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Observation of large hi2e oscillations in semiconductor antidot lattices
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We report the observation of large-amplitude oscillations in the magnetoresistance of a two-
dimensional electron gas in a GaAs-Al Gaz As heterostructure with an artificially imposed antidot
lattice potential. The period of the oscillations is about k/2e as a function of the magnetic 6ux
threading through the unit cell of the antidot lattice. The oscillations are definitely visible in the
antidot array with a hexagonal lattice configuration, the amplitude reaching 20'Po of the sample
resistance, but almost invisible with a square lattice configuration. We believe that the hexagonal
lattice potential is suitable for electrons to return to their starting points and to contribute to
coherent backscattering. We also show the oscillations cannot be described by the theory for the
diffusive regime established by Al'tshuler, Aronov, and Spivak.

The resistance of a conductor in the shape of a hol-
low cylinder oscillates as a function of the magnetic Bux
threading through the hollow with a period of b, /2e. This
was predicted by Al'tshuler, Aronov, and Spivak (AAS)
for the diffusive regime where the mean free path of the
electrons is much smaller than the sample size. The con-
ductance amplitude of the oscillations is of the order of
e /6 and depends on the phase coherence length over
which an electron maintains its phase coherence. The
oscillations are caused by coherent backscattering of an
electron, where a pair of backscattered partial waves with
time-reversal symmetry interfere with each other. This
prediction has been proved experimentally by using cylin-
drical metal films and other geometric structures such
as networks. Those experiments were done using poly-
crystalline metal where electrons move diffusively due to
impurity scattering. The amplitudes of the oscillations
reported so far have been very small, i.e. , less than 0.1%
of the sample resistance.

Negative magnetoresistance, which has been observed
in the diffusive regime, is also caused by the coherent
backscattering of electrons. A recent experiment demon-
strated that the negative magnetoresistance emerges
even in ballistic microstructures. This can be explained
by the semiclassical theory of quantum billiards, where
chaotic electron trajectories contribute to the interfer-
ence. From this theory one may expect that h/2e oscilla-
tions should also occur in the magnetoresistance of ballis-
tic microstructures in the shape of a cylinder or network.
However, there have been very few experiments show-
ing the existence of the 6/2e oscillations in the ballistic
regime.

Recently, a two-dimensional electron gas (2DEG) in
a GaAs-Al Gai As heterostructure with an artificially
imposed two-dimensional array of potential peaks has at-
tracted much attention. In the antidot lattice, the peri-
odic potential is so strong that it forms a two-dimensional
array of small depletion regions in the 2DEG plane.
When the period of the antidots is smaller than the mean
&ee path of electrons, a sequence of peaks appears in the
magnetoresistance. The origin of the peaks has been
explained with a classical pinball model where the for-

mation of localized orbits enclosing a set of antidots in-
creases the magnetoresistance. When the antidot system
is coherent, i.e., the antidot period is smaller than the
phase coherence length of electrons, quantum mechan-
ical phenomena occur in the antidots. On top of the
magnetoresistance peak, fine oscillations appear with a
period of about h/e as a function of the magnetic Hux
threading through the unit cell of the lattice. These
oscillations are caused by the quantization of the local-
ized orbits encircling a single antidot.

In this paper, we report the observation of large-
amplitude Ii/2e oscillations in the low-field magnetore-
sistance of GaAs-Al Gai As antidot lattices. Because
the antidots have a large diameter compared to the anti-
dot period, conducting channels in between the antidots
form a honeycomb network. Although this network has a
geometry similar to those made of metal where 6/2e os-
cillations have been observed, it is apparent that our
network is in the ballistic regime rather than the diffusive
one.

