. 28). The distance between dislocations in the ar-
rays is typically 73 A (Ref. 15) and the Burgers vector of the
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—,'(110) threading dislocation is defined with respect to the
surface monolayer (2.77 A). ' The usual relationship

sin 0/2= b/2D

gives a rotation on each side of the boundary of 0.45, i.e.,
the arrays are 0.9 tilt boundaries. This means that the
(112) and (110) rows of atoms are sheared through an angle
of 0.45 relative to the underlying crystal. Over the length
between threading-dislocation boundaries the atoms are ac-
tually displaced laterally by —1.4 A (taking L/cos30' to be
173 A), which can be compared with an experimentally de-
termined value of 0.9 A.

In summary, the model represented by the pair of hexa-
gons shown in Fig. 2 can be used as a basis for understand-
ing the herringbone pattern and the node networks seen in
the reconstruction of several (111) metal surfaces. In a sub-

sequent paper we will discuss the implications of this model
more fully. For example, the threading dislocations can be
thought of as unit jogs that will dissociate to some extent
(perhaps three or so atomic distances). Thus threading partial
dislocations with a screw component cause a small step on
the (111) surface and provides a preferred structural site for
the growth of second-layer nuclei as occurs in Ni deposited
on Au. Clearly the threading dislocations play a critical role
in this process.
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