
PHYSICAL REVIE%' 8 VOLUME 51, NUMBER 1 1 JANUARY 1995-I

Supercenducting instability in the infinite-U Anderson lattice
in the presence af crystal electric fields

B. R. Trees*
Department of Physics, The Ohio State University, 17$ W. 18th Ave , .Columbus, Ohio $MXO

(Received 23 May 1994; revised manuscript received 12 July 1994)

We have studied the mean-field quasiparticle states and quasiparticle interactions in the infinite-
U Anderson lattice in the presence of crystal electric fields of cubic symmetry. We assume a lattice
of 4f sites, each with a total angular momentum of J = 5/2 that is split into a low-lying doublet
of I'r symmetry and an excited quartet of I's symmetry. Slave bosons on the 4f sites create and
destroy 4f configurations and Lagrange multipliers at each 4f site enforce the occupancy constraint
due to the infinite Coulomb repulsion. The quasiparticle states are strongly peaked at the points
where the Fermi surface intersects the axes of the cubic Brillouin zone, leading to what we call "hot
spots. " We have calculated the eff'ective magnetic moment and the Wilson ratio for these anisotropic
quasiparticle states. Quasiparticle interactions are due to exchange of 4f density fiuctuations. We
use the analytic tetrahedron method to calculate the dressed (to order 1/N) boson Green functions.
In weak coupling, the exchange of the dressed bosons gives rise to a superconducting instability
of Tis, 2:y(x —y ), symmetry. The Azs, "s-wave, " channel has strongly repulsive interactions
and hence no pairing instability. The Tz~ channel exhibits weakly repulsive interactions. Average
quasiparticle interactions in the E» 2: —y, 3z —r, channel Quctuate strongly as a function of
the number of tetrahedra used to calculate the bosonic Green functions, lending only weak evidence
for an instability of E~ symmetry.

I. INTKODU CTION

This paper is concerned with the eKects of crystal
electric 6elds on quasiparticle interactions in the Ce-
based heavy fermion superconductor CeCu2Si2 [T, =0.6
K (Ref. 1)j. In general, the heavy fermion materials
are examples of systems exhibiting strong correlations
among the constituent particles. The compounds are
comprised of intermetallics and rare-earth or actinide
atoms (such as uranium or cerium) with a strong on-site
Coulomb repulsion. This large electrostatic energy arises
from the localized nature of the 4f or 5f wave functions
in the solid and markedly inHuences the electron occu-
pation at these "rare-earth" sites. When hybridization
between a rare-earth electron and a conduction electron
is allowed, the physics of this strong interaction is com-
municated to the solid at large, giving rise to a metal of
strongly correlated, interacting electrons. In such a sys-
tem one might expect to 6nd a ground state manifesting
collective properties of the coupled rare-earth and con-
duction electrons, e.g. , supercond. uctivity or magnetism.
Indeed such ground states are seen. There are also
heavy fermion systems that apparently retain a metal-
lic state down to zero temperature. To date there are
six known heavy fermion superconductors, all containing
either cerium or uranium.

Our work is based on the infinite-U Anderson lattice,
the details of which we shall discuss later. For the ex-
perts, we mention here that we use slave boson opera-
tors to create or destroy 4fo configurations on the Ce
sites, thereby avoiding the cumbersome Hubbard oper-
ators in the hybridization piece of the Hamiltonian.

There is also a Lagrange multiplier to enforce unit occu-
pancy of the 4f multiplets at each Ce site. In our work
we also include, at the Ce sites, crystal electric fields
of cubic symmetry, which has the efFect of splitting the
spin-orbit-coupled (1 = 5/2) multiplet into a doublet (of
I'q symmetry) and a quartet (of I's symmetry). We take
the I'p doublet to be the ground multiplet, with a crystal
Geld splitting LcEF to the I'8 quartet that is much larger
than the Kondo temperature of the low-lying doublet, Tp7

(&CEF ++ +07).
Previous theoretical work has focused on understand-

ing the heavy fermion compounds mainly through the
SU(N) version of the periodic Anderson model, ii is in
which each 4f multiplet is N-fold degenerate, and the
(plane-wave) conduction bands are assumed to be N
fold degenerate as well. The matrix element V(k), for
hybridization between a conduction electron and a 4f
electron, is taken to be isotropic in momentum space.

Within the SU(N) model, Lavagna, Millis, and Leei
and Auerbach and Levin have studied quasiparticle
interactions due to the exchange of 4f density fluctu-
ations. The lowest-order diagrams contributing to the
interactions are of order 1/N, where N is the 4f xnul-

tiplet degeneracy. In Ce, in the absence of crystal 6eld
splitting, the low-lying J = 5/2 multiplet is sixfold de-
generate (N = 6). So it seems reasonable to truncate
the diagrams at order 1/N. Lavagna, Millis, and Lee
found. that such a spinless density exchange yielded, a d-

wave superconducting instability in the spin-singlet pair-
ing channel. Houghton, Read, and Won 6 extended these
results by calculating 1/N contributions to the scatter-
ing amplitude, thus including quasiparticle interactions
due to the exchange of spin as well as charge Huctua-
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tions. They discovered that attractive interactions, even
at order 1/N2, could be strong enough to yield pairing
instabilities in either the p- or d-wave channels. In fact,
when they compared the strengths of the pairing interac-
tions due to charge and spin fluctuations separately, they
concluded that for typical values of N and m'/m (m*
is the quasiparticle efFective mass and m is the mass of
a free electron) spin-fiuctuation-mediated pairing should
dominate. It is clear that a 1/N2 calculation, includ-
ing spin fluctuations, should be performed in the case
of crystal-Geld-split multiplets. Such a calculation would
allow us to compare the relative strengths of charge ver-
sus spin-fIuctuation-mediated interactions. The numerics
required, however, are formidable at present, and so we
have limited ourselves to order 1/N.

Zhang and Lee have performed a more realistic cal-
culation at the 1/N level (as far as heavy fermion com-
pounds are concerned) by including spin-orbit coupling
at the Ce sites and by returning to twofold degener-
ate conduction states. They included an anisotropic
hybridization matrix element, of the Coqblin-SchriefFer
form, between conduction and 4f electrons. These
spin. -orbit coupled ions are assumed to sit in an over-
all spherically symmetric "host" (as in a jellium model).
Unlike in the SU(N) xnodel, in the even-parity pairing
channel, Zhang and Lee found no superconducting in-
stabilities of 8-wave, d-wave, or g-wave symmetry. It
is worth noting here that the mean-Geld quasiparticle
energy bands Zhan. g and Lee found are the same as
those calculated by Zou and Anderson, who used the
Korringa-Kohn-Rostoker (KKR) scheme and included
spin-orbit coupling on the 4f sites.

We have calculated both the mean-Geld quasiparticle
states and density-fIuctuation-induced quasiparticle in-
teractions in the presence of crystal electric GeM split-
ting of the Ce J = 5/2 multiplets. At the intersection
of the Fermi surface with the axes of the cubic Brillouin
zone, the quasiparticle states are strongly peaked. This
is due to the vanishing of the hybridization between the
plane-wave conduction and the crystal Geld states of I'7
symmetry. We call these points "hot spots" and have cal-
culated the efFective magnetic moment and Wilson ratio
in their presence. Density-Huctuation-induced quasipar-
ticle interactions are calculated from the particle-particle
scattering amplitude. We find that the anisotropy due to
cubic symmetry qualitatively and quantitatively alters
the interactions in comparison to the jellium model re-
sults of Zhang and I ee. In fact, we find evidence (at order
1/N) for a superconducting instability of Txg [2:y(x —y2)]
symmetry in the even-parity pairing channel. We also
find weaker evidence for an Eg (2: —y2) pairing insta-
bility. We find no instability in the Axg (the "a wave" of
cubic symmetry) channel, which is not surprising, given
the strong on-site Coulomb repulsion built into the An-
derson model. The results of Houghton, Read, and Won
strongly suggest that spin fluctuation exchange (order
1/N ) should be included as well. We wish to empha-
size that, as we shall discuss, difFiculties already at order
1/N precluded us &om evaluating 1/N diagrams in the
presence of crystal-Geld-split multiplets.

We also wish to note that the application of a 1/N ex-

pansion in the presence of a low-lying doublet (N=2) has
been discussed by several authors. 20'2i (See also the dis-
cussion in Ref. 22.) It has been shown that ground state
properties of the Anderson impurity model as calculated
from Bethe ansatz techniques show excellent agreement
with 1/N results even for N=2. Furthermore, the 1/N
expansion is easily generalized to the case of a lattice of
rare-earth ions, as applies here, and gives a controlled
procedure for evaluating diagrams.

The details of our calculation are presented here as
follows. In Sec. II, we introduce the Hamiltonian for
the infinite-U Anderson lattice in the presence of crys-
tal Gelds. The Hamiltonian formalism shall be retained
throughout this paper, as opposed to functional inte-
gral techniques. ' 'i4' 5' In Sec. III, we discuss the
mean-Geld properties of our Hamiltonian, including the
quasiparticle energies and states, and in Sec. IV we dis-
cuss our calculation of the Wilson. ratio. In Sec. V, we
discuss our calculation of the dressed slave boson Green
functions, which includes the efFects of particle-hole ex-
citations in the hybridization coupled conduction and 4f
electron system. We also briefIy explain our use of the
analytic tetrahedron method for performing the com-
plicated three-dimensional Brillouin zone integrals that
arise in the evaluation of the particle-hole diagrams. Fi-
nally, in Secs. VI and VII, we present our results for
the supercond. ucting instabilities in the presence of cubic
symmetry, which are based on the Fermi surface average
of the quasiparticle-quasiparticle scattering amplitude.

