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We investigate the fractional quantum Hall efFect at finite temperature using a fermion Chern-
Simons field-theoretical approach. In the absence of impurity scattering, the essential aspects of the
fractional quantum Hall efFect, such as the quantization of Hall conductance, as well as quasiparticle
charge and statistics, are not renormalized by thermal Buctuations. On the other hand, we find
that the low-energy excitation spectrum at finite T may undergo some qualitative changes as the
temperature is raised. Interesting new features include a splitting of the low-energy collective modes
and a redshift of the magnetoroton minimum at finite T. Possible experimental consequences are
discussed.

INTRODUC'ZION

The phenomenon of the fractional quantum Hall effect
(FQHE) may be understood theoretically as a manifes-
tation of certain two-dimensional (2D) highly correlated
fermion states. ' Most of the theoretical efforts thus
far have been directed to the study of zero-temperature
properties, where the ground state is known to be in-
compressible and separated from higher energy states by
a gap A produced by strong electron-electron interac-
tion. On the other hand, experimental measurements
are made, of course, at finite temperature. But, from the
above mentioned property of the ground state, which has
been firmly established through more than a decade of
extensive study, it is reasonable to expect that at finite
temperature the effect of thermal fIuctuations would not
be important, as long as kT & L.

However, for a quantitative comparison between theory
and experiment, there are several issues that need to be
addressed concerning the finite- (low-) temperature prop-
erties of the FQHE. The first one is the fundamental ques-
tion about the accuracy of the FQHE at nonzero T. How
do thermal fluctuations affect the quantization of the Hall
conductance? Another important question is the T de-
pendence of the quasiparticle gap which can be explicitly
computed at T = 0 in Laughlin's theory for the "fun-
damental states" and in Jain's composite fermion theory
for general filling fractions and can be implicitly mea-
sured experimentally through the T dependence of the
longitudinal resistivity. ' In this paper we study FQHE
at finite temperature. In particular, we investigate the
T dependence of low-energy collective excitations. At
zero T, the existence of a special rotonlike excitation in
the Laughlin states was demonstrated by Girvin et al.

I

through the Feynman-Bijl approach and later by Zhang
et al. using a Chem-Simons Landau-Ginzburg theory.
For general filling fraction v, this problem was investi-
gated within the composite fermion picture aided with
the method of the Chem-Simons transformation.
Our approach is a fermion Chem-Simons field theory
formalism, which has been used previously by Lopez and
Fradkin to study FQHE at zero T and by Halperin, Lee,
and Read in their study of the v = 1/2 state. Presented
in an equivalent quantum many-body language, Simon
and co-workers ' have studied this Chem-Simons com-
posite fermion approach in great detail. An important
point addressed in Refs. 8—10 is the problem of mass
renormalization of composite fermions. Without treat-
ing it properly, this fermion Chem-Simons theory ap-
proach will set the system at a spurious energy scale ~
(see below), which is on the order of (although less than)
the bare cyclotron energy, while the true physical energy
scale of the problem is given by electron-electron inter-
actions. However, the question that concerns us here is
the temperature dependence of the collective excitations
rather than an evaluation of the precise value of the en-
ergy gap. Thus, while the issue of mass renormalization
is important and its phenomenological Fermi-liquid treat-
ment (discussed in Refs. 8—10) may be straightforwardly
generalized to the finite T case, it will not be considered
here. This issue, along with some details of the present
work, will be discussed somewhere else.

APPROACH

In the spirit of the composite fermion approach, we
describe 2D electrons of band mass mb in a magnetic
field at temperature kT = 1/P by a coherent functional
integral with action (in the unit h = 1)

1 Z

dr d r @t(B —iae —p)g+ —iv+ —A —s @ + e„xa„s ag)2mb C 4rrg
P

dr d'r d'r'Qtg(r)v(r r')gtQ(r')—
2

where we attached even Aux quanta per fermion through the well-known Chem-Simons term with statistical gauge
field g, . In the above expression, p = 2p and p is an integer. A is the vector potential for the magnetic field and
the chemical potential p fixes the Landau level (LL) filling fraction at v. v(r) is a two-body interaction poten-
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tial. For the Coulomb interaction, v(r) = e /er, where e
is the dielectric constant. A similar Euclidean action has
been studied in Ref. 13 in the context of anyon supercon-
ductivity.

