
PHYSICAL REVIEW B VOLUME 51, NUMBER 7 15 FEBRUARY 1995-I

Tilted magnetic field efFect on a double-layer quantum Hall system
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The effect of a parallel magnetic field on the quantum Hall state of a double-layer system at total filling

factor v=(4n +1), with n being the Landau-level index, is studied. While our result is consistent with

previous ones, which indicate that the system at v=1 undergoes a parallel-magnetic-field-induced phase

transition, we find that the phase transition also takes place at higher filling factors. For a certain pa-

rameter range, we observe an instability of the quantum Hall state towards probably a charge-density-

wave state at a smaller parallel magnetic field before the phase transition takes place.

The competition between the tunneling energy and the
Coulomb energy in a double-layer quantum Hall effect
(QHE) system has attracted considerable attention. '

Recently, Murphy et al. have measured the activation
energy of the v = 1 QHE in a tilted magnetic field in the
double-layer QHE system. They found that the activa-
tion energy drops rapidly by up to an order of magnitude
as the parallel magnetic field (PMF) B~~ increases to a
critical point, suggesting that the system undergoes a
phase transition to a new quantum Hall state (QHS). The
activation energy of this QHS is almost independent of
further increase in B~~~. Theoretically, this phase transi-
tion was studied in a beautiful paper by Yang et al. by
mapping the system onto a ferromagnetic model with the
layer degree of freedom playing the role of spin. From
this magnetic model, they estimated the critical value of
the PMF at which the phase transition takes place, and
the result is in qualitative agreement with the experiment.

In this paper, by employing a diagrammatic approach
developed by Kallin and Halperin and applied to a
double-layer system by Fertig and Brey, we study a
double-layer OHE system in the presence of a tilted mag-
netic field at filling factor v=(4n+1), with n being the
Landau-level index (n =0, i.e., v= 1 corresponds to the
experiment of Murphy et al. ). We find that the ground
state which optimizes the tunneling energy is unstable
with respect to a state which has a good exchange energy
as the PMF reaches a critical point. This demonstrates
that the system undergoes a PMF-induced phase transi-
tion. This result, which has been obtained for v= 1 in
Ref. 5, is valid for all filling factors v=4n +1, although
the nature of the ground state after the phase transition
may not be the same for different filling factors. We also
calculate the energy of the collective mode associated
with the symmetric to antisymmetric excitation. We find
that there exists a parameter range where the mode goes
soft at a finite PMF, resulting in the absence of the QHE
before the occurrence of the above-mentioned phase tran-
sition.

In the absence of the PMF, we can model the tunneling
by the following Hamiltonian:

H, = —t dr%, r 0, r +H. c. , (1)

where t is the hopping integral between the two layers,
and 1It (r), which creates an electron at r in the o th layer
(cr = 1 and 2), can be written as

n, k

(2)

with Q =d(eB~~/ih'c) and d being the interlayer separa-
tion. By using the equation
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where I.„ is a Laguerre polynomial, and making the
transformation

a = — c~1 o.—1a ttnk „g X csnk —(a —1)12s2 s=+1

where c operators represent electrons in the symmetric
(s = 1) or antisymmetric (s = —1) states, the tunneling
Hamiltonian can be written as

where
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tP =te ' L„(Q'l2o/2) .

In obtaining Eq. (6), the hopping between difFerent Lan-
dau levels is neglected because it is much smaller than the
cyclotron energy. On the other hand, the Coulomb in-
teractions

with p„k(r)=e'" C&„(x +klo) being the Landau orbital
and lo=+hc/eBi being the magnetic length associated
with the perpendicular magnetic field B~. Now we apply
the PMF along the —x direction and choose the corre-
sponding vector potential as A~~=(0, 0, y)B~~. In—the
presence of the PMF the tunneling Hamiltonian becomes

H, = —t dre '0', r 0'2 r +H. c. ,
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can be rewritten, in terms of the c operators, as
1
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In the double-layer QHE system without PMF, the QHE
occurs at integer filling factors. Among them, only odd
filling factors are of interest because the energy gap is
directly related to the tunneling energy. Moreover, since
v=1 and 3 correspond to the first Landau level, v=5 and
7 correspond to the second level, etc. , we only need to
consider v=4n+1 in general. At this filling factor, be-
cause of the tunneling gap, all the symmetric and an-
tisymmetric states with two spin directions in the first
n —1 Landau levels are filled, and only the symmetric
states with one spin direction in the nth Landau level are
filled. The exchange self-energy can be obtained as

, = —g g f G, (co)e' V, .„, (q —k, 0),
I s 277

(13)
where the Green's function is

G, (n)) = 1
(14)

co (m + ,' —)fico, +stg —X,+i/'3, —
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with J0 being a Bessel function. The PMF dependence of
E,"„,(Q) given by Eq. (15) is numerically calculated and
the result is presented in Fig. 1, where the zero point is
chosen at its zero PMF value. The result clearly shows
that the exchange energy is an increasing function of the
PMF.