II. HAMILTONIAN

We assume a crystal electric field splitting of the 4fi
states consistent with an efFective cubic symmetry at the
Ce sites. Such a choice is based on the specific heat
data of Bredl et al. for CeCu2Si2 and is consistent with
bulk susceptibility measurements and the isotropy of
the slope of the upper critical field at T„H,' (T2,). Ini-
tial evidence of crystal electric Geld splitting in CeCu2Si2
by inelastic neutron scattering was found by Horn et al.

In the presence of cubic symmetry, the J=5/2 xnul-
tiplet is split into a doublet of I'7 symmetry and. a I'8
quartet. 2s The crystal-field-split states ~I'n), where cx la-
bels the degenerate states for a given multiplet, are a
linear combination of the eigenstates of the z component
of the total angular momentum ~m), where —5/2 ( m &
5/2,

(I'n) = ) cx )m).

The coefBcients cz are given in Table I. Based on the
experimental data mentioned in the previous paragraph,
we assume a I y doublet ground state, with a crystal Geld
splitting to a I'8 quartet of L~Ep ——31.5 meV.

The matrix element Vr (k) represents hybridization
between a crystal GeM state with quantum numbers I', o.
and a plane-wave cond. uction state with crystal momen-
tum k and spin o. In the case of a single ion in the full
J=5/2 manifold, one may use the Coqblin-Schrieffer
matrix element
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TABLE I. Crystal-field-split states as a linear combination
of the eigenstates of the z component of the total angular
moinentum Im), where —5/2 & m &5/2.

where

IIc = ) (kck~cko 1
t

ka
(4)

h2k2 —go~2m (5)

is the plane-wave dispersion. The zero of energy for this
calculation will be taken with respect to po, the chemical
potential of the conduction electrons in the absence of
hybridization.

The 4f electron site energy is

4'
V (k) = — —(—i) rrVok

3
Y~', (k),

Hy = ):FrfRr fart

R,I'n
(6)

where o'=+1 is the (pseudo)spin index. Vok denotes the
dependence of the hybridization strength on the magni-
tude of the momentum, which will be important only near
the zone center. In fact, we can write Vok =Vog(k), where

g(k) is a function of lkl that goes to zero on approach-
ing the zone center like k . Vo is the bare hybridization
strength. Because the crystal-field-split 4f states are just
linear combinations of the J=5/2 states, the hybridiza-
tion matrix elements in cubic symmetry are

where R is the site index in real space, and I'a are the
crystal field quantum numbers. The operator fRr de-
stroys a 4f i configuration at lattice site R, in which the
crystal Geld state I'a. is initially occupied. Prom the pho-
toemission data, we take the energy of the I'7 doublet
to be —2.0 eV, i.e. , E7 ———2.0 eV. From the inelastic
neutron scattering data and the high-temperature spe-
cific heat, 4 we take the I's level to lie 31.5 meV (= 360
K) above the I'q level,

Es = Ev+ LCEF = —1.964 eV.

Vr (k) =
~=sj2

~=-5j2
cr V (k).

The hybridization, or mixing, term is

&mix = ). Vrn~(k) Ckt fRrnbRe'" +H'. C.

koRra-
Next, we say a few words on the important energy

scales of CeCu2Si2, based on the discussion of Kang et
al. on the electron spectroscopic data available as of
1990. They analyzed their own data of the Ce 3d x-ray
photoelectron spectrum (XPS) and 4f bremsstrahlung
isochromat spectrum (BIS); they also analyzed the Ce
4f resonant photoelectron data (RESPES) of Parks et
al. Kang and co-workers calculated the appropriate
one-electron spectra &om the impurity Anderson model,
which showed reasonably good agreement with the data.
On the basis of such a calculation, the authors claim that
Coulomb energy for double occupation of a Ce 4f site is
U= 7eV.

The large Coulomb energy for CeCu2Si2 prompts us to
take the limit in which U goes to infinity, thereby forbid-
ding hybridization processes that give rise to 4f -+ 4f2
valence Quctuations. This is a technical simpliGcation for
us, but even though U is indeed very large by solid-state
physics standards, it may be that the physics of Gnite
U is crucial to the understanding of heavy fermions. Re-
cently Cox has proposed the quadrupolar Kondo model
(or two-channel Kondo madel) as aii explanation of the
superconductivity and. of the possible non-Fermi liquid
behavior in uranium-based heavy fermions. Neverthe-
less, the infinite-U limit is a reasonable simplification (at
least for CeCuzSi2) of an already difficult problem and
warrants study in its own right.

Our Hamiltonian can be written as a combination of
terms: H = Hc + IIf + &mix + ~constraint.
energy of the conduction electrons is given by

The operator b~~ is a slave boson creation operator, which
creates a 4f configuration, or hole, at lattice site R. N,
is the number of lattice sites. This combination of con-
duction, 4f, and slave boson operators was first applied
to the Anderson model by Dames, and was later rein-
troduced by Coleman. H;„contains only bosonic or
fermionic operators, and so Wick s theorem is applica-
ble. Use of the more cumbersome Hubbard projection
operators,

~or = 10) (I o'I

would make Feynman diagrammatic procedures invalid,
since the Hubbard operators do not obey standard com-
mutation relations. The cubic symmetry is reHected
in the structure of the anisotropic function Vr ~(k),
which has a signiGcantly different k dependence than the
Coqblin-SchrieKer form V (k). This new anisotropy
will affect quasiparticle interactions differently than in
the case of spherical symmetry.

Finally, there is the constraint term, which is intro-
duced with a Lagrange multiplier iAR, ensuring that the
total occupancy (fermions plus bosons) at the Ce sites is
unity,

IIconstraint = ) t'~R
I fRrrrfRrcr + baba. Q I

~ (10)(t
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Note that Q=l is the physically meaningful value in this
case.

As discussed in Refs. 9 and 11, the slave boson operator
can be written in terms of an amplitude and a phase. We
let 8~ be the amplitude of the boson at site K. The Bose
propagator is then a 2x 2 matrix, which in the static limit
will have elements composed of averages over the Bose
amplitude and the Lagrange multiplier: Ss, sA, and AA.

In the SU(N) case, in order to have a well-defined
Kondo temperature in the limit of large N, it was neces-
sary to assume the bare hybridization strength Vo scaled
like 1/i/N. i We do the same here by defining a rescaled
hybridization matrix element,

Vr (k) = y NzVz (k),

where we assume that Vi (k) is of order 1. Note that
Nr is the degeneracy of the I' crystal field multiplet.
Also, because the hybridization matrix element and the
boson operator 8R appear together in H;„, we define a
scaled boson operator

where the sum P means only the states in the I'7(s)~7(8)
multiplet are summed. Although technically it is pos-
sible to find analytic solutions of Eq. (14), the analytic
expressions are too cumbersome to be useful; thus we cal-
culated the roots numerically. The three quasiparticles
bands are plotted in Fig. 1 along two different directions
in the cubic Brillouin zone. Figure 1 shows that along
the axes of the zone, for example along the I'X direc-
tion, the states of I'; symmetry cannot hybridize with
the conduction states. This means that the matrix ele-
ments V7 (k) vanish along these special directions and
that there is no gap between the first and second quasi-
particle bands [see Fig. 1(b)]. Such behavior has been
discussed by Martin.

The quasiparticle states can, quite generally, be writ-
ten as a combination of plane-wave and crystal field
states,

lqk„.) =~„(k) Ik~) —) '" '-" Ir~),
r &r —Enk

8a
sRr =

gN
where we assume that s~r is also of order 1.

(12) where lko) is a plane-wave state. The anisotropic nor-
malization function is

III. MEAN-FIELD APPROXIMATION 3.0

In this section, we discuss the properties of our Hamil-
tonian at the mean-field level, where we assume that both
the Bose operator and the Lagrange multiplier are uni-
form in space. In this limit, the Hamiltonian in k space
takes the following form:

HMF = ) (kck~ckcr + ) srfkr~fkrat t

ka kra

1.0

o.o
S4

—2.0

+ ) sprVr (k)c„ fkz + H.c.
kcrra-
N. ).NriApl spz' gpr

Ii
4.0

0.0

(b)

0.4 1.0

where er = Er + iAO is the shifted energy of the I' mul-
tiplet. We assume that qor is of order 1, but techni-
cally, when it comes down to getting numerical results,
we know that gpr = 1/Nz'. Note that spz and Ap are
the mean-field values of the Bose operator and Lagrange
multiplier, respectively (spz = sp/QNr).

It is straightforward. to diagonalize HMF and obtain
the quasiparticle states and energies. Because the I's
states are fourfold degenerate, there is one nonhybridiz-
ing quasiparticle band of I'8 symmetry. The secular equa-
tion which gives the quasiparticle energies E k (n=1,2,3
is the band index) is

(ss —E.i) ((k —E.k) -).
«2 2) psl s~~l

O (]4)- (ss —E„k)

—3.0
0.0 0.9

k
1.8

FIG. 1. Schematic of the quasiparticle band structure,
showing the shifted crystal field multiplet energies (s7 and ss),
the chemical potential (p), and the lower band edge (—D).
(a) The k values range from the zone center (the 1' point) to
the intersection of the k axis with the cubic Brillouin zone
boundary. (b) Prom the zone center to the intersection of a
cube diagonal with the Brillouin zone boundary.
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A2(k) 1+ ' )- sor IVr-(k)l'
(16)2r . (er —&.~)'

For given crystal field quantum numbers I o, , it is possible
to sum over the pseudo-spin variable o in Eq. (16). For
convenience, we define a function

Vr~r ~ (k) —= ).Vr'~~(k)&~r ~ (k)

Then the sum over the pseudospin variable in the expres-
sion for A2 (k) is just the diagonal element pr r (k). All
possible (nonzero) forms for the function pr~r ~ (k) are
shown in Table II, where the dependence on the mag-
nitude of k has been divided out. Using the results of
this table, it is possible to arrive at the following expres-
sion for the normalization function, which is valid at any
point in the Brillouin zone:

v )
2 ( 2

1 —
l

'"
l

Y (k)+08 ) s
q

F08 ) l
Y44(k) + Y4 4(k) l

Figure 2 shows a plot of Eq. (18) along the equator of a
spherical Fermi surface, with P denoting the azimuthal
angle measured with respect to a coordinate axis. The ex-
tremely sharp variations near the axes represent the van-
ishing of the I'p hybridization matrix elements. The six
points where the Brillouin zone axes intersect the Fermi
surface we call "hot spots;" they must be handled with
care when averaging the quasiparticle scattering ampli-
tude over the Fermi surface.

