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Aharonov-Bohm oscillations with a modulation of the resistance amplitude up to 12% have been
observed in high mobility In,Gai_,As/InP rings. The phase coherence length Lg is extracted from
the interference pattern by an analysis of the oscillation amplitude as a function of temperature and
electron excess energy. La shows approximately a T~ °® dependence for temperatures between 2 and
10 K. We attribute this behavior to momentum-nonconserving processes in a quasi-one-dimensional
ring structure. Although the widths of the samples are comparable to the Fermi wavelength there is
still more than one one-dimensional conducting channel in the ring and the phase coherence length

saturates for decreasing temperature.

1. INTRODUCTION

In future quantum electronics the interference of an
electron on different Feynman trajectories might become
relevant for device applications. Aharonov-Bohm type
experiments are of central interest for studying the un-
derlying phenomena and for testing the suitability of
possible semiconductor structures. The relevant length
scale for interference phenomena is the phase coher-
ence length Lg. Inelastic scattering of the electrons at
phonons is one source of coherency destroying events.
Another is electron-electron scattering of hot electrons,
as was shown experimentally in a Young double slit ex-
periment by Laikhtman et al.! and by us for the bal-
listic transport of hot electrons propagating in a two-
dimensional electron gas (2DEG) between two point
contacts.? Stormer et al.> have shown that the acous-
tic phonon scattering rate decreases as T® at low tem-
peratures in a two-dimensional electron gas. In quasi-
one-dimensional structures, it is expected to be reduced
still further due to the smaller phase space available for
electron-phonon scattering events. In two dimensions,
average times as long as 109 s between scattering events
than the expected time when electron-electron interac-
tion dominates the scattering.

Theoretical investigations of the effect of electron-
electron scattering in one-dimensional geometries were
performed by Fasol.* His simulations showed, that 7.
does not saturate in an ideal single mode quantum wire
at low temperatures. Only the well known temperature
dependence of Te. limits the phase coherence length. In
this regime, Fasol predicted an enhancement of Lg up to
a few mm at mK temperatures. In two dimensions, on
the other hand a second contribution to electron-electron
scattering limits 7e.. Current flows only when a certain
fraction of carriers have an excess energy relative to the
Fermi level. This excess energy gives rise to electron-
electron scattering which is temperature independent and
which ultimately limits 7e.. In one dimension a reduction
in phase space strongly suppresses this second contribu-

0163-1829/95/51(7)/4336(7)/$06.00 51

tion.

In the present study; we have investigated rings of
small width in the strained Ing.77Gag.23As/InP system in
order to determine the inelastic mean free path as a func-
tion of temperature. An increase of temperature leads to
an enhanced probability of electron-electron scattering
events, thus reducing the phase coherence length. Mea-
suring the amplitude of the Aharonov-Bohm oscillations
versus temperature is a precise method for the analy-
sis of Ls(T).> As is shown in the present paper, the
In,Ga;_,As/InP system is ideally suited for this applica-
tion due to the very small effective mass of the electrons
in the two-dimensional sheet and due to the high elec-
tron concentration and electron mobility, which can be
achieved without occupation of a second subband. In
addition, there is no depletion zone at the edges of the
rings when structuring is done by reactive ion etching,
so that the lithographical and the conducting widths are
identical.

We have observed Aharonov-Bohm oscillations with
an amplitude about 10% of the device resistance. Even
at 10 K the Fourier spectrum of the data shows a pro-
nounced feature, which is clearly identified as the h/e
peak. Furthermore, we report on the temperature de-
pendence of Ls for a number of different electron excess
energies.

