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Electron-acoustic-phonon scattering rates in cylindrical quantum wires
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The electron —acoustic-phonon scattering rates in a cylindrical quantum wire are studied. Considering the

quantum wire as an elastic continuum, the confined-phonon dispersion relation is calculated for two cardinal

boundary conditions: free-surface and clamped-surface boundary conditions. The scattering rates due to the

deformation-potential interaction are obtained for these two confined phonons and are compared with those of
bulklike phonons. The results show that the inclusion of acoustic-phonon confinement effects may be crucial
for calculating accurate low-energy-electron scattering rates in nanostructures. It is also demonstrated that the

anisotropy should not be ignored for materials of cubic symmetry.

Proposed applications of mesoscopic electronic structures
involve carrier transport at low temperatures and low carrier
energies. In many cases, the regime of interest is one where
dimensional confinement modifies the phase space substan-

tially. In this low-temperature, low-energy regime, ' acous-
tic phonons play an enhanced role in carrier scattering and

may dominate over the scattering of carriers by optical
phonons. Furthermore, in nanoscale structures it is possible
that phase-space restrictions may weaken or forbid optical-
phonon scattering processes that would normally dominate in
bulk structures. In recent years, there has been an extensive
literature on the role of dimensional confinement in modify-
ing longitudinal-optical phonon modes and their interactions
with charge carriers in nanoscale and mesoscopic semicon-
ductor structures (see, for example, Refs. 8—10, and the nu-

merous papers referenced therein); however, there are rela-
tively few treatments dealing with the role of dimensional
confinement in modifying acoustic-phonon modes and their
interactions with charge carriers. ' ' In particular, few ef-
forts have been reported that formulate a theory of the
electron —acoustic-phonon interaction in nanoscale structures
where the treatment of acoustic-phonon confinement effects
may be essential. ' The need for such theoretical treat-
ments has been demonstrated recently by experimental
studies' ' ' providing both direct and indirect evidence of
the importance of acoustic-phonon confinement in reduced-
dimensional electronic structures. In this paper, we present
golden-rule scattering rates for the electron interaction with
confined acoustic phonons in a mesoscopic quantum wire
with cylindrical geometry. A quantized description of
acoustic-phonon modes (developed under the elastic-
continuum model) is used to formulate the deformation-
potential Hamiltonian. As for the case of rectangular quan-
tum wires, it is found that a proper treatment of confined
acoustic phonons in cylindrical quantum wires may be cru-
cial to correctly model electron-scattering rates at low ener-
gies in nanoscale structures.

In the limit of long-wavelength acoustic phonons, it is
sufficient to treat the material as an elastic continuum. A
number of experiments confirm the usefulness of the con-

tinuum model in nanostructures. ' A cylindrical quantum
wire of infinite length in the z direction with radius a is
assumed for materials of isotropic symmetry. In this paper,
we consider only the longitudinal modes of the confined
acoustic phonons since the dominant contribution to the
electron —acoustic-phonon interaction through the deforma-
tion potential comes from these modes. These longitudinal
modes are well established in an isotropic medium of a
cylinder, and the normalization of confined phonons and
the deformation Hamiltonian have been reported previously
in Ref. 15.The acoustic waves move in radial planes without
an azimuthal angle dependence, and the displacements are
given by

d
u„(r,z) = —/rBJD(kdr)+AJD(k, r)) e'( ' (la)

2—k,
u, (r,z) =i kBJ0(kdr)+ AJo(k, r) e'i ' 'i, (jb)

where Jo and J& are the ordinary Bessel functions, A and 8
are constants to be determined later, co is an angular fre-
quency, and k is the z-component wave vector. In addition,
kd and k, are represented as

CO2 =kd, = —k 2

where Ud (U,) is the longitudinal (transverse) velocity. The
longitudinal waves are coupled modes of axial and radial
modes that have the quantized wave vectors k, and kd, re-
spectively. In a cylinder, these two partial waves are coupled
to satisfy the boundary condition (BC) at the surface in a
manner similar to that for Lamb waves in a free isotropic
plate. '