We would like to remark that, in this model, the ex-
istence of hot spots is a manifestation of the lowering of
the symmetry below spherical. In spherical symmetry,
there is a sum rule for the matrix elements that renders
the normalization function A isotropic in k space.
In our case, the matrix elements cannot be simplified to
an isotropic function. This means that hot spots can oc-
cur anywhere in the Brillouin zone where some subset
of the hybridization matrix elements Vr (k) vanishes.

TABLE II. Functional forms for the angular dependence of pz- 1-i I for all possible com-
binations of the crystal field quantum numbers I', o;, I",o.'. Note that by time-reversal sym-
metry, p, z z ~ ~ ——pz z i I, where the asterisk denotes the time-reversed pair. For example,
yves, rz ——yr, z, r, z. Note, also, that Vor(lkl) represents the dependence of the hybridization
strength on the radial component of k. Any combination of quantum numbers not present in
the table or not the time-reversed pair of quantum numbers in the table will vanish upon summing
over the pseudospin indices.

pr r~ '(k) jVor(lkl)Vor'(lkl)

71
8,2

8,1

8,2

8,1

8,2

8,-1

71
8,2

8,1

7)1

8,-1

7,1

71
8,2

8,1

8,1

8,2

8,-1

8,2

71

71
8,-1

8,-2

71

Yoo —
3 Y4o —

3 ~~(Y44 + Y4—4)
2~m

Ypp —
7 3 Y20 + gg Y40 + 3 g~ (Y44 + Y4 4)

2~~ 8 1

3 Yoo + 7 5 Y2o + 7 Y4o
2~~ 8 1 2

s Y22 + 5 Y2 2 —
2 Y42 + 6 Y4

10 2m 3 ~3 ~3

21 5 Y2—2+ 5Y22 2 Y4-2+ 6 Y42

——g —Y2 1+ — —Y4 1 —— —Y434 5 3 5 2121@56262
~i Ms Y2' + 0 V 2 Y4 —' 0 M2Y4 —3

2, ~6z Y2 r —~8Y4
——,V 6z [Y2g —~Y4g

—
~ ~ V 2s' Y2y + 8 ~2 Y4 3 + 8 ~2 Y41

—
~~ ~2m Y2 q + 8~212Y43+ 8 ~2Y4 —g

—+18z [Y22 ——Y2 2 + ~Y4 2 + ~Y42

—v 18m IY2 2 ——Y22 + ~Y42 + ~Y4-2j

——&7r Y2o ——Y4o + — -Y4-4 —— -Y44]
4 r ~s 5 7 1 7

21 3 6 2 6 2

——g vr Y2p ——Y4p + — —Y44 —— —Y4 4
4 ~s 5 7 1 7

21 3 6 2 6 2
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0.24

0. 'I 8

0. 1 2

where P is the inverse temperature. Requiring that
BFMF/BiAo ——0 and BI"MF/Bsp =0 yields the equations

1 - -2— 1 . OEk—).Nr( or qor) + ).f(&nk) B.A
= 0 (23)

2 r

and

0.06 1 . OEk
2iApsp+ ) f(E k) = 0.

kon
(24)

0.00
0.0 0.2 0.4 0.8 1.0

This is a rather general statement that relies only on the
symmetry being lower than spherical and should not be
unique to cubic lattices.

We can relate the fermionic creation and destruction
operators in the original basis (the c and f operators) to
creation and destruction operators in the quasiparticle
basis, Qk„, Qk„. We find that

ck = ) A„(k)Qk„,

FIG. 2. A plot of the normalization function Ai(k) along
the equator of a sphere in k space as a function of azimuthal
angle P. The sharp spikes occur at the intersections of the
equator with the coordinate axes. At these points the I z hy-
bridization matrix elements vanish exactly, and the width of
these peaks is set by the ratio of the two Kondo temperatures
707/TOS +07/AGEF ~ The behavior for a fixed azimuthal
angle (/=0) as a function of the polar angle 8 is the same.

In Eqs. (23) and (24), f (E k) is the Fermi function eval-
uated at the quasiparticle energy E k. We also need an
equation to Gx the chemical potential of the quasiparti-
cles p, which depends on the total number of electrons
(conduction electrons, n„and f electrons, nf. ) per unit
cell,

1
nt t i = n, +nf = ) f(E„k).

N,
kern

These three coupled integral equations, when solved
self-consistently, give the shifted 4f multiplet energies
er, the value of the Bose Geld so, and the quasiparticle
chemical potential p, . The input parameters are nq q ~,

the total filling factor, the bare hybridization strength
Vo, and the conduction electron Glling factor n . The
zero of energy is always measured relative to the chemical
potential of the conduction electrons, po. For nq q ~

——2,
the lowest quasiparticle band is completely filled, and the
system is a Kondo insulator. We have consistently used
nq q ~

——1.5, which ensures that we have a metal.
To get numerical self-consistent solutions, we found it

necessary to write these equations in terms of energy in-
tegrals with the appropriate density of states,

~ .A„(k)spz Vr' (k)
~r —E~k

ncaa

(20) ~ 2 jagm(g) f ",
ko.

(26)

These expressions are useful in constructing the two-
quasiparticle scattering amplitude.

In the last part of this section, we discuss the self-
consistency equations that arise when one demands that
the free energy in the mean-field approximation be an
extremum with respect to the Bose fields sp and iAp.
Since we have diagonalized the mean-field Hamiltonian,
Eq. (13), we can write it in terms of the quasiparticle
energies and operators:

The corresponding mean-Geld &ee energy has the form

N,
+MF — ' ).NriAo

I
sor qor

2 ( )
——) ln(1+ e-i'~-"), (22)

Ns
+MF ) EnkQk~~Qkrao + ).Nr»o

l
spz' d'or I

~

kncr )
(2l.)

where N(() is the density of states per spin for the un-

hybridized conduction electrons and dO is an element of
the solid angle. Note that in the SU(N) model described
previously, the spin degeneracy would contribute a pref-
actor of N (instead of 2) in Eq. (26). For free electrons
in three dimensions the density of st;ates is proportional
to the square root of (.

To proceed, we make one approximation. We assume
that surfaces of constant; energy for the quasiparticle
states are spherically symmetric. Near the zone center,
this is exactly correct, and there is no approximation at;

all. Near the zone boundary, the equal-energy surfaces
become distorted from spheres due to the constraints of
1 y symmetry. It is important to note, however, that in
Eqs. (23), (24), and (25), the strongest angular depen-
dence comes &om the anisotropic matrix elements, which
we treat exactly. That is, we believe the angular depen-
dence of the quasiparticle bands is not as important as
that of the hybridization matrix elements. For exam-
ple, near an axis of the Brillouin zone, the I'y matrix.
elements are going to zero. So, even if the quasiparti-
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cle energies surfaces are distorted &om spheres near the
axes, the sensitivity of the self-consistency equations to
this distortion would be lessened by the presence of the
small V7 terms in the numerator. Thus, it should be
a reasonable approximation to treat the mixing matrix
elements as having all the angular dependence.

Using the secular equation for the quasiparticle band
energies, Eq. (14), we can calculate all the necessary
derivatives of the quasiparticle energies found in Eqs. (23)
and (24). After averaging the anisotropic matrix ele-
ments over the Fermi surface, we are left with the follow-
ing three equations to be solved self-consistently:

dEN(((E)) ("-E) (27)

~2 p 1
2i Ap —2 " dEN(((E))

—D

5 =0, (28)

P 2V2
dEN(g(E)) I +-

—D
(29)

where —D is the energy at the bottom of the lowest quasi-
particle band.