II. DEVICE FABRICATION

Modulation doped Ing77Gag.23As/InP heterostruc-
tures with a 2DEG in the ternary compound were used in
the present investigation. The structures were grown by
low pressure metal organic vapor phase epitaxy. They
consist of a 10 nm thick n-doped spike of InP (Np =
4.2 x 10'7 cm™3) followed by a 20 nm InP spacer layer
and a 10 nm thick Ing 77Gag 23As channel, which is finally
capped with a 150 nm thick Ing 53Gag 47As top layer.®7
Due to the high In content the channel layer is highly
strained.
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The Aharonov-Bohm rings were fabricated using elec-
tron beam lithography and reactive ion etching (RIE).
A 30 nm thick layer of SiO, was deposited on the sur-
face of the system followed by electron sensitive resist
polymethyl methacrylate (PMMA). Using the resist af-
ter electron beam lithography to transcribe the relevant
pattern to the SiO, by a CHF3; RIE process, the ox-
ide serves as a mask for the semiconductor and ensures
smooth edges of the sample. Otherwise, if PMMA itself
is used as a mask during the etching, the resist is heated
up and the edges become very rough. We have applied
a Hy/CH,4 plasma with etch rates of 15 nm/min in InP
and 9 nm/min in In,Ga;_ As.

The RIE process removes the In,Ga;_,As layers and
thereby destroys the 2DEG which leads to electron con-
finement in the nonetched area. By means of this tech-
nique, we have defined Aharonov-Bohm rings with a
width (W) of about 85 nm. The average diameter of
the rings is 2r = 0.7 pm. The Ohmic contacts consist
of alloyed Ni/AuGe/Ni (5 nm/90 nm/25 nm) packages.
Cr/Au (5 nm/100 nm) bond pads were deposited on top
of the probes. Figure 1 shows a scanning electron micro-
graph of the ring.

The electron density (n,) and mobility (1) at 4.2 K
determined by Hall effect are n, ~ 5.9 x 10! cm~2 and
u =~ 37 m?2?/Vs, respectively. Thus, the Fermi wave-
length is Ay ~ 33 nm and the elastic mean free path
Lo =~ 4.7 pm. This distance cannot be interpreted as
the average distance between impurities Ly, Small an-
gle scattering events like scattering at ionized impurities
are not detected directly in the Hall effect. Fits to SdH
oscillations in the low field regime® yield a ballistic mean
free path around five times smaller.
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The mobility of our devices is excellent in view of the
fact that the 2DEG is located in the ternary compound,
where alloy disorder adds to the scattering of the carri-
ers. With these parameters, we are in a regime where
Ar ~ W, W < Lyai, Lg and 27 ~ Ly,i, Le (as will be
shown later). Compared to the experiments performed
by Webb and Washburn® !! on metallic samples, we
achieve oscillation values AR/R about 100 times larger
in amplitude. This is due to the fact that Ap ~ W in
2DEG’s at semiconductor heterointerfaces, in contrast to
metals, where a large number of conducting channels ex-
ists at the Fermi energy.

III. RESULTS AND DISCUSSION

All our samples were measured in a four-terminal con-
figuration using standard lock-in techniques. To reach
temperatures down to 330 mK we used a 3He-evaporation
cryostat with a superconducting magnet.

In Fig. 2(a) the magnetoresistance (R,,) versus mag-
netic field (B) is plotted at T' = 330 mK for a current
of 1 nA through the ring. Very clear oscillations with an
amplitude of up to 1 k2 on a background resistance of
around 8.5 k{2 are resolved. To estimate the widths of
the rings, we have assumed the limits of the h/e peak in
the Fourier transform [Fig. 2(b)] to be directly related
to the minimum and maximum enclosed area of the an-
nulus. This leads to an inner diameter of 648 nm and
an outer one of 819 nm, in excellent agreement with the
lithographical data.

Besides the h/e peak, a second structure can be seen
in Fig. 2(b) corresponding to an oscillation with a fre-

FIG. 1. Scanning electron micrograph of a typical ring under investigation.
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FIG. 2. (a) Magnetoresistance of Ing.77Gao.23As/InP quan-
tum wire ring versus magnetic field normal to the ring at
T = 0.33 K and a current I = 1 nA. (b) Fourier power spec-
trum of the data from Fig. 2(a). Peaks corresponding to h/e
and h/2e oscillations are found. The harmonic h/2e is indica-
tive of electron trajectories which encircle the annulus twice.

