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The large optical response of C84 is demonstrated by means of the optical Kerr effect. Using
150-fs laser pulses with a wavelength of 647 nm, we got a transient response that was primarily pulse
limited. By comparing nonlinear responses with that of the CSz reference, we acquired large second-
order hyperpolarizability for C84 and C70 with plzzz of 5.2 x 10 and 4.7 x 10 esu, respectively.
The different optical responses of C84 and Cvo were interpreted using a pure-x-conjugated-electrons
model and the influence of ground-state structures of C84 isomers. Our results further con6rmed
the postulated D2(22) and Dqs(23) structures as the ground-state structure of Cs4.

INTRODUCTION EXPERIMENT

Organic materials possessing unusually large third-
order nonlinear optical susceptibility have long been the
focus of physicists * and chemists over the past two
decades for their potential applications in all-optical
devices. The recent exciting discovery of fullerenes has
attracted much attention. Like other organic materials,
fullerenes have highly delocalized vr-conjugated electrons,
which is the main origin of their large nonlinear opti-
cal responses. After the breakthrough in the synthesis
and the separation of the two most abundant fullerenes
C60 and C7O, a lot of systematic researches concerning
their third-order optical nonlinearities were performed
in different time scales, spanning from nanosecond to
picosecond ' to femtosecond with various exper-
imental techniques.

However, owing to the infinitesimal quantity produced
in graphite discharge and the difBculty in isolating and
purification, C84 is still less studied than C6o and C7O.
C84 is of particular attraction to us because of delocal-
ization of 7r-conjugated electrons, which are less abun-
dant in C60 and C70 and are considered to be the main
source of large nonlinear optical responses. In this pa-
per, we report the initial studies of optical nonlinearity
of C84 in CS2, using the time-resolved optical Kerr ef-
fect (OKE). By using a femtosecond laser, we are able
to probe pure electronic responses in fullerenes. Our ob-
servations show the large instantaneous nonlinear optical
response of C84. A comparison of second-order hyperpo-
larizability of C84 with that of C70 and C60 was given
and the reason for their distinction was interpreted. C84
was dissolved in CS2 solvent; to avoid the uncertainties
appearing in toluene and bezene solution.
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FIG. 1. The femtosecond optical Kerr effect experiment ap-
paratus arrangement: FDL, femtosecond dye laser; S, sample;
A, optical attenuator; OD, optical detector; LA, lock-in am-
pli6er; PC, personal computer; SM, step motor; ODL, optical
delay line.

C84 was obtained &om fullerite soot. The separation
and purification were carried out by means of liquid phase
chromatography combined with a recrystallization tech-
nique. NMR spectra showed a purity greater than 85'%%uo

for C84 with no C60 or C70 left; the main impurities in-
clude C78, C82, C86, and Cgo.

The OKE experimental arrangement is shown in Fig. 1.
The laser source was an ultrafast dye laser (Coherent,
SATORI Model 774) synchronously pumped by a cw
mode-locked Nd: YAG laser (Coherent, Antares 76-S) op-
erating at 76 MHz. The average power of the output was
about 200 M%V with a pulse duration of about 150 fs and.
the working wavelength was 647 nm. A variable atten-
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FIG. 3. Visible and infrared absorption spectra of the
fullerenes in CS2 solution. The vertical bar indicates exci-
tation wavelength.

fers the lower binding energies and higher highest oc-
cupied and lowest unoccupied molecular orbital gaps
of D2(22) and D2g(23) than those of the other three
D2 [D2 (21), D2 (5), and D2 (1)] isomers, which is consis-
tent with the results of the C NMR study ' of these
isomers. It is beneficial to study the dimension parame-
ters of four D2 isomers and D2g(23) provided by Wang
et al. (see Table I and Fig. 1. in Ref. 20) in detail.

The comparison between the quasispherical structure
of the two most probable Cs4 isomers [D2 (22) and
D2g(23)] with the ellipsoidal structure characteristic of
C7o (Dsh) was illuminating. The ellipsoid configuration
of C7o makes it more prone to polarization than C84 and
may be one of the major reasons for the small optical re-
sponse distinction between C84 and C7o. Conversely, our
measurements can be used as additional evidence for the
postulated D2(22) and D2g(23) isomers as the ground-
state structures of Cs4 instead of D2(5), in view of the
geometrical similarity between the other three D2 iso-
mers with C70.

To get a full und. erstanding of the differences between
C84 and C7o, a comparison between their absorption
spectra as well as that of C60, which is illustrated in
Fig. 3, is indispensable. Because the excitation wave-
length was near their significant absorption, the optical
Kerr responses of C84 and C70, which are larger than that
of C60, could be partly accredited to various degrees of
their resonant enhancement associated with their indi-
vidual energy gaps.

In addition, we measured the OKE signal versus ex-
citation laser intensity. At low laser intensity, a cubic
dependence is observed, while at high laser intensity the
OKE signal starts to saturate, as shown in Fig. 4.

We also compared the nonlinear optical responses for
C7O and C60 from different groups. Our values strength-
ened former studies by Gong et al. in the femtosecond
domain.

Before concluding this section, we would like to bring
to the readers' attention that to get a comprehensive
understanding of the origins of optical responses from
fullerenes, the consideration of only ground-state charac-
teristics is insuS. cient. A more accurate analysis should
account for electron behaviors of the excited state of
fullerenes, the symmetries of fullerenes will be lowered
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and vr electrons can itinerate more freely over the spher-
ical surface. Our more penetrating investigations will be
presented elsewhere. It is worth mentioning that the di-
rect introduction of a one-dimensional box model to the
three-dimensional spherical shell is irrational.

SUMMARY

We employed the time-resolved optical Kerr response
to investigate the third-order nonlinearity of C84 in com-
parison with C70, an indistinctive increase of second-
order hyperpolarizability was observed. Apart from
purely electronic contributions, we take the influence of
geometrical structures into consideration. The increase
of second-order hyperpolarizability will be the trade-off
between the number of vr-conjugated electrons and the
geometrical configuration; the y~ ~ enhancement will play
an important role in the case of the excitation wave-
length adjacent to the energy gap. This preliminary
study demonstrates that C84 is a nonlinear optical ma-
terial with an attractive second-order hyperpolarizability
deserving further investigation.
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FIG. 4. Intensity dependence of the OKE signal of C84 in
CS2 at 647 nm. The straight line is fitted with a slope of 3.
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