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Onset of fast step-velocity oscillations during growth by molecular-beam epitaxy
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The kinetic equation of Burton, Cabrerra, and Frank, with an added convective term to account for
step motion, is analytically investigated with the primary goal of determining the critical value of the
Peclet number for which step-velocity oscillations occur. We consider the case where the adatom density
vanishes at both steps, which has been previously studied by numerical analysis, and obtain a value of
3.42 for the critical Peclet number, which compares well with the numerical estimate of about 3 found
earlier. We then consider the more realistic case where the down step blocks, i.e., there is a barrier to in-

terlayer transport, and determine that in the range of Peclet numbers 0—15 no transition occurs. We
provide an explanation for this and discuss some of the implications of these results relative to possible
mechanisms responsible for the observed oscillations in rejective high-energy electron-diffraction inten-

sity measurements during growth on vicinal semiconductor surfaces.

I. INTRODUCTION

The primary purpose of this paper is to provide and
demonstrate a theoretical basis for predicting the onset of
step-velocity oscillation s that can occur during the
growth of vicinal surfaces by molecular-beam epitaxy.
Such oscillations have been identified as a possible mech-
anism responsible for the intensity oscillations observed
in refiecting high-energy electron-diffraction (RHEED)
studies of growing surfaces' in the absence of nucleation
on the terraces. We will not stress this specific connec-
tion here since nucleation effects are likely to be
significant in this regard, and we do not consider these
here. An important conclusion of our paper, which also
has significance for the case where nucleation is con-
sidered, is that the presence of a barrier at the down step
is an important factor in determining whether a transi-
tion to oscillatory step motion will occur.

Because of the complicated nature of this problem
there has been no previous analytical treatment that we
are aware of; earlier work has been numerical and in-
cludes finite-difference solutions' of the generalized ada-
tom diffusion equation incorporating step motion and
simulations. The approach taken here, described in Sec.
II, avoids a frontal attack on the direct problem, which
appears highly formidable. Instead we consider the situa-
tion where the system is allowed to evolve to a steady
state under a set of conditions (miscut, temperature, and
beam strength) such that a subsequent incremental in-
crease in the beam strength leads to an immediate onset
of step-velocity oscillations and also provides the basis
for a linear analysis.

To implement this approach we first consider (Sec. III)
the case where the adatom density vanishes at both ter-
minating steps; these are the boundary conditions used
in the previous work cited above. In Ref. 2 an estimate is
provided of ". . . about a, =3" (a, is the critical Peclet
number, defined in Sec. II) and we find here a, =3.42.
We then turn in Sec. IV to the case where the down
(right) step blocks. Like the first case considered, this is

also a limiting case; here the down-step barrier that
creates the Schwoebel effect is being emphasized. We
find that in this case there is no transition to oscillatory
step velocity for Peclet numbers in the range 0—15. This
result indicates that nucleation is likely to provide the
primary mechanism for observed RHEED oscillations.
This point is discussed in Sec. V, which concludes this
paper.

II. THEORETICAL FORMULATION

u ( t) =a [Dn„(0,t) —Dn„(L,t) ]

+u(t)[n (O, t) n(L, t)]a, — (2)

which is the source of difficulty in attempting to directly
treat Eq. (1) by standard analytical methods.

The steady-state solution of Eq. (1) for arbitrary
boundary conditions is easily found and this provides us
with the basis for the strategy we employ in what follows.
Before we begin, it is convenient to rewrite Eq. (1) in
terms of dimensionless variables, using xL, v„u( u„=FLa
is the steady-state step velocity), t/a F, and (FL /D)n to
replace the corresponding variable sin Eqs. (1) and (2) and
the initial, boundary conditions so that these equations
become

We consider growth by deposition from a beam of
strength I on a vicinal surface with uniform terraces of
length L having site density a . In the absence of nu-
cleation, and disregarding evaporation, the adatom densi-
ty n (x, t) satisfies a Burton-Cabrera-Frank-type equation,
which we write in the coordinate system comoving with
the step that has velocity v (t)

n, =Dn„„+vn+F, 0(x ~L,
where D is the diffusion coefficient. Since deposition be-
gins at t =0, n (x, O) =0 and we must also specify bound-
ary conditions at x =O, L. The step velocity u(t) is given
as
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n, =i+n..+cvn. , O~x~l,
v =[n„(O,t) —n (l, t)]+av [n (O, t) —n(l, t)],

(3)

(4)

where a =FL a /D is the dimensionless Peclet number.
Suppose for given F, L, and temperature (determining

D) we allow the system to come to a steady state n„,v„
such that a subsequent incremental increase in F, 5F, pro-
ducing incremental changes 5v, 5n will initiate oscillatory
step motion, i.e., 5v will oscillate as a function of time.
Then F, L, and D define the critical Peclet number above
which the step velocity experiences a transition from
strict monotone to oscillatory change to its steady-state
value. We can determine the critical Peclet number o.,
from the solution to Eqs. (3) and (4) with the appropriate
initial/boundary conditions, where only terms linear in
the incremental velocity and density are retained. Then,
e.g., writing n =n„+5n,and dropping the 5's below to
simplify notation, these equations become

III. VANISHING STEP DENSITIES

When the boundary conditions are' '

n (O, t) =n (1,t) =0,
then the steady-state solution of Eq. (3) is

n„=a '[(1—e )(1—e )
' —x] .