We have taken the limit of zero temperature to arrive
at Eqs. (27)—(29). As a consequence, only the first quasi-
particle band Ei contributes at mean-Geld; for simplicity,
we have dropped the band subscript 1. We consider two
difFerent sets of solutions, corresponding to the conduc-
tion electron filling factors of n =0 5[wh. ich we call set
(a)) and n =0.8 [which we call set (b)]. We define a
Kondo temperature in the lattice for both l"7 and Fs
multiplets by

Tpl' = Ep —p

The reader is reminded that p is the quasiparticle chem-
ical potential. The motivation for deGning the Kondo
temperature as the difFerence between the shifted multi-
plet energy (ez ) and the quasiparticle chemical potential
is that in the SU(N) model this difFerence has exactly
the same structure as the Kondo temperature for the im-

purity problem. That is, in the SU(N) model, one finds
that 3

lay I/NN(0)vo
)

Tps = Tp7 + LGEF ~ 370 K& (32)

where Ter/Tos =0.027. Figure 3 plots the lowest quasi-

where D is the half bandwidth, N(0) is the (assumed fiat)
conduction electron density of states, Ey is the unshifted
or bare 4f multiplet energy, and Vo is the bare hybridiza-
tion strength. All self-consistent mean-field parameters
are presented in Table III. Note that both parameter sets
(a) and (b) have approximate Kondo temperatures (for
the I'r doublet) of 10 K, which, based on the neutron
scattering quasielastic linewidth, is a reasonable esti-
mate for CeCu2si2. Note, also, that the Kondo tem-
perature for the 1 8 quartet is dominated by crystal Geld
splitting,

TABLE III. Self-consistent mean-field parameter sets, labeled as (a) and (b). At mean field
there are three coupled integral equations, which are solved self-consistently. The input parameters
are the bare hybridization strength Vo, the lower edge of the conduction electron band in the
absence of hybridization, —D; the total number of electrons, nt~t~~ ——n«„g + nf, per unit cell; the
bare, or unshifted, energy of the I"r (Er) and the I's (Es = Er + ACEF) multiplets; and the fixed
crystal field splitting AOEF ——360 K. The self-consistent parameters which solve the equations are
the hybridization renormalization coefficient so, where the mean-field-renormalized hybridization
is ssVp, the shifted I'r (er) and I's (es = er + Aopp) multiplet energies; the quasiparticle chemical
potential p; and the Kondo temperature T07: 67 p, of the I'7 doublet. In both parameters sets
(a) and (b), the total number of particles was fixed at ni i 1=1.5. And the input parameters were
chosen to give approximate Kondo temperatures of 10 K, i.e., T07 10 K. All energies are measured
relative the chemical potential in the absence of hybridization In both paramet. er sets, b, oEF=360
K, and the unshifted I'7 energy is E7 ———2.0 eV.

Parameter
set
(a)
(b)

Vo

(eV)
0.8595
0.650

0.093472
0.142409

E7

(eV)
0.0217648
-0.8437021

P
(eV)

0.0208399
-0.844999

T07
(K)
9.25
13.0

D
(eV)

2.4405
3.33856
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D. H

0.0

—0.8

pararnet. er set (a)
p, =0.208 eV

set, (b)
p, =——0.844 eV

cases, giving rise to a very large quasiparticle density of
states at the Fermi surface.

IV. EFFECTIVE MAGNETIC MOMENT
AND WILSON RATIO

—4.0
0.0 0.9

k
1.8

FIG. 3. Plot of the lowest energy band E» for the two
mean-field parameter sets [labeled as (a) and (b)]. In set (a),
the conduction electron chemical potential is 2.44 eV, and in
set (b), it is 3.33 eV. Note that the bands are just shifted with
respect to each other. For both parameter sets the unshifted
1 z multiplet energy sits at —2.0 eV. (Qii IilQii ) —= v."(k)

where the magnetic moment operator is

(33)

In this section we discuss our results for the effective
magnetic moment of the quasiparticle states when aver-
aged over the Fermi surface. The quasiparticle states are
given by Eq. (15), where the local crystal field states are
orthonormal to each other. Note that in this case the
dispersionless band lies at an energy Tov+ACEF above
the Fermi energy, where the crystal Geld splitting is much
larger than the Kondo temperature of the I 7 doublet, i.e.,
TQ7 (Q LIEF ~ In order to calculate the effective magnetic
moment, we need the following expectation value for the
lowest quasiparticle band:

particle bands for both mean-field parameter sets (a) and
(b). The top of the first quasiparticle band is just below
the shifted I'7 energy ep. The quasi@article chemical po-
tential cuts through the fiat part of the fn. st band in both

pz lz + 28z = gz Jz& (34)

gJ being the g factor for total angular momentum J. We
find that we can write Eq. (33) in the form

O'CJ ll X Q2 /1 X C' mg jcr sor &(~el~~ (k) I racr& (k) sor cram
(er —Ei )(er —&i~)

As done by Zou and Anderson, ~9 who calculated the ef-
fective moment in the absence of crystal field splitting,
we average over the Fermi surface,

2 +1+1(k)2 + +1—1(k)2dk

the plane-wave conduction states and the localized I'7
states cannot hybridize. Thus we expect the g factor at
these spots to go back to the &ee electron value of 2,
with the result that the contribution to p,g &om the hot
spots increases the effective moment above that of a free
moinent of I'r symmetry. For parameter set (a), we have

We 6nd an average moment of

~cubic eff' = 0'583~B&

for mean-field parameter set (a). For a free I'r doublet
the average moment is

25
Py = —Pa.49

(3S)

The effective magnetic moment in cubic symmetry is
slightly larger than the value for a free I'y moment. This
was expected by Cox, who predicted the effective mo-
ment would have the structure

2 2 m
p~=py 1+(1 ) (39)

where n is a prefactor that could be as big as about 10.
The contributions of order gm/m' come from the so-
called hot spots. At these points on the Fermi surface,

1.33 x 10
/To7 l
(spVp)

Equation (39) is applicable for the quoted values of @2&
and p& if o.=9.23, which is a reasonable value.

Finally, we substitute p,,a into the expression for the
Wilson ratio,

(40)

where y(0) is the low-temperature susceptibility, p(0) is
the linear coeKcient of the speci6c heat, k~ is Boltz-
mann's constant, and p~ is the Bohr magneton. Us-
ing y(0)=0.019 emu/mole (for a magnetic field along
the c axis of the tetragonal unit cell), s and p(0)=1000
mJ/(mole K2) (Ref. 1) gives R = 2.3S. We should note
that reported results of approximately 0.5 for the Wilson
ratio are due to the use of the bare effective moment
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p,s =2.54p~ in Eq. (40). We also find it interesting to
note that for the two-channel Kondo impurity, the Wil-
son ratio is approximately 2.6.

Zou and Anderson calculated the effective quasipar-
ticle magnetic moment in the absence of crystal field
splitting, finding p,@

——1.08@~. Comparing this result
with the value of the bare moment of an fi electron
in a J=5/2 state, p,=2.54p~, they saw that hybridiza-
tion had reduced the size of the moment. Thus the Pauli
susceptibility

Xpauii = 2p,zrN(p))

where N(p)= N(p) is the enhanced density of states
at the Fermi surface, was also a8'ected. But Cox, Zhang
and Lee, and Aeppli and Varma pointed out that the
presence of the dispersionless quasiparticle band lying at
an energy equal to the Kondo energy above the Fermi
surface meant that the corresponding Van Vleck (inter-
band) term should be included in the susceptibility. This
resulted in an e8'ective magetic moment equal to that of
a bare J=5/2 state. Crystal field splitting, in contrast,
pushes this dispersionless quasiparticle band up to an
energy of LIEF above the Fermi surface, where L~EF is
Inore than an order of magnitude larger than the Kondo
energy of the low-lying I'y doublet. Thus ignoring the in-

terband Van Vleck susceptibility is more justified in this
case, and the Pauli susceptibility is dominated by the
contribution &om the I'7 states.

V. FLUCTUATIONS BEYOND MEAN FIELD

Gr ~r ~ (k, r) = (T~f—i,r~ (~)fi,r, , (0)), (42)

G (k, ~) = —(T ci, (7.)cd (0)), (4S)

G.-(k. ) -=-(T-f--( ) .'.(0)), (44)

where T is the imaginary time ordering operator. In
terms of a complex frequency z, the mean-field Green
functions are

With the eigenstates of the mean-field Hamiltonian
written in the undiagonalized basis, there are three
fermionic Green functions: Gr r~ ~ (the f Green func-
tion), G (the conduction Green function), and Gr (the
off-diagonal, or mixing, Green function). All three are
defined below in terms of Fock space operators:

Grnr'n'(k z) =
z —6'r

1
brr b +

z —E'r ~

(z —e,)(z —.s)apr Vr' .(k)Vr .(k)a„.
(z —Eii ) (z —E2i ) (» —&si )

(45)

(z —er)(z —es)
(z —&ii ) (z —&2i ) (» —Esi )

' (46)

Gr k, z) = apr Vr' (k) (z —er. )
( -~-)( -E-)( -~-) (47)

These propagators will be used to calculate the Green
functions for the bosonic fields in our Hamiltonian,
namely, 8kr and iAk. The bosonic Green functions can
be dressed (through the terms H;„and Hy) by particle-
hole excitations of the hybridized conduction and 4f elec-
tron systems. To proceed, we write the slave boson and
I agrange multipliers as follows:

H = 5.(i ci, ci + ). fi,r &rbi i + z&i -i fi"r
kyar kk'rn

+ ) Vr-(k)c~. f~r a~-~r+H. c.
kk'Fao-

Bkr ——sorbk, o + bskr (48) + ) NrzAi, ) ai, +i,&rai r qr' kr - kI

iAk ——iAobk o + ibAk, (49)

where bskr and bAk represent Huctuations away &om the
(self-consistent) mean-field values.

It is easy to see how the particle-hole excitations dress
the bosonic Green functions by writing the full Hamilto-
nian in k space,

Substituting from Eqs. (48) and (49), Eq. (50) can be
written in two pieces, one representing the mean-Geld
approximation (which we have solved), and the second
piece coming &om the Buctuations in the bosonic fields
bskr and bAk. The bare boson Green functions come &om
the terms in the constraint, the last line of Eq. (50), which
are quadratic in the Huctuating fields. Since this involves
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terms of the form hskrhskr, hskrbAk, and hAkbAk, we
write the bare propagator in a matrix form (in the static
limit),

Nr
iC

zoo sor ii
o

the usual Feynman diagrammatic techniques.
Figure 4 shows all the unique self-energy diagrams in

terms of the three hybridization-dressed fermionic Green
functions, Eqs. (42)—(44). Evaluation of theses diagrams
leads to the following results for the elements of the (in-
verse) dressed Bose propagator:

where sor = so j/IZIr. The specific elements of the ma-
Nr- c ~Ntnx are Dp»j. z ———

2 zApopp, Dpappp = —
2 sppBpp

and Dppp j p~ =0.
The dressed boson Green function will then satisfy a

matrix Dyson's equation,

D„rr, (g) = 2I„rr~(g))

NI xp
D~~rrq z Bor + err + zIgArr (ci) )

2 8pr
(54)

rr (&) = Dorr (&) —+rr (&).