While this action is equivalent to the usual one with-
out the statistical gauge field, it provides us a convenient
starting point for our approximations. Consider the ho-
mogeneous liquid saddle point solution for the Chern-
Simons Beld a~ = a„such that

V' x a = 2zrgp, ap ——0 (2)

d7 d p t9~ —p
0

—iV'+ —A ~
2mb C

(4)

This action describes a system of noninteracting fermions
with magnetic Beld B ~, in which the energy spectrum
is given by the effective LL ei = w (l + 2), where

= eR,&/mac is the effective cyclotron frequency. The
chemical potential p is determined by the condition

1
n = ).f(« —I ), f(« —v) = ~~„„l . (5)

l

To study the Gaussian fI.uctuations in the Chern-
Simons gauge field, we adopt the approach of Refs. 8
and 9 by taking a transverse gauge such that az

~~ y
and A~

~~ y and we choose q ~~
x. In this case, j (q, ru)

where p is the average particle density. In this mean-Geld
theory, an electron experiences an effective magnetic Geld

+ C~B~= V'xAg = V'x A ——a
e

For the filling fraction v such that 1/(1/v —2p) = n
(where n is an integer), the mean-field theory possesses a
ground state of n flied LL, which is thus incompressible
and stable against weak perturbations. The filling frac-
tion v that satisfies this condition is precisely the value
where FQHE arises. This correspondence between the
fractional QHE and the integer QHE is precisely the ba-
sic idea of Jain's composite fermion theory, which un-
derlines the present approach. Fluctuation corrections
may be systematically built around this (stable) saddle
point solution. "

At Gnite T, we shall also take such a homogeneous
saddle point solution as our starting place and consider
only fluctuation corrections on the one-loop level. The
implicit assumption is that at thermal equilibrium the
composite fermion picture remains a good description;
hence effects of the thermal disintegration of composite
fermions, i.e. , the unbinding of particles and (even num-
ber of) vortices, are not important for the temperature
range under consideration. Experimentally it has been
found that the v = 1/2 anomaly persists in some tem-
perature range in which the FQHE's at other filling frac-
tions are smeared out by thermal Buctuations, which sug-
gests strongly that composite fermions are rather ro-
bust against thermal fI.uctuations, and the disintegration
temperature Td of composite fermions lies well above the
(zero T) energy gap of the incompressible FQH states.

With Eqs. (2) and (3), the mean-field action is given
by

is simply given by —p(q, u). Shifting a„by a„, i.e. ,

a~ —+ a& + a~, we can express the kernel of the Gaus-
sian action for the statistical Geld a~ in terms of a 2 x 2
matrix. At finite frequency, it is given by

I ( nq /cu, Zp iq(1 —nEi)
i

—iq(1 —nKi) ~,[~' lpq + n(Z2 + 1)] )

with n = 2pn and
ml

l — —1

n + ('~" )2 —(l —m)2 l!

x(f(e- —~) —f(« —~)) IL': (*)
dLl —m

x (l —m —x)L' (x) + 2x
dx

In the above equation, ice is the Matsubara frequency,
L' is the Laguerre polynomial, x = (lpq) /2, and lp ——

gc/eB, fr is the efFective magnetic length. p, , is the ratio
of lp to the Bohr radius ap —— /emge . To obtain the
electromagnetic response, we consider a fluctuation in A„
such that A„—+ A~+bA„. Integrating out the statistical
field a„, we arrive at the effective action

~Gaussian (~Ay, )