An experiment has been performed using antidots with
a small diameter compared to their period and with
a square lattice configuration. The magnetoresistance
showed faint anomalies, suggesting the existence of the
h/2e oscillations in the ballistic regime. However, this
needs verification because those anomalies are very weak
and easily distorted by background changes of the mag-
netoresistance. On the contrary, we have succeeded in in-
ducing definite 6/2e oscillations whose amplitude reaches
20% of the sample resistance. One of the key points to
this success is the effective squeezing of electron chan-
nels with an array of antidots that are large compared
to their period. Furthermore, we have found that the
amplitude of the oscillations largely depends on the an-
tidot lattice configuration. Large oscillations appear in a
hexagonal lattice whereas a square lattice shows almost
no oscillations. We attribute the h/2e oscillations to the
manifestation of the coherent backscattering of ballistic
electrons that are steered by the hexagonal antidot lattice
potential. We show that the antidot potential with the
hexagonal lattice configuration is suitable for electrons to
return to their starting points.
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The samples were fabricated from a modulation-doped
GaAs-Alo 3Gao 7As heterostructure grown by molecular-
beam epitaxy with a 1-pm GaAs buffer layer on top
of a semi-insulating GaAs substrate, a 300-A. undoped
A1Q 3Gao qAs spacer, a 600-A Si-doped Alp s Gap yAs
layer, and a 50-A Si-doped GaAs cap layer. The den-
sity of the two-dimensional electron gas was 2.8 x 10
cm and the mobility was 1.2 x 10 cm /Vs at T = 1.5
K in the dark. The mean free path determined from these
values was 10 pm. Following the fabrication of Hall bars
with a channel width of 16 pm and a distance between the
potentiometric probes of 16 pm, a two-dimensional array
of shallow holes was patterned and etched (see the insets
in Fig. 1) in the whole area of the Hall bars using electron-
beam lithography and wet chemical etching. Due to the
reduction of the Si-doped layer thickness, small regions
beneath these holes are depleted. Antidot arrays with a
square lattice configuration as well as a hexagonal lattice
configuration were prepared. for comparison. The period
(a) of both lattices was 200 nm and the diameter of the
etched holes of both lattices was about 90 nm after etch-
ing. These length scales are much shorter than the mean
free path in the starting material and possibly shorter
than the phase coherence length [estimated to be 1
pm at 1 K (Ref. 17)j. The magnetoresistance p and
the Hall resistance p „of these samples were obtained
using a low-frequency lock-in technique (17—75 Hz) with
an excitation current of 1—10 nA.

Magnetoresistance traces p as a function of the per-
pendicular magnetic field B are shown in Fig. 1 for square
and hexagonal antidot lattices. These data were obtained
at T = 1.5 K in the dark. At high fields (B ) 2.4 T for
the square lattice and B ) 3 T for the hexagonal lat-
tice) these traces show the quantum Hall profile where

FIC. 1. Magnetoresistance traces for a hexagonal and a
square lattice of antidots measured at T = 1.5 K in the dark.
Each sample has an antidot period of a = 200 nm and almost
the same antidot diameter. The insets are scanning electron
microscope photographs of the antidot lattices.

each p drops to zero and p „(not shown) is quan-
tized to h/2e, indicating that there are few impurities
in the conducting region. At low fields each trace shows
an enhanced profile compared to the starting material.
The magnetoresistance of the square lattice shows a peak
around B = 0.7 T, which is caused by the formation of
localized orbits encircling a single antidot. There are
no further low-field peaks corresponding to the forma-
tion of the orbits including more than one antidot (e.g. ,
four antidots) because our samples have antidots with a
large diameter compared with their period. On the other
hand, the low-field magnetoresistance of the hexagonal
lattice is quite different from that of the square lattice.
At B = 0, magnetoresistance p is about four times
as large as that of the square lattice, and drops mono-
tonically as the magnetic field increases for B & 1.4 T.
The increase at B = 2.2 T is a Shubnikov —de Haas (SdH)
oscillation peak, which disappears as the temperature in-
creases. The monotonic change in the low-field magne-
toresistance for the hexagonal lattice also contrasts with
those of the previously reported hexagonal antidots in
which several magnetoresistance peaks appeared but no
increase at B = 0 was observed. This is because, as will
be discussed later, the electron motion at B = 0 is ef-
fectively stagnated by the large-diameter antidots with a
hexagonal lattice configuration.