The 2x2 self-energy matrix IIrr~ (q), due to the particle-
hole excitations (one-loop order), can be calculated by

gr 1
Dxwrr (g) = ——Ixxrr (a),

TOI'

where the momentum dependent functions are given by

f(&ik)sorsor~pr r~ ~(k)pr~ ~r (~')(&v —@1k) (&8 @1k) ~k' tk+q + ~k' tk —q ~I„rr (g) =
~s kk, , (@1k' @1k)(@2k' @1k)(@3k' @1k)(@2k @1k) (&r —&ik)(&r —&ik)(@sk —&ik)

(a) Dyson's Equation

q, iv 1v

A-]
D &(iv)

(q,

k, iM
=Ga(k, i m)

rua a a aaaaaa~
k, i(0

ro ro
a a a a a a a a a a a

IP% a a a a a

k, iso
=G& &» (k, i co)

(c) Self-Energy k+q, iQ)+ i v
I e(X r~~rH .(q, i v): r

ssrr
k, i(0 a

k, i(0

II ~ (q, i v)
S z

X
I uacx

k,i'

k+q, i 0)+iv

(b) Fermionic Greens Functions

X=V

Z
(x o(,aa
k, i(0

t

ry

re'

=6& (k, i m)

k+q, im+iv

k, iM

FIG. 4. (a) Dyson's equation for the di-
agonal component (in the crystal field in-
dices) of the inverse of the (matrix) Bosonic
propagator Drr. (b) The three hybridiza-
tion-dressed (mean-field) fermionic Green
function. s. Note that, in general, the f Green
function can mix the multiplet indices at k
points away from the zone center. This is be-
cause away from the zone center, the symme-
try is lower than cubic, allowing the crystal
field indices to mix. (c) Leading contribu-
tions to the components (ss, sA, and AA) of
the self-energy matrix from closed fermionic
loops. The x symbol represents the scaled
hybridization matrix element Vr (k), which
is assumed to be of order 1. The external legs
in the I'„zz diagram come from the scaled
Huctuations in the 8 6elds, hsing.

H~~(q, i v)
Zr'u'

ro
k, i co

k+q, i f0+iv
a ~ t

a a
tg

~ri

troa~ a a a t

k, iso
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sor Sor'
X ; (Eik —er)(Eik —er )

(57)

P ) f(EI )(&v —Eik) (&s —Eik)
Isxr r

Ns kk, (E2k Elk) (E3k Elk) (E1k' Elk) (E2k' Eik) (E3k' Elk)

soF prier'm' (k)pr'cx' Fn(k ) soF'pr'cx'Fn(k) prnr'n' (k )
(E )

+
(E )

k', k+q + k', k —q

f (Elk)sorsoz' Prnr'n'(k )Pr'cr'Fn(k) [~k',k —q + ~k', k+qj (&7 E1k) (es E1k)G~rr
(Eik —Eik) (E2k —Ei ) (Esk —Eik) (E2k —Eik) (~r —Eik) '(er —Eik) '(E3k —Eik)

(58)

In Eqs. (56)—(58), E k are the quasiparticle band ener-
gies. The quasiparticle chemical potential was chosen to
lie in the lowest band, such that f(E k) is nonzero only
for n = l. (Recall this is a zero temperature calcula-
tion. ) The anisotropic function pz z ~ ~ (k) is defined in
Eq. (17). The parameters xr and yr are numbers which
depend on the mean-field parameter set used. See Table
IV for the values of these parameters.

We must evaluate numerically the three-dimensional
principal value integrals comprising the functions
I ~rr (q), I,irr (q), and Iiqrr (q) of Eqs. (56)—(58) To
do so, we use a procedure developed originally to calcu-
late the real part of spectral functions of the form,

4"(E) = Re@(E) = P )
k

4' looks like the rea1 part of a dynamic susceptibility. We
write our functions I brr (q) in the following form:

P
~

~ f (Eik)M~grr~ (k, k )
&

B kkg 1k 1k

where the matrix elements are a complicated function of
k and q which come &om Eqs. (56), (57), and (58). That
is, direct comparison of Eq. (60) with Eqs. (56)—(58) gives
the structure of the matrix elements M~~z j-lk, k'. Note
that the symbols ab can represent ss, 8A, or AA.

Note that these three-dimensional integrals can have
an entire surface of poles inside the Brillouin zone that
must be handled properly. In contrast, a one-dimensional
principal value integral can be regularized numerically
by basically subtracting o8' the divergence, and such a
procedure is facilitated by the relatively small number of
poles throughout the domain of integration. In our three-
dimensional integral, if n „& is the number of cubes into
which the Brillouin zone is divided for the purpose of
numerical integration, then there are of the order of n
poles, which clearly gets large as n, h increases, and

it is no longer possible to regularize the integral in a
simple way. The large quantity of work done by'(mostly
electronic structure) physicists in this field of numerical
A:-space sums is indicative of the degree of complexity
inherent to these problems.

We now show the dependence of the self-energy func-
tion I„(q),which has been summed over the crystal field
multiplet indices,

- I-rr (q)
, QNFQNF

(61)

0.96

0.88

0.80

as a function of n, h. Within our implementation of the
analytic tetrahedron method, for a given mesh parameter
n „h, the total number of tetrahedra in the Brillouin
zone is 8n „h. The function I„ is plotted as a function
of the mesh parameter n, h in Fig. 5 for mean-field
parameter set (a). The results for parameter set (b) are
similar. We chose the momentum q = 0.5z, measured in
units of vr/a, where a is the lattice spacing. (We took
a =3.89 A. .) The matrix elements are assumed constant
inside a given tetrahedron. Since they are complicated
anisotropic functions, however, the matrix elements can
vary a great deal throughout the Brillouin zone, and thus
they cause fluctuations in the value of the I„(q) as a
function of n „h. This is clearly visible in Fig. 5 for
the case of I„(q). The behavior of I,p(q) and Igp(q) is
qualitatively similar.

It is clear that if we need convergence of the Green

TABLE IV. The parameters xz and yz are for both
mean-field parameter sets described in Table II.

0.72
0.0 20,0 40.0 60.0 80.0 '1 00.0

Parameter set
(a)
(b)

XV

1.820
1.729

0.0717
0.0949

gr
0.975
0.925

'JJs

0.04029
0.0498

&mesh

FIG. 5. Numerically evaluated function I„(q) as a func-
tion of the mesh parameter n „h for mean-Beld parameter
set (a). Here we used q = 0.5z.
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functions to several decimal places, it would require a
mesh with n „g & 80. In background, a calculation
for n, g ——40 takes about 1 h on a DEC 5100. Since
the computing time goes as n, » it is clear that a run
with n, h ——80 requires a long run time. Actually,
this numerical integration is parallel in nature. Each of
the n „h subcubes could, in principle, be integrated in-
dependently of the others, and at the end the net re-
sult would be the sum of the results &om each subcube.
Naively, this is the kind of problem a parallel machine
should be able to handle well.

It is also interesting to note that calculations of the sus-
ceptibility or dielectric function based on electronic struc-
ture data, generally, are not performed for n „h greater
than about 30. The complicated nature of our matrix
elements has forced us to push the procedure to very
large values (by anyone's standards) of n „i,. We shall
discuss in the next section how our conclusions on pairing

I

instabilities in the infinite-U Anderson lattice take into
account this slow convergence of the bosonic self-energy.

VI. QUASIPARTICLE SCATTEKINR
AMPLITUDE

In this section, we present our analysis of the scatter-
ing amplitude I'qp(k, k ), which allows for quasiparticle
interactions via the exchange of 4f density Quctuations.
The exchanged boson will be represented by the (dressed
to order 1/N) boson matrix Green function calculated in
Sec. V. The diagrams for the scattering amplitude are
presented in Fig. 6, where the straight lines represent
the incoming (and outgoing) quasiparticles and the wavy
line is an element of the (matrix) boson Green function
Drri(q). The large black circles represent quasiparticle
vertices pyr (k, k') and p;„r(k, k'), which are calculated
by writing the full Hamiltonian in the quasiparticle basis:

Hgp = ) (i,A„'(k)A„(k)Q~t„Qi,„+
ka nn' kk' I'nnn'era'

t7mixr(kr k )Qirn~Qir'n'cr'sir~ irr + H.c. ' + Hconstraint ~

kk'I'crcrnn'cr'-

Recall that Qi, destroys a quasiparticle of momentum
k, pseudospin 0, and band index n. The vertex functions
pf and p;„ thus come from the unitary transformation
that diagonalizes HMF [see Eqs. (19) and (20)],

„'(

A„'(k)A„i (k') spr Vr', (k') Vz ~~ (k)p;„r k, k'
&I' —En'k'

(64)

A superconducting instability of symmetry g is signaled
by a negative value of the corresponding average I'z. See
Table V for a list of the cubic harmonics used in this cal-
culation. The character table for the octahedral group
0 is presented in Table VI, where the irreducible repre-
sentations are listed: A~, A2, E, Tq, and T2. The group
Oh follows &om the group Q by including inversions.
This means the representations pick up a subscript g or
u depending on if they are even or odd, respectively, un-
der parity. Because of the complexity in calculating the
dressed Bose propagators, we have assumed a spherical
Fermi surface for the average in Eq. (65). We do not feel
this is a weakness of the calculation for reasons discussed

As shown below, we project I'gp(k, k') onto states of
cubic symmetry, O„(k), the so-called cubic harmonics,
where g labels the irreducible representations of the oc-
tahedral group Q~. The product is then averaged over
the Fermi surface,

TABLE V. Realizations of the cubic harmonics 4 „as lin-
ear combinations of the spherical harmonics Yj . For each
representation g of cubic symmetry, the expansion was cut
ofF after the lowest set of spherical harmonics with l ) 0.

dk'I'„= — 4„* k' I'q k, k' 4„k .

k'a

k'-k -k'-k

-k -k

FIG. 6. Quasiparticle scattering amplitude for incoming
particles (solid lines) of momenta k and —k. The wavy lines
are dressed boson propagators, and the vertices denote the
anisotropic coupling of quasiparticles to bosons.