The general BC's for the confined acoustic phonons are
that the displacement (u) and the normal components of
stress (T n), or the tractional . force, are continuous across
surfaces where the elastic properties change discontinuously.
For simple cases, there are two cardinal BC's: the free-
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surface BC (FSBC) and the clamped-surface BC (CSBC).
The free surface is a boundary between an elastic material
and vacuum where the normal components of the stress ten-
sor are zero and the displacement is unrestricted. The
clamped surface is a boundary between an elastic material
and a perfectly rigid material where the displacement is zero
and the normal components of the stress tensor are unre-
stricted. Although most quantum wires are not surrounded by
vacuum or by an extraordinarily hard material, the use of
these two cardinal BC's is employed frequently in classical
acoustics for cases where analytical solutions are hard to
find. Furthermore, the calculation for the FSBC case may be
applied to free-standing quantum wires fabricated by lateral
etching techniques. As a result, we have adopted these two
BC's to investigate the electron —acoustic-phonon interaction
in the present paper.

The dispersion relations of confined phonons and the con-
stant ratios P= 8/A are obtained from the BC's. The disper-
sion relation for confined phonons with the FSBC is

kda Jo kda

J, kda

2 (k,a)Jo(k,a)
+4k kd =0,

and that for phonons with the CSBC is

2 (kta) Jo(kga ) 2 (kda )Jo(kda )

(On the other hand, the bulklike phonons are dispersionless;
i.e., phase velocity is constant with respect to the wave vec-
tor. ) The constant ratios for P are given by

k, (k —k, ) J,(k,a)
Jt(kda)

for FSBC and

kt Jo(kia)
k Jo(kda)

for CSBC. The individual values of A and B are determined
by phonon normalization.

The Hamiltonian describing the deformation-potential
interaction for the electron and the acoustic phonon is ex-
pressed such that Hd, z= —E,V'-u, where E„ is the defor-
mation-potential constant. Hence, in the confined phonon
case the longitudinal modes are more important than tor-
sional and flexural modes as discussed before. In the bulklike
phonon case, only the modes vibrating parallel to the propa-
gation direction contribute to the scattering rates, and accord-
ingly the transverse velocity does not appear. The electrons
confined in a cylindrical quantum wire are assumed to be the
ground state in the extreme quantum limit. Finally, the scat-
tering rates for the deformation potential are calculated using
standard procedures and assuming the Fermi golden rule.

Although it is mathematically easy to treat acoustic waves
in an isotropic material, there are few materials of isotropic
symmetry. Furthermore, the symmetry of most semiconduc-

tor materials of interest is not isotropic but cubic. The acous-
tic waves in these materials may be determined directly for
the case of the cubic symmetry or through proper analysis
under the assumption that the material is isotropic. The
acoustic-wave equation, or Christoffel equation, for the cyl-
inder may be solved by the first approach, but there is great
complexity due to the extra elastic constant that prevents one
from extracting any information from the algebraic results.
Accordingly, we follow the second method and analyze a
range of solutions. Due to the potential technological impor-
tance of the GaAs quantum wire, calculations are confined to
the case of GaAs that has cubic symmetry. This calculation
can be extended to other materials of cubic symmetry with-
out difficulty.

In isotropic materials, the slowness curve, or the inverse-
velocity curve, which gives the magnitude of k/co as a func-
tion of its direction, consists of two concentric circles inde-
pendent of the acoustic-wave-propagation characteristics. '
On the other hand, the slowness curve for materials of cubic
symmetry is more complicated than that for isotropic mate-
rials. But for the case of some special directions, the curve
takes a simple form. For the propagation along any crystal
axis, the curve is represented by two concentric circles that
represent the pure shear wave and the pure longitudinal wave
as for isotropic materials. As a result, it is possible to employ
the isotropic assumption for GaAs as long as we consider
propagation in the [001] direction; i.e., the case that one of
the crystal axes coincides with the z direction. This is the
condition we consider throughout the calculation.

Two different parameter sets are applied in order to deter-
mine the effect of the anisotropy of GaAs as well as to quan-
tify the range of possible deformation-potential scattering
rates for cylindrical quantum wires. The first set, denoted as
PS1, is chosen such that the experimentally determined vd
and Poisson ratio o. fix the value of v, from the isotropic
assumption (PS1: Ud = 4.78X 10 cm/sec, v, = 2.56 X 105

cm/sec, o =0.33). The second set is obtained by taking
Ud and v, as the velocities of GaAs [001]propagating acous-
tic waves; these velocities yield a value for o (PS2:
Ud=4. 78X 10 cm/sec, U, =3.35X 10 cm/sec, o.=0.018).
For both sets, the deformation-potential constant E, and the
lattice temperature are assumed to be 7.8 eV and 77 K, re-
spectively, and five lowest modes are considered.