1 e= —) ~bAo( —q, —~~ ) —b'Aj —q, ~~ ))C
q, XWn

( ) ~f
zhAp(q, zan„)

b~

( —,bA(q, „)
with the kernel (iur g 0)

n
K(q, ice ) = 9

2zr(d) ( iqZ, ~.E„)
In the above equation, Z, = Zi (1 —nZi) + nZp(Z2 + 1),
Z„= 1 + Z2 + np lpq[Ei —Zp(Z2 + 1)], aild d

(1 —hZi) —Zp[np, lpq + (n) (Z2 + 1)]. The electro-
magnetic response is obtained by the usual procedure of
substituting the Matsubara frequency i~„by u —ig. The
above results differ from the zero T calculations ' by the
appearance of the fermion distribution f (ei —p, ), hence
the necessity of summing up the additional LL's in the
expression for Z~.

THE FICHE AT FINITE TEMPERATURE

To answer the fundamental question concerning the
accuracy of the FQHE at finite temperature, one has to
consider dissipative processes such as phonon or impurity
scattering. In the absence of them one should expect the
same transport properties at Gnite temperature as those
at T = 0. In our calculation, this may be seen directly
from the zero q response obtained from

~'(q= o ~)
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where in the last equality we have used Eq. (5). The
zero frequency response needs to be calculated separately.
Straightforward calculation shows that at finite T t e
compressi i i y vb l't acquires an exponential correction.
Now we consider the charge and statistics of the quasi-
particle [which is defined by excitations from the thermal
equilibrium state at a given T (Ref. 14)] at finite tem-
perature. Following Laughlin's gauge argument, whic
can be readily generalized to the finite T case if one as-
surnes that states in each (pseudo) LL are uniformly oc-
cupied with probability f (e~ —p), it is reasonable to ex-
pect the same fractionalization of quasiparticle charge at
fi 't temperature. Indeed, if one lets bA be a threani e em
of unit flux passing through the origin, one finds a
total charge thus induced is ve, independent of T. For
v = I/(2p + 1), we equate this change to the charge o
a quasiparticle, which is in agreement with I aughlin's
gedanken experiment ' at zero T. In the general case,
the charge of a quasiparticle may be obtained by examin-
ing e gthe gauge invariant (finite-temperature one-particle
Green function. Following an argument similar to tha

as the zero-temperature result. ' Statistics of quasipar-
ticles may be obtained from the gradient expansion o
II . In the small q limit, the efFective Chem-Simons

fi d that the
statistical phase (relative to the boson) of quasiparticles
is 7r[l —2p/(1+2pn)]. All these results stated here, which
involve only the physics at large length scale, are T in-
dependent and are given by those obtained at T = 0.

only through the sum P& f (eI —p, ), which is constant due
to (5). Also as a result of this, the asymptotic behavior
of the quasiparticle amplitude distribution remains the
same as that at zero T, which can be readily demon-
strated by computing responses of the system to a point-
like external charge and an external Aux thread.
This result is significant since the statistics of quasipar-
ticles described by the effective Chem-Simons term ob-
tained above corresponds to the phase gain from the adi-
a aic incrb t '

terchange of two particles separate i n nite y
apart. Changes in the quasiparticle amplitude pro e a
finite T will then lead to the corrections to the statistics
of quasiparticles due to their overlap at finite distance.

kT/5. U, = 0.5

T=O

—0
—0 2 3 4

10q

tive modes at v = 1/3. The width
to q times the weight of the pole
zero, each mode splits into two.

FIG. 1. Lowest few collec
of the curve is proportional
in Koo. As T is raised fron

0 Oqmin

~min ~c

electron correlations, this artifact of our approach seems
quite disturbing. One can use the following rationale to
justify the fermion Chem-Simons field-theory approach.
Although one needs an interaction to create a compos-
ite fermion (i.e. , the bound state of a bare fermion and
2p vortices), hence FICHE, once it is formed, the resid-
ual interaction among the composite fermions becomes
unimportant. Since the presence of v(r) does not change
the qualitative physics and is deceptive about the role
of interaction in this formalism, we shall set p, to zero
hereafter.

