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Effect of phase breaking on quantum transport through chaotic cavities
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We investigate the effects of phase-breaking events on electronic transport through ballistic chaotic cavities.
We simulate phase breaking by a fictitious lead connecting the cavity to a phase-randomizing reservoir and
introduce a statistical description for the total scattering matrix, including the additional lead. For strong phase
breaking, the average and variance of the conductance are calculated analytically. Combining these results with
those in the absence of phase breaking, we propose an interpolation formula, show that it is an excellent
description of random-matrix numerical calculations, and obtain good agreement with several recent experi-
ments.

Recently there has been great interest in the effects of
quantum-mechanical interference on electronic transport
through ballistic quantum dots. ' In these microstructures
both the phase-coherence length and the elastic mean free
path exceed the system dimensions. Thus the leads into the
dot can be thought of as electron waveguides and the dot
itself as a resonant cavity.

Experimentally one observes random (but reproduc-
ible) fluctuations in the conductance as the magnetic
field, ' ' the Fermi energy, or the shape of the cavity is
changed. The sensitivity to small changes in these param-
eters shows that these fluctuations are caused by quantum
interference. In addition to conductance fluctuations, several
interference effects which survive averaging over many mi-
crostructures are observed; in particular, an increase in the
average resistance at zero ma netic field called the weak-
localization correction (WLC). ' ' The two main features of
these interference effects are their shape —the characteristic
field or energy to which they are sensitive —and their

magnitude —simply how big these quantum corrections are
compared to the classical conductance. Here we concentrate
on the magnitude and merely note that a theory for the shape
has been extensively developed.

The magnitude of quantum interference effects in chaotic
cavities has recently been studied by making a statistical an-
satz for the S matrix describing the scattering. ' Refer-
ences 15 and 16 developed a random S-matrix theory by
assigning to S an "equal a priori distribution" once the sym-
metry requirements were imposed. The results for the aver-
age, variance, and probability density of the conductance
were in good agreement with numerical calculations. How-
ever, the random-matrix predictions for both the weak-
localization correction and the variance are larger than the
experimental results. ' In addition, the measured probability
density is close to a Gaussian distribution when there are
two propagating modes per lead (1@=2), while random-
matrix theory predicts a Gaussian distribution only for
No 3.

Inherent in Refs. 15 and 16 is the assumption (among
others) that one can neglect processes which destroy the co-

herence of the wave function. In this paper we show that this
assumption is largely responsible for the discrepancy be-
tween theory and experiment mentioned above. We make
specific predictions for the dependence of the quantum trans-
port corrections on the degree of phase breaking which may
be tested by experiments.

To simulate the effects of phase-breaking events we adopt
a model suggested by Buttiker: in addition to the physical
leads 1,2 attached to reservoirs at chemical potentials
p, &,p, 2, a lead 3 connects the cavity to a phase-randomizing
reservoir at p, 3. This model has been discussed extensively
for disordered materials and, more recently, for ballistic
quantum dots by Marcus et al. A similar model has been
used for absorption of microwaves in chaotic-scattering from
cavities. Requiring the current in lead 3 to vanish deter-
mines p, 3, the two-terminal dimensionless conductance is
then found to be

T23T31g=—G/(e /h) =2 T2, +
T32+ T31

where T; ~ is the transmission coefficient for "spinless elec-
trons" from lead j to lead i. The factor of 2 accounts for spin
explicitly. We call N the number of channels in leads 1 and
2, N& that in lead 3, and Nz= 2N+N@. The N@ channels in
lead 3 are physically related to the phase-breaking scattering
rate y~ via the relation N&/2V= y~/y„, where y„, is the
escape rate from the cavity. In deriving Eq. (1) no phase
relation is assumed between the N& channels and the 2N
original ones, and the various currents are thus added inco-
herently.

We now make the fundamental assumption of an equal a
priori distribution for the total Nz. XNz scattering matrix S,
once the symmetry requirements have been imposed. S is, of
course, unitary, and is symmetric in the absence of a mag-
netic field because of time-reversal symmetry. We assume
that the statistics of the total S matrix are given by the cir-
cular ensembles of random matrix theory. For B=O the
orthogonal ensemble (denoted P = 1) is appropriate while for
nonzero B we use the unitary ensemble (P=2). In contrast
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to previous studies of the eigenphases, ' total
transmission, ' ' or individual S-matrix elements, we treat
the statistics of g given in Eq. (1). In the rest of the paper, we
first derive results valid in the weak and strong phase-
breaking limits, then combine these into an interpolation for-
mula which simulations show to be valid, and finally com-
pare with experiments.