The scattering rates for the deformation-potential interac-
tion of the electron with the FSBC (PS1, PS2) and the bulk-
like phonons are plotted in Fig. 1 as functions of electron
energy. The important fact is that the FSBC scattering rates
are very sensitive to the velocity of the confined phonon. The
scattering rates corresponding to the PS1 and PS2 parameter
sets differ substantially; indeed, the difference amounts to
several orders of magnitude in the low-electron-energy re-
gion. This difference is due mainly to the different transverse
velocities. To investigate the dependence of the scattering
rate on velocity further, we have also considered other pa-
rameter sets that take the same values of PS1 except the
value of v, . The value of v, is changed continuously from
that of PS1 to that of PS2. In these cases, the scattering rates
increase continuously with the increase in the value v, . In
particular, the enhancement is especially strong in the low-
electron-energy region. The scattering rates with v, having
the value of PS2 are much higher than for PS1, and are very
similar to those of the PS2 case. This finding is in striking
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contrast to the case of PS1 considering that those two differ
only in the value of U, . A careful analysis reveals that the
difference in the scattering rates (and, subsequently, the de-
pendence on v, ) is associated with the lowest-phonon
branch. As shown in Fig. 2, the lowest mode for the confined
phonons with the FSBC has no cutoff frequency unlike the
cases for the other higher modes. Hence the quantized wave
vector k„defined in Eq. (2), of this lowest mode is very
sensitive to the choice of U, while the other are not. The
magnitude of X, (= 2m/k, ), which corresponds to the char-
acteristic wavelength of the axial partial wave, is a measure
of the phonon amplitude. Since the deformation Hamiltonian
is proportional to phonon amplitude, large values of ), , i.e.,
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FIG. 2. Dispersion relation of the five lowest confined acoustic
photons with the FSBC (solid lines) and the CSBC (dashed lines) in

a cylindrical GaAs quantum wire. The value of the Poisson ratio
o. is 0.018 and Uo represents the sound velocity of Young's module
mode.

FIG. 1. Scattering rates for the deformation-potential interaction
of electrons with the FSBC confined acoustic phonons (PS1, PS2)
and bulklike phonons in a cylindrical GaAs quantum wire (radius of
22.6 A) at 77 K as a function of electron energy. Solid (dashed)
lines are for the PS1 (PS2), and dashed-dotted lines are for the
bulklike phonons. The plotting resolution depicted is not fine

enough to illustrate fully the importance of the density-of-states
effects in the quantum wire.

FIG. 3. Scattering rates for the deformation-potential interaction
of electrons with the CSBC confined acoustic phonons (PS1, PS2)
and bulklike phonons in a cylindrical quantum wire (radius of 22.6
A) at 77 K as a function of electron energy. Solid (dashed) lines are
for the PS1 (PS2), and dashed-dotted lines are for the bulklike
phonons. As in Fig. 1, the plotting resolution is limited.

small k, (or large v,), imply large scattering rates for the
deformation potential. Thus, the scattering rates are strongly
affected by acoustic-phonon velocity; consequently, the
electron-phonon scattering rate in a GaAs quantum wire is
highly dependent on the direction of the phonon propagation
due to the anisotropy of GaAs.