For v=1, this conclusion has been obtained by Yang
et a/. (Ref. 5), and the physics involved can be under-
stood as follows: In the absence of a PMF, the ground
state can be described by a wave function whose in-plane
coordinate part is of the Jastrow form. This state not
only optimizes the tunneling energy, but also has a very
good interaction energy. When a PMF is applied, in or-
der to optimize the tunneling energy, the Jastrow form of
the ground-state wave function has to be distorted result-
ing in the loss of exchange energy. As can be seen from
Fig. 1, the loss of exchange energy continues to rise as the
PMF increases. Therefore, as pointed out in Ref. 5, when
the PMF reaches a critical point, the system would adopt
a ground state which optimizes the interaction energy in-
stead of the tunneling energy, and a phase transition
takes place. A good candidate for the ground state after
the phase transition is the original ground state in the ab-
sence of the PMF. The considerable exchange energy
this state gains more than compensates for the complete

with 6, being 0 if a state denoted by ms is occupied,
and is 0 otherwise. From Eq. (10), one can calculate the
total exchange energy of the system at v=4n +1. The Q
(or Bii) dependent part of the total exchange energy is
only contributed by electrons in the nth Landau level,
while the Q- (or Bii ) dependent part of the exchange ener-

gy of an electron in the nth Landau level can be written
in a simple form,

E,"„,(Q) = —
—,
' [Fi"(0, Q)+F„"'(0,—Q)], (15)
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FICx. 1. The PMF dependence of E,"„,(Q) —E,"„,(0) given by
Eq. (15) (in units of e /elo) for v= 1 (upper curve) and 5 (lower
curve). The interlayer separation d/lo =1 is chosen in the cal-
culation.
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FIG. 2. Variation of the criti-
cal value of the PMF B~~ /B& as a
function of the tunneling energy
2t (in units of e /halo) for v= 1

[Fig. 1(a)] and 5 [Fig. 1(b)]. The
interlayer separation d /lo = 1 is
chosen in the calculation.
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loss of the tunneling energy. Although the above analysis
can apply only to the v=1 system due to the lack of a
Jastrow wave function in higher Landau levels, the result
presented in Fig. 1 clearly shows the statement that the
ground state loses its interaction energy in order to op-
timize the tunneling energy to be valid for higher filling
factor systems. Therefore, one can expect the system to
experience an instability at a critical value of the PMF at
higher filling factors such as v=5. Whether the state is
the QHS or not after the phase transition is not yet clear,
and deserves further study (such as a finite-size study).
Nevertheless, we can calculate the critical value of the
PMF at which the ground state that optimizes the tun-
neling energy is unstable with respect to a state which is
the ground state in the absence of a PMF. This estimate
gives an upper bound of the critical value of the PMF for
which a phase transition takes place.

According to the above analysis, the critical field can
be estimated from the following equation:

Zt~+F„"2)(O,Q)+F„"2(0,—Q) =2F„"2(0,0),

where F„",'(k, k ) is given by Eq. (16). In Fig. 2, the crit-
ical value of the PMF as a function of the bare tunneling
gap 2t for v=1 and 5 is plotted. The critical value is an
increasing function of the tunneling gap for all filling fac-
tors. The result for v=1 is consistent with the experi-
mental observation and with previous theoretical study.
We would like to mention here that we did not use the
experimental value of the interlayer separation in our
calculation, because otherwise the ground state would be
in a non-QHE phase even in a zero PMF. This
discrepancy can be attributed to the neglect of layer
width in our model.

The above discussion is based on the assumption that
the system we have studied is always in a QHE state be-
fore the phase transition takes place. As we shall see
below, this is not always true. In order to address this is-
sue, we have studied the collective mode associated with
the symmetric to antisymmetric excitation, ' ' i.e.,
s = 1~s= —1 with the same n. This collective mode can
be obtained by solving the following vertex equation:

+ g g ~q2+q3, q&+q&[ Vs2s3sss1('q2 ql~q2 l4 Vs&s3s&s4 q2 'q4 'q2 q1)l
$3s4 q3q4

ik qlo k kI,", (k, co)=pe 'I,", q+, q —;k,co

q co = [b, + ( Q ) —F„"2( k„k + Q ) —F„"2( k, k —
Q ) ]

X G„, (co')G„, (co+co')I,", (q3, q~;k, co),
2ni 3 4 3' 4

where the vertex I ", (q„q2, k, co) is defined through a "spin-density" Green's function. ' We would like to point out
S1' 2

that, unlike the zero PMF case, where the ordinary density Green s function has no pole within one Landau level, in
the presence of the PMF the ordinary density Green s function has the same pole as that obtained from the spin-density
Careen's function. As shown in Ref. 6, the vertex equation (18) can be diagonalized as

I,", (k, co)=5, ,6, 11(l+e " ')e ' L„(k lo/2)+ gD,", (co)[V,".. . (k) —V,".. . (k)]I,", (k, co), (19)
S3S4

I

where From Eq. (19), we can obtain the collective excitation en-
ergy

ik I

q
'k I

d
D,", (co)= J G„, (co')G„, (co+co') .