(7)

The explicit solution of Eqs. (5) and (6) depends cru-
cially on the choice of boundary conditions. Previous
work' ' has considered the symmetric condition of van-
ishing density at the steps; as we have noted elsewhere
this does not imply symmetric step kinetics because the
presence of the convective term implies that either the
kinetics or the adatom densities must differ at the steps.
We begin by considering this case, which will allow us to
compare our result for a, with that numerically estimat-
ed in previous work.

n, =f +n, +a(v„n +vn„), O~x ~ 1,
v = [n (0, t) —n„(1,t) ]+av„[n(0, t) n( 1, t)]—

+av [n„(O,t) —n„(l,t)],
with n (x,O)=0, f =(oF/F).

(5)
Note that the step velocity is also dimensionless and that
v„=1, and that for this boundary condition only
v = [n (0, t) —n (1,t)], i.e., the second term on the right-
hand side of Eq. (4) is identically zero. The solution to
Eq. (5) with Eq. (7) is

n =(2/a) g j dt'e " '1(b /a+a/4)sinb x J dx'e "/ ' ' " 'sinb x'[f +avn„],
m=1

(9)

where b =m m.. In order to obtain an explicit result we will need to approximate the above sum. Since the external pa-
rameters have been chosen so that the system will immediately commence step-velocity oscillations, it is reasonable to
retain only the first two terms in the sum. Then we can determine the behavior of v by first Laplace transforming and
then finding an equation for v(s) from the expressions for n(O, s), n( l, s). This leads to an equation of the form

V(s) =f [ A +Bs '][s + Cs +D] (10)

where s is the Laplace variable, 3 and 8 are constants whose values are unimportant for what follows, and C,D are also
constants, given by

C=s, s +(2s /s, )(vr/a) [(1+e "/ ' )(1+e "/ '
)
—a(1+e "/ ' )(1—e "/ '

) ']

s, /s )(2~/a)2[(1 —e "/2'a)(1+e'1/2)a) a(1 e
—(1/2)a)(1+e —(1/2)a) —1]

=—s(s2+s2[I]+s1[II],
D =s, +s2+[I]+[II], (12)

where

s;=[b; /a+a/4], i =1,2 .

The condition for v (t) to oscillate is C (4D, and this
occurs when a=3.42, in reasonable agreement with the
estimate given in Ref. 2 of "about a, =3."

IV. BLOCKING AT THE DOWN STEP

It has been known for some time the asymmetric step
kinetics provide a mechanism for step-width stability.
Further, it appears that in some cases the down step may
actually prevent interlayer transport. Thus it is prob-

I

ably more realistic to consider the case where the down
step blocks, n, ( l, t)=0, than that where the density van-
ishes. We might anticipate a diminished effect in this
case since the down-step boundary condition will lead to
a more even coverage across most of the terrace away
from the up step and, in the absence of nucleation oscilla-
tory step fiow, is due to the step accelerating (decelerat-
ing) through high (low) coverage areas.

The steady-state solution to Eq. (3) for the blocking
boundary condition is

n„=(e la )(1—e ) —(x/a),
and once again Eq. (9) gives the solution to Eq. (5), where
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where here s; is again given by Eq. (13) with the b; ap-
propriate to the blocking boundary condition and

[I]=2(s,a ) '[b, e ae"—' b, ],—
[II ]=2(s a )

'
[b e +cte "r ' b] —.

(17)

(18)

We find that for a ~ 15 the condition C &4D indicating
step-velocity oscillations is not satisfied and we conclude
that for realistic values of a there is no transition to oscil-
latory step How for the blocking condition. Thus, the
effect of the blocking down step is to extinguish rather
than diminish the transition to oscillatory step motion in
the range of Peclet numbers of possible interest. Previous
studies, ' ' which focused on the symmetric case of van-
ishing step densities, are therefore much more limited as
far as their implications than might have been expected.

now b =
—,'m~ are the eigenvalues appropriate to the

boundary conditions n(0, t)=n„(l,t)=0 (the eigenfunc-
tions sinb x remain the same). An equation for U(s) then
follows from Eq. (6), which has the same general form as
Eq. (10) with

C =s, s2 —a(e —1) '[(b, —ae " ' )sz[I]

+(b~+2ae " ' )s, [II]], (1&)

D =s, +s2 a—(e 1—) '[(b, ae —" ' )[I]

+(b2+2ae '' ' )[ll]], (16)

found here we conclude, in agreement with Ref. 2, that
nucleation and subsequent incorporation of islands into
the advancing step is the primary mechanism that needs
to be elucidated. This requires, at the very least, that
terms representing dimer formation and breakup be in-
cluded in Eq. (5); however, based on our earlier work we
expect that these terms will include a prefactor of
a r (L/a) rather than the a(L/a) that has been used
previously. Thus the critical value of this prefactor was
previously found to be 1.7X(10 ) for (L/a)=18, or
a, = 1.7 X 10 for the case of irreversible nucleation,
whereas based on a corrected prefactor a, =3.06 X 10
However, this assessment does not take into account the
effect of the down-step barrier, and it remains to be seen
what impact this might have. We conjecture that this
will enhance the effect of nucleation by increasing the
number of prenucleation adatoms on the terraces, leading
to increased dimer density at fixed a. The difficulties in
treating this problem by the method used here are two-
fold. First, the steady-state solution to Eq. (2) with addi-
tional terms added to account for nucleation effects is not
yet known. More significant, if this solution is found, it
will be necessary to solve a more complicated equation
than Eq. (5), which includes a term with a nonconstant
coefficient. Despite these difficulties, we believe that we
have provided a theoretical framework within which this
more complicated problem can be considered.
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