Figure 3 depicts the scattering rate for the case of con-
fined phonons with the CSBC; this plot exhibits smaller scat-
tering rates in comparison with the case of the FSBC. The
relatively small scattering rates are expected from the inspec-
tion in the functional form of the displacernent. Since the
CSBC requires the displacement at the boundary to be zero,
the displacement of the lowest mode has maximum value at
the center of the cylinder while its derivative (or divergence)
is very small. This small divergence of the phonon displace-
ment makes the electron-phonon coupling small since the
electron's ground-state wave function has its maximum at
the center. At the same time, the acoustic phonons with the
CSBC generally have higher energies than those with the
FSBC since every CSBC acoustic phonon has a cutoff fre-
quency as shown in Fig. 2. It is difficult for the electron to
emit or absorb phonons with higher energies. As a result, the
relatively high energy characteristics of phonons and the
small electron-phonon coupling make the scattering rate for
the CSBC smaller than that for the FSBC.Another interest-
ing point to note with the CSBC is a weak dependence on
phonon velocity due to the existence of cutoff frequencies, as
in the case of higher modes with the FSBC. From Figs. 1 and
3 it can be concluded that confined phonons (both with the
FSBC and the CSBC) exhibit larger scattering rates than for
the bulklike phonon case. Particularly in the low-electron-
energy region, confined phonons exhibit much larger values
as well as several peaks rejecting the characteristics of the
one-dimensional density of state. Besides the large differ-
ences in values of scattering rates, the deformation-potential
Hamiltonian for the bulklike phonon does not include the
dependence on transverse velocity, which may have an im-
portant role in anisotropic materials.

Finally, in Fig. 4, we compare the scattering rates for a
cylindrical and a rectangular wire. In the cylindrical wire
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FIG. 4. Scattering rates for the deformat'o -ption- otential interaction
in a c lindricalof electrons wit eith the confined acoustic phonons in y

uantum wire solid line). An(dashed line) and a rectangular GaAs quantum wire so i ine .
o wires (c lindrical wire'd t' 1 ross section is chosen for the tw

.6 4 and the valuesof radius 22.6 A, rectangular wire of 28.3X56.6 ) an

in Ref. 14. In the cylindrical wireof ararneters are the same as in e .0 p
'

h FSBC are used, and the separable solutionscon6ned phonons wit
do ted for the rectangular wire as dis-for confined phonons are a~op e

with the bulklikein Ref. 14. For comparison, the rate with the bu i e
phonons for the cylindrical wire is also plotted, a
As in Figs. an, e. 1 d 3 th plotting resolution is limited.

confined phonons wit
'

h FSBC are used, and an approximate
solution as descri e in e .b d

'
R f. 14 is adopted for the rectangular

eometry. The values of the parameters are taken to be t ose
used in Ref. 14 ~vd=

~ ~ ~

cm/sec, cr= . ). en=0.33&~. When comparing two wires having a
Asame cross-sectiona areal (cylindrical wire of radius 22.

of 28.3X56.6 A ), we find that there is arectangular wire o
blance between the scattering rates for these two wires.resem ance e w

Since the scattering rates for the rectangu ar an

1 thedrical wires using ub lklike phonons are very close, on y
lotted to facilitate clear presentationcylindrical-wire case is p o e

h its. The nearly identical scattering rates or eof t e resu s.
b lkl k honons can be easily understoo, consi

'
gu iepo

ike hononsthe coup ing e wee1' b t een the electrons and the bulkli e p
are essentially the same in these two wires wit e s

F r the confined acoustic phonons, thecross-sectional area. or e
xhibits considerably larger scattering rates

than the corresponding rectangular wire. Aside rom e i-
ference in e unthe functional form of the electron-phonon cou-

on envelo eling i.e., e ith difference in electron and phonon enve p
th magnitudes of the scattering rate sfunctions), the gap in t e magn'

ire ma bebetween t e cy inh 1' drical wire and the rectangular wire may e
arableat least partly ue o e

'
d t the incompleteness of the separa e

t e overal1i ns used in the rectangular wire. However, the overasolutions use in e re
o wires dernon-'1 it between the rates obtained in two w

lo ed revi-strates the fact that the approximate theory develop p
1

14
may be considered a valuableously for a rectangu ar wire may

gui e ine or'd 1 for calculating the scattering rates in such a geom-
xist.etry, w ere an exacn ct analytical solution does not exis .

In conclusion, we ave cah alculated the scattering rates for
1 d several kinds of confined acoustic phonons

through the deformation-potential interaction in a cy in rica
uantum wire. It is ounf d that confined phonons produce

g
'

th the bulklike phonons, and thelarger scattering rates an
scattering rates are ig y eph hl de endent on the phonon propa-

~ ~

ation velocity. n a i i. I dd't'on to its relatively small scatteringg
f b lklike honons in calculating electron—

acoustic-phonon scattering rates may be Aawed ue o e
neglect of anisotropic epd pendence on transverse ve ocity,
which is of potential significance in many

~ ~

an semicon uctor
materials and nanostructures.
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