A1g

Agg

T1g

T1g

T1g

T2g

TQ g

TQg

Ypp + 0.76376261Y4p + 0.4564355(Y44 + Y4 4)

0.58630197(Y42 + Yp 2) —0.3952847(Ypp + Yp p)
Y~o

+2 (Y22 + Y2 —2)

(
—0.93541435i l~ ~ t 0.353553391ii'm

(""'""(Y„+Y. , ) —="""-"(Y..+ Y. .) ~

!
~(Y44 —Y4 4)

~2 (Y21 Y2 —1)

~2 (Y21 + Y2 —1)
P2(Y22 —Y2 2)
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TABLE VI. Irreducible representations of the octahedral
group O. To get the group Og, we add inversions to the
allowed symmetry operations, the result of which is that all
representations pick up a subscript g (for even parity) or u
(for odd parity).

Representation
Ag

A2

T1
T2

Dimensionality
1
1
2
3
3

Transforms like
x +y +z

(*' —v')(~' —*')(g' —~')
x —y ) 3z —f'

X) y) Z

xy, yz, zx

elsewhere. 2

In this paper, we shall consider only even-parity pair-
ing states. This restriction is based on the following ex-
perimental evidence for CeCu2Si2' . the need for strong
Pauli limiting to fit the low-temperature upper critical
field data H, 2(0),2s the reduced spin susceptibility be-
low T~ as measured by the Cu Knight shift, and the
observed T temperature dependence of the nuclear-spin
relaxation rate below T . The strong Pauli limiting ac-
tually only argues against equal spin pairing states. As
Ueda and Rice showed, in the presence of spin-orbit
coupling, Pauli limiting is possible for pairing states of
Ti„or T2„symmetry. (Both of these odd-parity states
would have a gap with point nodes as opposed to line
nodes on the Fermi surface. ) These experimental facts
put together, however, might be considered reasonable

I

evidence for even-parity pairing in CeCu2Si2.
We have found it useful to study the properties of the

scattering amplitude in two steps. First, by setting the
functions I„zz (q), I»rr (q), and I&&rr (q) to zero, we
sixnplify the problem considerably to that of two quasi-
particles scattering via exchange of a momentum inde-
pendent boson. In real space, this corresponds to a lo-
cal interaction between the quasiparticles. We find. that
these local interactions, when averaged over the Fermi
surface, are substantially different from those calculated
within the jellium model by Zhang and Lee. ~

In the case of cubic symmetry, inclusion of the func-
tions I, z'z" (q) I err (q), and Ipgrr (q) is the compu-
tationally intensive part of this calculation. If there are
strong local repulsive interactions in the g pairing chan-
nel, then the only way to get a pairing instability (i.e.,I'„(0) is to have the functions I z'z" (q) I err (q), and
Ipprzr(q), which represent the effect of nonlocal interac-
tions, overcome the repulsion. Zhang and Lee discovered
that in the jellium model these q-dependent contribu-
tions are too weak to overcome the local repulsions in the
s-, d-, and g-wave pairing states. We find that in cubic
symmetry (with crystal field splitting) attractive nonlo-
cal interactions can overpower local repulsions in the Tig
pairing channel, thus giving evidence for a TIg pairing
instability.

When we evaluate the diagrams of Fig. 6, we can write
the quasiparticle scattering amplitude in the even-parity
(pseudospin singlet) channel as

Ax(k)Ax(k')sprspz" Vr' ~(k')V~~r~~~(k')VP~ ~ (k)V~r~(k)
("-E»)("-E»)rq, (k, k') = — )

I'a F ' cx' era'

x D„zz (k —k) + D-zr (-k —k) —i
~

D,pr (k —k) + D.gr (-k —k)
~

I I spr
&r —Exx

l
D.ir (k' —k) + D.ir (—k' —k')

Ier —Exx ( ' j
~

Dpp(k' —k) + Dp), ( k' —k) ~—
er —Exx sr

(66)

where the components of the bosonic Green function are

D~arr (q, r)—:(hs ~r(r)bs~r (0)),

D, ),r (q, r) —= (8s ~r (r)b A~ (0)),

in the static limit.
When evaluated on the Fermi surface (at zero temper-

ature), the band energies Exx, and Exx, are set equal to
the quasiparticle chemical potential p, . Thus a term like
ez —Eqg becomes

~r —p = Tor (67)
D),p (q, r) = (h A ~(r) hA~(0)),

and all other symbols have been previously defined. Note
that we are taking the static limit of these Green func-
tions. %'e are limiting ourselves to a Fermi surface aver-
age of the scattering amplitude, that is, a weak-coupling
calculation. It became clear that including the &equency
dependence of the boson Green functions was impossible,
given the diIIIicult numerical integrals encountered even

which is the Kondo temperature of the I' multiplet. For
the case of CeCu2Si2, the Kondo temperature of the I'7
doublet is approximately 10 K, while for the I's quartet
Tos=To7++cEF=370 K. This explains how to treat all
the energy denominators in Eq. (66).

As mentioned, it is instructive to consider the so-called
local lixnit of Eq. (66) in which the self-energy functions
I„(q), I»(q), and Ig&(q) are set to zero,
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I')~,~)(k, k') = — )
raI"a'(acr'

8or

QNr TorI'o x

roAA

&NrNr ro2, ~

~or'

v'NrTor I'o.~

A', (k)A, (k')aorsor Vz (k')V r ~ (k')Vz" (k)V~r~(k)
TorTor~

(68)

where

.(1 xrlI'o.& = ).~

—Nr sor +
(2 sor j (69)

r„,=)
Tor

The combination of normalization functions A2i (k) Azz (k')
and the product of the four hybridization matrix ele-
ments is due to the anisotropic vertices p;„r(k, k') and

Qf r (k, k') . The contribution &om the Bose Green func-
tion is that which remains inside the square brackets in
Eq. (68).

The local scattering amplitude of Eq. (68) is much sim-
pler to deal with than the full expression of Eq. (66).
Roughly, the functions I„(q), I,p(q), and Ipg(q) can be
thought of as renormalizing the local interactions. In the
next two sections, we present our results for the Fermi-
surface-averaged scattering amplitude I'„, both with and
without the bosonic self-energy.

VII. RESULTS: LOCAL LIMIT

We now present our results for the Fermi-surface-
averaged (local) quasiparticle interactions I'~, ~ ~, where
p:A&g Eg T&g or Tlg . We have not included pairing
states in the A2g representation (see Tables V and VI)
for two reasons: (I) The lowest-order spherical harmonic

present in the cubic harmonic @~„ is Yq, and the
relatively rapid variation throughout the Brillouin zone
of the pair wave function would correspond to a pairing
state with a high kinetic energy and hence should be less
accessible than the pairing states labeled by the other
representations; (2) the A2g state would also require a
finer mesh for the Fermi surface average than the one we
have used and hence would further increase the (already
considerable) overall computing time.

Table VII gives the ratio I'~, ~,„/Toy for both mean-
field parameter sets (a) and (b). Also presented in Table
VII is the contribution to the Fermi surface average &om
the so-called hot spots. For the hot spot contribution,
the normalization functions Ai2(k) and Ai(k') in Eq. (68)
were approximated with b functions in k space that sam-
pled only the six points on the Fermi surface intersected
by the Brillouin zone axes. The integrated weight of the
b functions was chosen to equal the area under the peaks,
as shown in Fig. 2. Such a calculation gives us a feel-
ing for the importance of these special points where the
normalization function Ai(k) is rapidly changing. This
contribution is labeled by I'~, ~ h t, in Table VII. We see
the following.

(i) The Aig pairing channel has (by far) the largest
(repulsive) local interaction, but it is not dominated by
what happens at the hot spots.

(ii) In the Eg channel, the strong anisotropy of the nor-
malization function gives rise to a weakly attractive local
interaction. In fact, the attractive local interaction here
is dominated by the contributions Rom the hot spots.
Note &om Table VI that a pairing state of Eg symmetry

TABLE VII. The local ("hard-core") quasiparticle scattering amplitude in the presence of crystal
electric fields, I ~p, averaged over a spherical Fermi surface. Results for both mean-Geld parameter
sets (a) and (b) are given. See Table III for a discussion of the mean-field parameters themselves.
The first column gives the representations, labeled by g, of the group Oh, . The second and third
columns are the averaged local scattering amplitudes (divided by the I'7 Kondo temperature Tpz)
for the parameter sets (a) and (b), respectively. The fourth column lists tfor parameter set (a)j the
contribution to the average from the so-called hot spots, where the Brillouin zone axes intersect
the Fermi surface. In column 4, in the E~ channel, the attractive interaction seems to be due to
these hot spots; but in the Aig channel the hot spots do not dominate, since the full Fermi surface
average is large and positive. The average in the E~ should be most sensitive to the hot spots, since
that is where the E~ cubic harmonics have their maximum value. In the Tq~ and T2g channels there
is rigorously zero contribution from the hot spots because the Ti~ and T2~ cubic harmonics vanish
at those points.