We evaluate the electron density (n, ) and the antidot
diameter (d) of the hexagonal antidot lattice. We esti-
mate n, by assuming that at the SdH peak of B = 2.2 T
the Fermi level coincides with the center of the second-
lowest Landau levels. We obtain n, = 1.6 x 10 cm
which is about 60% of that of the starting material. To
estimate the antidot diameter d, which is usually differ-
ent from the structural diameter of the etched holes, we
assume that the magnetoresistance falls to zero at a field
where 2l,~,i = a —d is satisfied. Here, l,~,~

——5k~/eB
is the classical cyclotron radius and k~ = v 2am, is the
Fermi wave number. From this assumption, we obtain
d 150 nm from the field of B = 2.9 T. The obtained
diameter is larger than the etched-hole diameter possibly
due to the lateral depletion around the etched holes.

The most prominent feature in the trace of the hexag-
onal antidot is the appearance of large-amplitude oscil-
lations at B & 0.3 T. To show the oscillations more
clearly, two sets of low-field magnetoresistance traces for
the hexagonal lattice are shown in Fig. 2(a) and (b) for
the temperature ranges 1.5 K & T & 14 K and 0.2 K
& T & 1 K, respectively. It is clear from these traces
that they are periodic in B up to 0.3 T. Even though
two sets of traces are obtained from two different cool-
down procedures, the oscillation periods have the same
value of 60 mT in both cases, almost equal to h/2eA,
where A is the area of the unit cell of the lattice. Fur-
thermore, the maximum of the oscillations always shows
up at B = 0, irrespective of different temperatures and
different cool-down procedures. The amplitude of these
oscillations largely depends on the temperature. The in-
set in Fig. 2(a) shows the temperature dependence of
the zero-field resistance p (B = 0) and the conductivity
amplitude Ap~~/p . Although there is a gap especially
for p (B = 0) at T = 1 K due to the different cool-
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FIG. 2. (a) Magnetoresistance traces in a hexagonal lat-
tice of antidots in a temperature range from 1.5 K to 14 K
in the dark. The inset shows the temperature dependence
of zero-field magnetoresistance p (B = 0) and the magni-
tude of the first oscillation Ap /p (B = 0). Here, Ap
is p (B = 0) minus p at the first dip. The circles and
triangles correspond to the measurements of (a) and (b), re-
spectively. (b) Magnetoresistance traces in the range of 0.2
K & T ( 1 K. The electron density is a little difFerent from
that of (a). Note that no traces in (a) or in (b) are offset.

down procedure, a logarithmic increase with decreasing
temperature can be seen.

The above experimental results suggest the oscillations
have almost the same origin as the h/2e oscillations in
the diffusive regime. The period of the oscillations is
determined from one-half of the magnetic Qux quantum
for normal metal conductors threading through the mean
area of the circular paths, which may be almost the same
as the area of the unit cell of the lattices. The temper-
ature dependence is similar to the previously reported
results that show the logarithmic dependence on temper-
ature. The Inost peculiar feature in our data is that the
oscillation amplitude is very large, reaching 20% of the
zero-field resistance, more than two orders of magnitude
larger than that observed in metallic systems. This can
also be understood in. the framework of the AAS theory
because even in our sample the conductance amplitude
of the oscillations is of the order of e /h as shown in the
inset in Fig. 2(a). This is consistent with the theoreti-
cally predicted value which is independent of the sample
material in the diffusive regime. This originally comes
from the fact that the conductivity of the antidot sam-
ple is much lower than that of metallic samples. For this
reason, the relative amplitude of the oscillations becomes
large.
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FIG. 3. Calculated electron trajectories in antidot poten-
tial at B = 0. The antidots are indicated by the contour lines
where the potential energy is equal to the Fermi energy. (a) A
trajectory passing through a square lattice. (b) A trajectory
circulating around an antidot in a hexagonal lattice.

