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Excitonic nonlinear optical processes in GaAs quantum-well wires
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In a recent calculation, we obtained exciton and biexciton binding energies and wave functions for a
rectangular quantum wire in order to determine its third-order nonlinear optical susceptibility y"'. Us-
ing a variational calculation involving two parameters —exciton radius and exciton-exciton separation
within the biexciton —we computed the binding energies of the exciton and biexciton. In the present pa-
per, we have included a third parameter to allow for the variation of exciton radius within the biexciton.
As the result of this added variational freedom, the biexciton binding energies changed by 7—10% and
the magnitudes of all variational parameters and of y' ' changed by approximately 20% for wire dimen-
sions between 25 X 25 and 300 X 300 A .

In a recent publication, Madarasz et al. ' performed a
variational calculation of the exciton and biexciton bind-
ing energies in a rectangular GaAs quantum-well wire
(QWW). That calculation employed two variational pa-
rameters: g, the variational parameter for the electron-
hole separation along the axis of the wire within the exci-
ton; and g, the variational parameter for hole-hole sepa-
ration along the axis of the wire within the biexciton.
However, the exciton radius within the biexciton was tak-
en to be g, i.e., the same as in a free exciton. In the
present work, we improve on the above calculation by in-
cluding a third variational parameter g, which allows
the electron-hole pair within the biexciton to relax. For
clarity, in what follows, we define the set of variational
parameters: g„—:g, g„=g(g ), and g„„:g(q „). —

For complete details of the theory and relevant expres-
sions, the reader is referred to the original work. ' The
addition of a third variational parameter does not change
the analytic forms of the expressions for the kinetic, po-
tential, and binding energies of the exciton and biexciton
except that the newly defined set of parameters must be
substituted for the old. On the other hand, while the
functional form of y' ' does not change, the product of
the exciton and biexciton matrix elements explicitly
mixes their respective variational parameters; as a result,
one must be careful to properly substitute the new pa-
rameters inside the expression for y' '. With these substi-
tutions, the expression for g' ' in the rotating-wave ap-
proximation' for a resonant or near-resonant excita-
tion in a pump-probe experiment is given by
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Here, no is the average areal density of unit cells, mo is
the rest mass of an electron, e is the charge on an elec-
tron, EI, is the Kane matrix element, I and y are the
transverse and longitudinal relaxation parameters, re-
spectively, co2 and co& are the pump and probe frequen-

cies, respectively, Ace 0 is the exciton ground state energy,
and A'cob (g „,g„) is the biexciton binding energy.

In Tables I and II, we compare various quantities ob-
tained in two- and three-parameter variational calcula-
tions as functions of L and 8' the cross-sectional dimen-
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sions of the wire. The difference between the electron-
hole variational parameters within the exciton, g, and
within the biexciton, g is 20% 2% over the range of
wire dimensions given in Table I. The variation of g
within the biexciton results in a value of g„„which is
smaller than its value within the exciton g„. In other
words, the mean electron-hole separation within the biex-
citon is approximately 20% smaller than within an isolat-
ed exciton. Consequently, the variation of g within the
biexciton leads to a reduction of the hole-hole variational
parameter. According to Table I, not only is g„smaller
than g„by 20%+2% in the given range of wire dimen-
sions, but also its value is reduced proportionately to the
reduction of the corresponding ratio rl /rI, . In other
words, the ratios g„/rl„= f„ /rl„„=3.5, regardless of ex-
citon relaxation within the biexciton; in either case, then,
the hole-hole separation turns out to be 3.5 times the
electron-hole separation within the biexciton.

The last column in Table I lists the exciton ground-
state energies as a function of wire dimensions. These en-
ergies, which are important for the determination of the
energy for the resonant exciton creation, were not given
in our earlier work. ' We have specifically limited our-

0
selves to wire dimensions no smaller than 25X25 A,
since, from a practical point of view, the ground-state en-
ergy cannot exceed the total band offsets, which are
about 2.8 eV for a GaAs/Ale 3Gac 7 interface. Since

=g, the exciton binding energies do not change from
the values reported earlier in Refs. 1 and 2.

In Table II we list the biexciton binding energies as a
function of wire dimensions. The biexciton binding ener-
gies with g held fixed at g, the value within an isolated
exciton, are compared to the biexciton binding energies
for q=g„, the related value within the biexciton. For

0
the smallest set of dimensions, L = 8'=25 A, the change
in the biexciton binding energies is 9.4%, whereas for the
largest set of dimensions, L = 8'=300 A, it changes by
7.5%%uo.

In Table II we list the resonant values of y' ' deter-
mined for the case where g=g„ is allowed to relax
within the biexciton. The relaxation is seen to produce a
20%+2% reduction in y' ' for the listed range of wire di-
mensions. In fact, the percentage reduction is the same
as the percentage reduction in the ratio g„„/g„of the
hole-hole variational parameters. This is easily explained
if it is recalled that the original expression for y' ' before

TABLE I. Quantities obtained in two- and three-parameter variational calculations as functions of L
and 8'.