(a) Cubic symmetry
f1

Aig(s wave)
Eg(d~m „2,d„2 „a)

T]g

T&g(d v dv d )

(I'i . i)„/Top
set (a)
3.54

-0.0275
0.0478
0.0487

(I'i..a)„/Tow
set (b)

3.53
-0.0453
0.0695
0.0709

(+1 al, hat)/ TTO

set (a)
-0.215
-0.0696

0.0
0.0
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TABLE VIII. The local ("hard-core") quasiparticle scat-
tering amplitude in the jellium model, as studied by Zhang
and Lee (Ref. 1). When divided by the Kondo temperature
and averaged aver the spherical Fermi surface, these results
are universal; there are na other parameters involved. In
spherical symmetry, the pairing states are labeled by their
relative angular momentum l, vrith /=0 corresponding the s
wave; l=2, d wave; and /=4, g wave. It is meaningful to com-
pare Zhang and Lee's results with ours, because in the limit of
spherical symmetry, where all the bosonic propagators in Eq.
(68) are replaced with their values in spherical symmetry, and
where the normalization functions Aj (k) and Aj (k') are re-
placed by their isotropic values, our expression for I'&,

& gives
exactly the same local interactions as Zhang and Lee. Note
that all local interactions are repulsive in spherical symmetry.

Spherical symmetry
jl=O (s wave)
ji=2 (d wave)
jr=4 (g wave)

(I'j...j),/&o

I/3
8/21
2/7

VIII. RESULTS: INCLUDING NONLOCAL
INTERACTIONS

This section discusses our results for the Fermi sur-
face average of the full quasiparticle scattering amplitude

transforms like x —y or Sz —r, which have maxima
along the directions of the axes. The normalization is
also strongly peaked along the axes. Thus the E~ states,
of all the pairing states, are most strongly afFected by the
hot spots.

(iii) In the Tqg and T2s channels, the local interaction
is weak and repulsive. Neither pairing channel can "see"
what happens at the hot spots, because both cubic har-
monics 4z ~g and 4T2g vanish identically at these points.

In Table VIII we present for comparison the results
for the Fermi-surface-averaged scattering amplitude &om
Zhang and Lee's jellium model calculation, where Leg-
endre polynomials (P„) play the role of the cubic har-
monics. States described by @=0 are 8 wave, g=2 corre-
sponds to d wave, and g=4 is g wave. Zhang and Lee find
that all nonzero interactions are repulsive and of about
the same strength. As we have said, they also found that
the inclusion of nonlocal interactions was not sufBcient to
overcome the local repulsions. In cubic symmetry, how-
ever, the very weak local interactions in the E~, T~g, and
T2g pairing channels make a superconducing instability
likely.

Detalied study of Eq. (68) has shown4s that the domi-
nant contribution to the local amplitude is due to the I'y
states. Because of the crystal Geld splitting, the contribu-
tion &om I'8 states will be reduced in comparison to the
contribution &om the I'y states by an amount of either
To7/T(js or (Tpy/Tps), where for CeCu2Si2 Toq/Tos
0.03. As discussed elsewhere, if only the I'p states were
to contribute to the local amplitude, then all projections
of the scattering amplitude I'~, ~ „would be zero except
for @=AD~. The presence of the nonzero but weak lo-
cal interactions in the Eg, T~z, and T2g channels is thus
mainly an efFect of the excited crystal Geld states.

I'clp(k, k') as given in Eq. (66). The functions I„rr (q),
I,prr (q), and Ipgrr (q) [see Eqs. (56)—(58)], contain the
physics of the screened (by density fluctuations of the
coupled conduction 4f electrons) slave bosons. The mo-
mentum dependence represents the contribution of non-
local quasiparticles interactions in real space.

From Eqs. (66) and (65), we see that we must evaluate
the self-energy functions for all unique combinations of
k + k'. This we do separately &om the actual averag-
ing process. We store the required values for l„rr (q),
I,prz (q), and Ippzr (q) in a look-up table. We saw in
Sec. V that, due to the complicated efFective matrix
elements in cubic symmetry [see Eq. (60)], these func-
tions are slowly converging numerical integrals, which
prompted us to try the following line of attack. We
have averaged the scattering amplitude [Eq. (66)] over
the Fermi surface with a fixed averaging mesh. We vary,
however, the mesh for calculating the bosonic Green func-
tion, as characterized by the parameter n, h, and study
the avernge interactions as a function of n „h. With this
procedure, it became clear that nm„g —50 is a practical
limit of the mesh size. Creating the look-up table for the
bosonic self-energies would require well over a week of
run time on a DEC5100 for anything bigger. Thus, it is
important to ask if we can make any conclusions about
possible pairing instabilities for n „h & 50.

The values of I'„/Toy for j7 = Aqg and jl = T2g are
plotted as a function of n „h in Fig. 7 for parameter set
(a) and in Fig. 9 for parameter set (b). Also on the plots,
the local values for the average are marked by horizontal
lines for each representation (except Aqs). The results
show the following.

(i) In the Ajg channel, the interactions are clearly
repulsive. The nonlocal interactions, however, are at-
tractive, since the average local repulsion is of the size
r,..., ~yg/Toy=3. 54, and the inclusion of the momentum-
dependent bosonic self-energy gives I'~qs/Toq = 1.2.
Thus the nonlocal contribution has reduced the local re-
pulsion by about a factor of 2, but is not sufBciently
strong to yield a pairing instability.

(ii) In the T2s channel, but for a glitch at n „h=23,
the interactions are repulsive for parameter set (a), with

I'Ties/Toy

=0.20. For parameter set (b) (Fig. 9), however,
it is less clear if the average interaction is attractive or
repulsive. Taking the results for both parameter sets
together, we believe there is no pairing instability of T2g
symmetry.

The values of I „/Toy for jl = Eg and jl = Tqg are
plotted in Fig. 8 for parameter set (a) and in Fig. 10 for
parameter set (b).

(i) The results for Tjs show attractive interactions,
with an average value I'T js/Toy ———0.212+0.025 for pa-
rameter set (a), and = —0.226+0.049 for parameter set
(b).

(ii) The interactions in the Es channel are less well
behaved, but are attractive for 25( n „h & 47 [for pa-
rameter set (a)]. These numbers point to a possible su-
perconducting instability of E~ symmetry, but the re-
sults have not converged enough for us to be sure. As
a rough guide, using the numbers for 25& n, h & 47
would give (I')~s/To7 =-0.163+0.054. The values for pa-
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rameter set (b), however, have a surprisingly large fluctu-
ation at n „h——31, which makes it very diKcult to make
any conclusion for n~~, h ~ 35. It~ 35. It is clear that the
states are the most sensitive to the fluctuations due to the
anisotropic matrix elements in the bosonic self-energies,
which includes the strongly peaking quasiparticle nor-
malization function. From these results, we see that the
T ring state is the most likely candidate for a pairingi~ pairing s
instability in cubic symmetry.

—0.2

—0.4

IX. DISCUSSION
—0.8

24.0
IImesh

40.0 48.0

As we have said, n „h -50 is a practical limit on the
size of the bosonic self-energy mesh that we could run
on a local workstation. The appearance of fluctuations
in the averaged scattering amplitude (Figs. 7—10), which
limit our conclusions about possible pairing instabilities

cub' etry, is not shocking. After all, we know
that there are fluctuations in the bosonic self-energies for

-80 (See Fig. 5.) As we discussed, such varia-
thetions are due to the anisotropic matrix elements in t e

principal value integrals over the Brillouin zone. If the
matrix elements are sharply peaked in some region of
the Brillouin zone, then it is easy to see how fluctuations
can occur. If the mesh is constructed so that the ma-
trix elements are evaluated very near a peak, then only a
small shift in the mesh is required before the matrix ele-
ments will be evaluated at a point far down on the sides
of the peak. Thus a small change in mesh size could re-
sult in a large change in the evaluated matrix elements.

FIG. 8. Fermi surface averages in the Ei~ and Ti~ pair-
ing channels of the scattering amplitude I'„/Tpx as a func-
tion of the boson mesh parameter n „h. These data are for
mean-field paraxneter set (a). The solid (dashed) horizontal
line denotes the local contribution to the average in the Eg
(Txs) channel. (i) Although not yet converged, the averages in
the T&~ channel point to the possibility of a pairing instability.
A

' th values of I'Tx /Ter for all the values of naveraging e va ues
used here yields ' = —0.212 + 0.025. (ii) In the Eg chan-
nel, there is a large Huctuation at n, h ——39. Therefore, we
are hesitant to say that this is evidence of a superconducting
instability. However, it is clear that the average interactions
in this channel are attractive for a relatively wide range of
mesh sizes: 25& n~esh & 47.

A similar problem can arise in finite size lattice prob-
lems, where large variations in results can persist up to
very large system sizes. The solution for that particu-
lar problem is an average over boundary conditions. Our
problem, unfortunately, has no such cure, and we must
live with reasonable conclusions &om the data we are

2.0

parameter set (a)2.4

1 . 2

0.6

0.0

T2g

T2g, local

0.8

0.4

0.0
T2g, local

parameter set, (b)

T2g

24.0 32.0
IImesh

40.0 48.0 24.0 30.0
&mesh

~ ~FIG. 7. Fermi surface averages in the Ai~ and T2~ pairing
channels of the scattering amplitude I'„/Tax as a function of

8n e uals the num-the boson mesh parameter n~esh. n~~, h q
ber of tetrahedra used in the Brillouin zone integrals for the
bosonic Green functions. These data are for mean field pa-
raxneter set (a). (See Table III.) (i) The horizontal line marked
by Tqg ~o, x denotes the size of the local ("hard-core") contri-
bution to the average in the T2~ channel. The correspon ing
local contribution for the A~~ channel is 3.54 and would be
just above the top of the graph. We see that the nonlocal
contribu ion in e 2gb t' th T channel is of the same size as t e o-
cal contribution. Even with the Buctuation at n~, h

——23, it
seems unlikely there is a pairing instability of T2~ symmetry.
(ii) In the Axs channel, even with the large fluctuation for
n „h=39, there is clearly no pairing instability.