Figure 1 shows the evolution of the lowest few branches
of the collective modes in the v = 1/3 case as T is
raised from zero. At finite T, each branch of the zero-
temperature modes splits into two, where the upper one
of the two retains all the weight at small q values. In-
specting the lowest mode, we see that the energy of the
roton minimum ~;„is rather insensitive to T, while its
position q;„has a stronger temperature dependence.
This situation is depicted in Fig. 2. In genera, in-
creasing T causes a redshift of q;„. A recent opti-

thcal experiment measured directly the long wave eng
(q = 0) collective modes. The present calculation sug-
gests that this experiment has actually not detected the

COLLECTIVE EXCITATIONS

Collective modes are obtained from the poles in
K(q, tu), which describes the electromagnetic response
of the system at a given T. At q = 0, the cyclotron
mode w = —w, saturates the f-sum rule, in accordance
with Kohn's theorem, which can be readily generalized
to the finite T case. As pointed out in the Introduc-
tion, the approach adopted here sets a spurious energy
scale ~ in the problem. Furthermore, once the saddle
point solution Eq. (2) is taken, the interaction v(r) plays
only a nominal role in the perturbation expansion used
here. Since FICHE occurs as a result of strong electron-

Ci

I

—0 1

kT/h 2„
~ ~FIG. 2. Energy and position of the roton mznsmum for the

v = 1/3 state as a function of T Initially q;„ is rou. ghly
unchanged as T is increased from zero and then decreases
faster as T is further increase on the other hand,
is quite znsensx ave ot t T for the whole range of temperature
considered.
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scenarios of FQH state —Wigner crystal transition. z s In
this picture, such a transition is directly related to the
softening of the roton minimum and the position of the
(softened) roton minimum corresponds to the reciprocal
wave vector of the Wigner crystal near the transition.
Such a scenario is not supported by the present calcula-
tion since the lattice constant of Wigner crystal should
be determined by the electron d.ensity alone and hence
should be independent of T.

CONCLUDING REMARKS
10q

FIG. 3. Evolution of the lowest collective mode in the case
of v = 3/7. As T is increased from zero, this lowest mode also
splits into two. The number of roton minima decreases as T is
increased, so that for suKciently large T, only one minimum
remains.

lowest branch of the collective mode, which only exists at
finite T and vanishes at small q. On the other hand, this
lowest mode can in principle be measured through the
recently suggested experiment using evanescent fi.eld Ra-
man scattering. Since the spectrum at the q —+ ao limit
is independent of T, our work also provides a justifica-
tion for the fitting of o» data with a constant activation
energy A. '

For FQH states other than the fundamental one, the
zero T calculation shows that there are more than one
roton minimum and. the number of minima corresponds
to the number of Riled LL's in the composite fermion
picture. In Fig. 3 we show the lowest branch of the collec-
tive mode in the v = 3/7 state. At zero T, there are three
roton minima. As T is raised. , the weakest one, located
at a large wave vector (= 4.75loq), is smeared out first by
thermal fluctuations. The second one disappears subse-
quently at higher T, leaving only one roton minimum at
suKciently high temperature. This is a general feature
for all the v values we have examined. While the position
(and the number) of roton minima has not yet been sub-
jected to direct experimental measurement, it does have
physical implications according to one of the proposed.

While there are important di8'erences, its similarity
to super8uidity has been a useful guide to our under-
standing of the FQHE. ' It is interesting to compare
our results for collective excitations in FQH states at fi-
nite temperature with those in the superAuid liquid He
in which two branches of collective excitations, i.e., the
single-phonon and multiphonon modes, were observed.
It is tempting to interpret the upper banch of the split
lowest zero T mode obtained within our one-loop theory
as an indication of the presence of a similar multiphonon
collective excitation in FQH states at finite temperature.
However, to confirm this picture calculations beyond the
one-loop level are needed. Finite-temperature numerical
studies are also highly desirable.
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