We start by recalling the result for the WLC and variance
at N&=0 given in Ref. 15:

0.0

-0.1—

-0.2—

-0.3—

-0.4 "—

(a) M=2

0.'t

CD

P P1na I k I I ~ I ~ I I I I I ~ I III

10 1po

Bg=(g) P=' —(g) P = —N/(2N+1), (2a)
0.4

varg= &

4N(N+ 1)
(2N+ 1) (2N+ 3)

N

4N —1
=2

(2b)

0.1 0

In addition to these results, the probability density of g was
calculated for %=1,2,3.

The case N~= 1 and P= 1 is a special one which can be
analyzed in detail. From the joint probability distribution of
S-matrix elements in one row,

one can show that the joint distribution of the T3, s is
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Remarkably, the (g) that one obtains by integrating over this
distribution is identical to that for N&=0.

In the limit N&&)1, we obtain results to leading order in
1/N&. First, expand the conductance of Eq. (1) in powers of
BT;, where T;, =(T;,)+ ST;, . The average transmission is'
(T;,) = N;N, /(Nr+ 8») as in the Hauser-Feshbach formula
of nuclear physics. Using Ref. 22, one finds that the corre-
lations among the T;, 's are

FIG. 1. Magnitude of quantum transport effects as a function of
the number of phase-breaking channels, N&, on linear and log-log
(insets) scales. (a) The weak-localization correction (N=2). (b)
The variance in the orthogonal (squares) and unitary (triangles)
cases (N = 2). (c) The ratio of the variance in the orthogonal case to
that in the unitary for N=1, 2, and 6; the arrows mark the
N&~~ limit for N=1,2. Open symbols are numerical results
(20000 matrices used, statistical error is the symbol size). Solid
lines are interpolation formulas. Dotted lines are asymptotic results.
Solid circles are experimental results of Ref. 9 corrected for thermal
averaging. The interpolation formulas are excellent except for N= 1
and small N@ [panel (c)].

large N& it comes from the second term in Eq. (6) (the inco-
herent part). The WLC is then given by

8'g= N/Np+ 0(1/N~)—.

For the variance one finds from Eq. (5)
A 1

——[Nr(Nr+ 1) (Nz + 3)]

A2 = [Nz(Nr 1)].—

(5b)

(5c)
t'Ni 2 2 —Pvarg= ~

—1+ +
t %&i 2N

for i4 j, kWl. (For P=1, the indices of the T's have been
permuted so as to maximize coincidences. ) Note that
(BT;/8'Tk/) is at least of order 1/N&. Thus

(g) =2 (T )+ +O(1/N~). (6)
(T23)(T31)

T32 + T3i

The largest contribution to (g) is the classical conductance
N1N2/(Nt+Nz); for N&=0 this comes from (T21) while for

and, for the ratio of the variances for P = 1,2,

(varg)/P='l / 1 ~

(var )'p='&

Of course the magnitude of the quantum corrections de-
creases as the phase breaking increases. That varg decreases
with W& reflects the fact that each S-matrix element fluctu-
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Bg, and varg of Ref. 9 for N= 2. (N& is measured through

the temperature dependence of the correlation function of the
fluctuations. ) Before comparison, the variance must be cor-
rected for thermal averaging: convolution over the derivative
of the Fermi function produces a reduction of -0.22—0.38
for a temperature of 50—100 mK. We have increased the
measured varg by the inverse of this reduction factor; the
WLC is not affected since it is already an average effect. The
error bars shown result from both the uncertainty in tempera-
ture (for the variance) and the experimental fluctuations at
small B. [For the moment, we do not assign further physical
significance to the oscillations seen in the experiment. The
error bar in Fig. 1(b) is sloped because N& contributes to the
total width of the levels and hence to the thermal reduction
factor. ] Note that we have not fit the theory to the data and
yet the agreement is very good. Second, in Fig. 2 we show as
solid symbols the data of Refs. 4, 8, and 9. The N& deduced
from comparing to our calculations is in good agreement
with the value estimated independently in the experiments:
N&= 7 —9 for Ref. 4, N&= 2 for Ref. 8, and N&= 4 —8 for

Ref. 9. Finally, the probability density of the conductance for
the estimated N&=4 —8 of Ref. 9 is Gaussian, consistent
with experiment. Observation of the interesting non-
Gaussian distribution of g obtained in the theory for
N= 1,2 and N@=0 requires greatly reduced phase breaking.

In conclusion, we have presented a random-matrix model
that simulates the effects of phase breaking on transport
through ballistic chaotic cavities. The analysis of recent ex-
periments indicates that one can find a value of N@ that con-
sistently describes the data. It is not necessary to identify the
phase-breaking channels with a particular place in real space;
in fact, our random-matrix treatment implies that the phase-
breaking processes are distributed throughout the cavity as in
the experiments. Further experiments are needed to test
quantitatively the dependence on N and N& that we predict.

Note added. Recently, we received some results by P. W
Brouwer and C. W. J. Beenakker with some overlapping ma-
terial for N=1.
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