Wire
dimensions

L (A) 8 (A)

Electron-hole
variational parameter

rJ (ap)' r] (ap)'

Hole-hole
variational parameter

g„(ao)' g,„(ao)'

Exciton ground-
state energy (eV)

Egp(q )

25
50
75

100
125
150
200
250
300

50
50
50
50
50
50

100
100
100
100
100

200
200
200
200

300
300
300

25
50
75

100
125
150
200
250
300

25
100
150
200
250
300

25
150
200
250
300

25
150
250
300

25
150
250

216.4
276.0
322.7
362.8
398.7
431.6
491.2
544.8
594.1

248.4
322.0
360.4
394.1

424.5
452.2

298.6
398.2
429.9
458.8
485.6

375.0
461.9
518.3
543.6

436.4
515.8
569.6

181.1
230.8
270.2
302.2
333.0
359.3
408.9
453.8
493.3

208.7
269.6
300.3
329.3
353.6
375 ~ 8

250.9
332.5
357.9
383.0
404.5

312.0
385.5
430.6
452.9

363.1
428.6
473.7

763.4
971.9

1135
1275
1400
1515
1723
1910
2082

875.3
1133
1267
1385
1491
1588

1051
1399
1509
1611
1704

1319
1621
1818
1906

1534
1809
1997

634.2
806.9
943.6

1055
1161
1253
1425
1581
1718

730.2
941.7

1048
1149
1234
1311

877.1

1160
1248
1336
1410

1089
1344
1500
1578

1267
1494
1650

3.552
2.014
1.732
1.635
1.590
1.566
1.543
1.533
1.527

2.784
1.825
1.792
1.782
1.777
1.775

2.597
1.601
1.590
1.585
1.582

2.554
1.555
1.538
1.535

2.548
1.547
1.530

'ap is the Bohr radius of a hydrogen atom.
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TABLE II. Biexciton binding energies as a function of wire
dimensions.

Wire
dimensions

I. (A) 8 (A)

Biexciton binding
energy (meV)

E," (~„) E, (~.„)

Third-order
susceptibility (esu)

x"'(n. ) x"'(n

25
50
75

100
125
150
200
250
300

25
50
75

100
125
150
200
250
300

19.46
13.45
10.65
8.957
7.798
6.944
5.755
4.954
4.372

21.29
14.64
11.57
9.710
8.440
7.506
6.207
5.335
4.702

0.08556
0.6472
1.011
1.133
1.151
1.129
1.052
0.9739
0.9053

0.07109
0.5373
0.8406
0.9373
0.9547
0.9334
0.8701
0.8060
0.7468

g was allowed to vary within the biexciton containing the
ratio g /g, and the new expression for y' ' in Eq. (l), in
which g is varied within the biexciton, contains the ratio
g, /g . Therefore, the old and new third-order non-
linear susceptibilities are in the ratio of g„„/g„, which ac-
counts for the percent reduction in y' '. Moreover, Eq.
(l) indicates that y' ' also varies inversely with E 0, the
exciton ground-state energy. However, the ground-state
energy is a strong function of the fundamental gap ener-

gy, especially for wires of dimension larger than 50 X 50
A, and is independent of any variation within the biexci-
ton. Thus, for resonant excitation, y' ' depends on the
factor g /f„.

Finally, we show the graphical representation of the
newly calculated y' ' for symmetric and asymmetric
wires as a function of wire dimensions in Figs. 1 and 2,
respectively.

Physically, g' ' exists due to the nonlinearity in the in-
teraction between light and the biexciton. The size of the
light-induced dipole, in turn, is proportional to the biex-
citon radius —provided the transition takes place in a
direct-gap material and the wavelength of the light emit-
ted in the biexciton formation is large compared to the

1.2
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0.2-

0.0
50 100 150 200
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FIG. 1. Nonlinear optical susceptibility for resonant excita-
tion as a function of wire size for a symmetric wire.

average radius of the newly formed biexciton. ' Since
exciton relaxation leads to a more strongly bound biexci-
ton, the biexciton radius decreases, leading to a reduction
of y' '. In a forthcoming paper we will address the prob-
lem of finite band offsets and the affect of Al
interdiffusion from the cladding material into the wire.

In conclusion, we have shown that the relaxation of the
exciton within the biexciton complex results in 20%%uo +2%%uo

reduction in g' ' for the range of wire dimensions studied
in this work.
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50
50
50
50
50

100
100
100
100
100

25
100
150
200
250
300

25
150
200
250
300

15.75
10.67
8.997
7.860
7.025
6.382

11.89
7.805
6.964
6.316
5.800

17.19
11.58
9.755
8.509
7.597
6.894

12.93
8.447
7.528
6.821
6.257

0.6472
0.8219
0.7897
0.7394
0.6932
0.6538

0.2165
1.122
1.069
1.013
0.9627

0.5373
0.6834
0.6535
0.6135
0.5736
0.5396

0.1806
0.9310
0.8838
0.8402
0.7965
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300
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25
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25
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250

8.414
6.287
5.322
4.961

6.688
5.339
4.643

9.120
6.788
5.735
5.342

7.232
5.755
4.997

0.1840
1.086
1.010
0.9693

0.1596
0.9908
0.9377

0.1520
0.9003
0.8336
0.8023

0.1319
0.8180
0.7746

0.7-

0.6
50 100 150 200

W (A)
250

FIG. 2. Same as Fig. 1, but for asymmetric wires.
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