~ ~FIG. 9. Fermi surface averages in the Aig and Tq~ pairing
channels of the scattering amplitude I „/Ter as a function of

n e uals the num-the boson mesh parameter n~«h. ( n~„h q
ber of tetrahedra used in the Brillouin zone integrals for the
Bosoxiic Green functions. ) These data are for mean-field pa-
rameter set (b). (i) In the T2s channel, the horizontal, dashed
line denotes the local contribution to the average. The Huc-

tuations in the full average are at least a factor of 2 larger
than the local part and are also varying about zero. Thus it
is not possible to say, from the present data, if there is a Tz~
instability or not. Using the results from paraxneter set (a),
however, it still seems unlikely that there is an instability in
this channel. (ii) In the Axs channel, it is easy to see that
there average interactions are repu sive~ ~ and stron . There isg
no instability in this channel.
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pararaeter set (b)

0.3
0

0.0

T lg, local

1 8.0

V

30.0
Iimesh

42.0

FIG. 10. Fermi surface averages in the Eq~ and T~g pair-
ing channels of the scattering amplitude I'„/TQ7 as a func-
tion of the boson mesh parameter n „h. These data are for
mean-field parameter set (b). (i) In the Eg channel, the hori-
zontal line denotes the contribution to the average in the local
limit. For the full average, up to n „h——31, the average value
is Huctuating evenly about the local value. The surprisingly
large auctuation at n „h——31, however, makes it impossible
to tell if there is an instability in this channel. (ii) In the
T&g channel, the full average, although Buctuating, remains
negative for 21& n „h & 41. Averaging these values gives a
result of '~ = —0.226 + 0.049.T07

leads us to say a few words about strong- versus weak-
coupling results.

In the case of heavy fermions, the effective Fermi tem-
perature is of the order of the Kondo temperature which
is also the energy scale of importance for the supercon-
ducting glue. Thus, a strong-coupling calculation, in-
cluding the energy dependence of the scattering ampli-
tude, should be performed. Given the complexity of the
static problem, however, including the dynamics of the
slave bosons in the presence of crystal fields is not fea-
sible. This does not necessarily imply that the pairing
instabilities found in the static problem have no mean-
ing. We shall discuss, generally, why this is so.

It is conventional wisdom, that near the Fermi sur-
face the quasiparticle self-energy for heavy fermions is
strongly frequency dependent but only weakly dependent
on the magnitude of the momentum, [k~. This can be un-
derstood intuitively as follows. The characteristic energy
scale for the quasiparticles is the Kondo temperature,
T07 which is about 10 K. The degeneracy temperature
for a typical metal is T~ 10000 K. The characteristic
momentum, however, is set by the Fermi wave vector k~,
which for CeCu2Si2 is the size of the Fermi wave vector
of a typical metal. Thus, broadly speaking, we expect
the quasiparticle self-energy Z to behave (near the Fermi
surface) as

able to gather.
To reiterate, we have been able to draw the following

conclusions:
(i) States in the lowest quasiparticle band are strongly

peaked at the Fermi surface hot spots, where hybridiza-
tion between conduction and I'y states vanishes.

(ii) The static susceptibility is dominated by the Pauli
contribution &om the I'p states and yields a Wilson ratio
of 2.38.

(iii) The best candidate for a pairing instability is in
a state of Tig [xy(x + y )] syminetry, with I z'ig/Toe
=—0.212+0.025.

(iv) The Eg channel (T —y, 3z —r~) also shows weak
signs of an instability, with I'~g/Toy = —0.163+0.054.

(v) Quasiparticle interactions are strong and repulsive
in the Aig ("s wave") pairing channel.

(vi) A pairing instability of T2g (xy, xz, yz) symmetry
also appears highly unlikely.

(vii) Only pairing states of Zg symmetry are strongly
affected. by the presence of the six hot spots on the Fermi
surface.

(viii) Including the dynamics of the bosons at order
1/N, or performing a 1/N2 (static or dynamic) calcula-
tion is not presently possible due to the numerical com-
plexities discussed above.

Using the classic weak-coupling equation for the super-
conducting transition temperature within a given repre-
sentation t7, we find (in the Tig channel)

T, (rI = Tig) = 1.13Toye "~ " 0.09 K,

which is smaller than the measured T of CeCu2Si2. We
did not expect, however, such a weak-coupling calcula-
tion to give a quantitatively accurate value for T, which

BZ fZ)'
a~

Bz e(s l~

where D is the bandwidth of the conduction band. Then,
since

BZ BZ
t9(d B(g

it seems reasonable to ignore the momentum dependence
of the self-energy. This intuitive result was reinforced by
Millis and I ee, ii who found [in the SU(N) model] that
the momentum dependence of the imaginary part of the
conduction electron self-energy (at order 1/N) is very
weak (going as 1/N ), while the frequency dependence
goes as the inverse of the Kondo scale.

One may ask if the above inequality is valid near the
hot spots, since we have seen a rapid variation of the
quasiparticle normalization as a function of momentum
in those regions. As mentioned before, the T&g and T2g
pairing states are oblivious to what happens at the hot
spots. Thus, even if BZ/Bu DZ/Bk, this will have no af-
fect on our conclusions about possible pairing instabilities
in these channels. Results for local and nonlocal interac-
tions in the vicinity of these areas imply that only the Eg
pairing states might be affected. Thus, the only weakness
in the argument of the preceding paragraph might be for
the Eg states in the vicinity of the hot spots. But the
slow convergence of the average quasiparticle interactions
I ~g has already prevented us &om making a definitive
statement about an Eg pairing instability. Thus, at the
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present level of calculation, we believe this concern is
secondary.

If one accepts the dominance of the &equency de-
pendence in the quasiparticle self-energy, then it seems
reasonable to assume that including such dependence
in a strong coupling calculation (in the manner of
McMillan 2) would serve only to reduce the transition
temperature T . We do not believe that the sign of
the average scattering amplitude l'„would be affected
by such &equency dependence. Thus, our conclusions
about which pairing channels g show that a supercon-
ducting instability should not be changed as the result of
a strong-coupling calculation.

Please note that we are not saying that the reduction
of the transition temperature due to the &equency de-
pendence of the residual quasiparticle interactions would
be identical in structure to the case of electron-phonon
coupling. We can only say now that we expect T to
be reduced; we cannot give an estimate of how large the
reduction would be.

The superconducting instabilities themselves appear to
be based heavily on the underlying symmetry of the prob-
lem. The fact that our estimated (weak-coupling) tran-
sition temperature for the Txg pairing instability differs
&om the measured value for CeCu2Si2, is not a surprise.
The major purpose of this calculation has not been to
give a precise numerical recipe for calculating the T of
heavy fermion systems. We wished to study the impor-
tance of local, or "multiplet, " physics upon quasiparticle
interactions. Thus the weak-coupling calculation should
be a reasonable starting point.

We close with a few general words on the importance
of the excited crystal field levels on quasiparticle inter-
actions. The following statements should be applicable
to crystal-field-split heavy ferxnion compounds, not just
CeCu2Si2. We require only that the system can be mod-
elled by an infinite-U periodic Anderson model. There
are three broad characteristics that determine the nature
of the interactions and the importance of the excited crys-
tal field multiplets to those interactions: (1) the ratio of
the ground multiplet Kondo temperature to the crystal
field splitting (Top/AcEp), (2) the point symxnetry at the
rare-earth or actinide sites, (3) and the degeneracy of the
low-lying multiplet as compared to the degeneracy of the
conduction bands.

The first characteristic is probably the most important
of the three. As discussed in Ref. 22, the contribution
to the loca/ quasiparticle interactions due to the excited
crystal field levels is reduced in strength by the factor
(Toz /b, cEp)" (n=l or 2) when compared to the interac-

tion strength when only the ground multiplet is included.
Experience with calculations pertaining to CeCu2Si2, for
which Tpz'/A~Ep 0.03, leads us to believe that values of
this ratio more than an order of magnitude smaller than
the estimate for CeCu2Si2 result in a negligible contribu-
tion to the loca/ interactions &om the excited multiplets.
Furthermore, this ratio determines the angular width in
momentum space of the hot spot peaks. (See Fig. 2.)
Thus as Top/AcEp becomes smaller, the peaks narrow
and the eH'ects on quasiparticle interactions should de-
crease.

The second characteristic determines where in the Bril-
louin zone the hot spots will occur and which represen-
tations of the point group will be most sensitive to the
details of the spots. Since these spots correspond to k
values at which the ground (excited) xnultiplet cannot hy-
bridize, in these regions the hybridization of the excited
(ground) multiplet with the conduction states gives rise
to the quasiparticle interactions.

The third characteristic is part of a simplified "rule of
thumb" that we found to be helpful in understanding our
results for CeCu2Si2. When the ground multiplet has a
degeneracy equal to that of the conduction states, in a
very rough sense the problem has reduced to a SU(N)
model (with %=2 for CeCu2Si2). Then one might guess
that the results of Lavagna, Millis, and Lee 5 would be
reasonable, in which the only local interactions are repul-
sive and s wave in character. The extent to which such
a SU(N)-like result is modified by the presence of the
excited multiplet depends mostly on the size of the ratio
Tpz /b. cpp. If, however, the ground xnultiplet has a de-
generacy greater than that of the conduction states, then
a subset of the multi. piet states cannot hybridize, and the
situation is analogous to the jellium model of Zhang and
Lee. In this case, we would expect local interactions to
be repulsive in angular momentum channels higher than
just s wave, thereby reducing the overall chances of any
pairing instability.
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