It is worth noting that the amplitude of the oscillations
depends on the lattice configuration. The oscillations are
visible in the hexagonal lattice, but are almost invisible in
the square lattice even though the square lattice antidots
have the same period (a) and almost the same diameter
(d) as the hexagonal antidots. This great difFerence can
be explained by the lattice configuration dependence of
the macroscopic-scale diffusion length of ballistic elec-
trons. When the antidot diameter normalized by the
antidot period d/u is much smaller than unity, electrons
can move straight over a long distance at B = 0. How-
ever, when d/a becomes large, electrons can no longer
go straight and thus the electron motion is stagnated
in a scale much larger than the antidot period. This
macroscopic-scale diffusion depends largely on the lat-
tice configuration. We have calculated the electron mo-
tions in both antidot lattices based on the model using
smooth antidot potentials. Figure 3(a) shows an elec-
tron trajectory in a square lattice potential. The antidot
diameter is set to one-half of the antidot period. The
trajectory shows electrons tend to move straight in the
square lattice. From calculations for the hexagonal lat-
tice, we have obtained a result that contrasts with the
square lattice case. Affected by the hexagonal potential,
electrons cannot go straight and have a high possibility
of returning to their starting point with a certain cir-
cular orbit, as can be seen in Fig. 3(b). Since the in-
terference of this kind of circular orbit is considered as
the main origin of the h/2e oscillations, the calculation
is consistent with our experimental result that the oscil-
lations can definitely be observed in the hexagonal lat-
tice. We mentioned before that the zero-field resistance
of the hexagonal lattice is much larger than that of the
square lattice (Fig. 1). One of the reasons for this is that
the macroscopic-scale diffusion length of electrons in the
hexagonal potential is smaller than that in the square
potential. Another reason, especially for the increase
of the zero-field resistance and the emergence of back-
ground negative magnetoresistance at low temperatures
for the hexagonal lattice, is the coherent backscattering
of all chaotic trajectories as well as circular trajectories
in Fig. 3(b)."

Finally, we point out that the oscillations cannot be de-
scribed by the AAS theory for the diffusive regime. We
have evaluated the phase coherence length by applying
the calculation for h/2e oscillations in metal networks
to those of our hexagonal antidot lattice. This calcula-
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tion has been performed by Doucot and Rammal ' for
honeycomb networks of channels with a finite width. For
details, see Refs. 21 and 22. Although the calculation has
been done for the difFusive regime where the mean free
path is much smaller than the channel width, we have
applied it to our data ignoring the contradiction between
the fitted parameters and the assumptions of the calcula-
tion. In the fitting procedure we used three parameters:
the phase coherence length, the mean free path, and the
channel width. From the magnetoresistance at T = 1.5
K in Fig. 2(a), we obtained a good fitting of the experi-
mental curve with the phase coherence length of 610 nm,
the mean free path of 330 nm, and the channel width of
20 nm. The mean free path is larger than the channel
width, which is inconsistent with the assumption of the
calculation. This result shows our h/2e oscillations are
in the ballistic regime rather than in the difFusive regime
and a calculation for coherent backscattering in the bal-

listic regime is required.
In conclusion, we have observed large-amplitude h/2e

oscillations in semiconductor antidot lattices. The ampli-
tude is two orders of magnitude larger than those of metal
microstructures. The h/2e oscillations are definitely visi-
ble in the magnetoresistance of hexagonal lattices but are
almost invisible in that of the lattices. We expect that
electrons return to their starting points and contribute
to coherent backscattering with the help of the hexago-
nal lattice potential. We have also shown that the h/2e
oscillations in the antidot lattices cannot be described by
the AAS theory for the diffusive regime.
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