(20)

where

X [b, + (Q) —2F„",'(k)+2F„','(k)

—2cos(k Qlo)F„'2(k)], (21)



51 BRIEF REPORTS 4629
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and F„",.'(k) is given in Eq. (16). It can easily be seen that
Eq. (21) reduces to the zero PMF result at Q =0.
When Q is nonzero, although cu(k)=co( —k), this mode

I

depends not only on the magnitude of k but also on the
direction of k. This is the result of the existence of the
PMF, which destroys the rotational symmetry along the z
direction. To see this more clearly, one can choose a
PMF along the y direction with the corresponding vector
potential A~t

= (0,0, —x )B~~.
The resulting tunneling

Hamiltonian can be obtained from Eq. (3) with the ex-
ponential factor e ' replaced by e 'g . By using the
following equation

1/2
gk~ g t /4 n't &OIO

n ! v'2

n —n'

L n —n'( Q2(2 /2) (23)

corresponding to Eq. (4), and making the transformation
ikgl

a „k=(1&2)g, +,c,„k(se ') ' instead of Eq. (5), the
same tunneling Hamiltonian as Eq. (6) is found, while the
interaction Hamiltonian can be obtained from Eqs. (10),
(11), and (12) by the following replacement:

V„„„„(k,—k4, k, —k3+Q)

By repeating the same calculation, one obtains the collec-
tive excitation energy which is given by Eq. (21) with k
and k exchanged.

It has been shown in Ref. 2 that there exists a phase
boundary which separates OHE states from non-QHE
states in a double-layer system with a zero PMF. By nu-
merically calculating the collective-mode energy given by
Eq. (21), we find that there exists a parameter range con-
necting to the phase boundary of Ref. 2 on the QHE side,
where the collective mode goes soft at a finite PMF be-
fore the above-studied phase transition takes place. For
example, for v= 1, d/10=1. 3, and 2t/(e /elo)=0. 07,
the critical value of PMF which would lead to the above-
studied phase transition is 0.8B~. However, the collec-
tive mode given by Eq. (21) will go soft at Bi =0.63Bt,
indicating an instability toward a probably charged
density-wave state before the above-studied phase transi-
tion takes place. It should be pointed out that this insta-
bility is not simply caused by the reduction of the
effective tunneling energy. Because, taking the above ex-
ample again, the effective tunneling energy t g is only re-
duced by about 5% from its zero PMF value, which is
still considerably larger than the tunneling energy on the
upper phase boundary for d/lo=1. 3. In fact, this is a
combined effect of the tunneling energy and the Coulomb
energy brought about by a PMF. A similar result
can be obtained for higher filling factors. Therefore,
one can add one more phase boundary to the

I

[d/lo 2t/(—e /elo)] phase diagram obtained in Ref. 2,
where there is only one phase boundary which separates
the no-QHE phase from the QHE phase. This additional
phase boundary, which is determined by requiring the
critical magnetic field obtained from Eq. (17) to be the
same as that obtained form Eq. (21) when the collective
mode goes soft, is approximately a straight line parallel
to the horizontal axis [the 2t/(e /elo) axis] within the
range of 2t /(e /elo) & 0. 1, and has the same intercept on
the vertical axis (d/lo axis) as the old phase boundary
does. In this new phase diagram, above the upper phase
boundary (the old one), is the no-QHE phase. In between
the two phase boundaries, the system may undergo a
PMF-induced QHS to a charge-density-wave-state phase
transition. Below the lower boundary (the new one), the
system may undergo the kind of phase transition that is
observed experimentally in Ref. 4.

Finally, we would like to make an interesting connec-
tion between the phase transition in a double-layer QHE
system experimentally observed by Murphy et al. , and
the magnetic-field-induced phase transition proposed re-
cently by Strong, Clarke, and Anderson in a different
context. Although they may differ in details, one can see
that the two phase transitions are the same in nature in
the sense that in each case the system completely gives up
tunneling energy as the phase transition takes place.

In conclusion, we have studied the PMF effect on a
double-layer QHE system. We found that the experimen-
tally observed phase transition at v=1 can also take
place at higher filling factors. Moreover, we found that
within a certain parameter range, the system may under-
go a PMF-induced QHS to a charge-density-wave-state
phase transition.
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