quency of h/2e. There are two possible explanations
for such a peak: weak localization and second harmonic
Aharonov-Bohm oscillations. Al’tshuler, Aronov, Spi-
vak oscillations® due to weak localization are well known
to appear in doubly connected geometries but are sup-
pressed already for magnetic fields of a few mT. Since
the field range for the observed oscillations exceeds by
far this value, we conclude that the period h/2e is due to
second harmonic Aharonov-Bohm oscillations, i.e., due
to trajectories which encircle twice the annulus.!? The
Fourier periods of the h/e and h/2e oscillations were in-
dependent of temperature in the range investigated.
The oscillations are superimposed upon a magnetore-
sistance peak around B = 0. This peak arises from quan-
tum mechanical and classical corrections to the classical
Drude conductivity in the quasiballistic regime.'® Figure
3 shows the magnetoresistance background and its mag-
netic field dependence up to the onset of Shubnikov—de
Haas (SdH) oscillations at B = 1.5 T for a sample sim-
ilar to that in Figs. 2(a) and 2(b). For a wire width W
smaller than Ly, the influence of the boundaries pro-
duces a parabolic negative magnetoresistance. In addi-
tion, weak localization reduces the conductivity for small
magnetic fields (for a detailed discussion see Ref. 13).
Furthermore, aperiodic conductance fluctuations due to
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FIG. 3. Magnetoresistance Ri, for a field scan up to
B = 2 T. Aharonov-Bohm oscillations are superimposed upon
a resistance peak around B = 0 arising from classical and
quantum mechanical corrections due to the one-dimensional
transport properties.

quantum interference of randomly scattered electrons are
visible in Fourier transform at 27/AB = 0, indicating
that the pure ballistic limit is still not reached.

We first consider these aperiodic conductance fluctua-
tions (ACF). The average amplitude AGcy of the ACF
can be used to determine the phase coherence length.
At T = 0 the amplitude of these fluctuations is of the
order of e2/h, independent of sample size or degree of
disorder.!* At finite temperature this situation is altered
and AGcr depends on the channel length. When the
thermal diffusion length Ly (the distance an electron can
diffuse before the uncertainty in its energy becomes less
than kgT) is larger than the sample size, the amplitude
of conductance fluctuations is given by an expression in-
dependent of Ly (Ref. 15),

3
AR & (Ls\2
= —_——= 1
AGer = 5 5 (Lm> ; (1)

where Lot = 2.75 pm is the total voltage probe separa-
tion in the samples. Using this value in Eq. (1), the phase
coherence length for a current of 1 nA and a temperature
of 330 mK turns out to be (1.1 +0.12) pm.

We now consider the Aharonov-Bohm oscillations. The
Aharonov-Bohm oscillations in Fig. 3 show a decreasing
amplitude for increasing magnetic field and vanish for
B =~ 1.2 T. Timp et al.'? have discussed a very similar
suppression of the Aharonov-Bohm effect with increasing
magnetic field in GaAs/Al,Ga;_,As rings. They agree
with the proposition of Datta and Bandyopadhyay'® that
the wave function may be localized within one branch of
the annulus if the Larmor radius becomes equal to half
the wire width, then suppressing the quantum interfer-
ence. In our case, the critical field is determined as 0.4 T
for W = 85 nm and, thus, in the following, we restrict
ourselves to the analysis of the periodic oscillations for
B < 0.4 T. In this magnetic field range no monotonous
decay of oscillation amplitude with magnetic field is ap-
parent and, therefore, we have not included any asymme-
try in the splitting of the electron wave function in the
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annulus.

A detailed theory of the quantum transport properties
in a ring is not yet available. Nevertheless, we will now
give an expression for the Aharonov-Bohm amplitudes
which, we believe, contains the major dependences on
the characteristic lengths. As outlined above, the ballis-
tic mean free path Ly, deduced from SdH oscillations
has a value of 0.9 um as compared to a separation of the
voltage probes by 2.75 um. So, we are in the diffusive
transport regime which is characterized by an exponen-
tial decay of the amplitude as a function of distance. For
the Aharonov-Bohm oscillations, the relevant distance is
the circumference, 277, of the ring. Thus, we assume the
amplitude to be proportional exp [— 2n7/Lg].

Besides this effect of Lg on the conductance variation
AG 4B, often an additional term can be found which in-
cludes the influence of thermal energy averaging.!' Two
Feynman trajectories for a diffusing electron, traversed
with an energy difference kgT', are out of phase when the
distance traveled becomes larger than the thermal length
Ly = \/hD/kpT, where D is the diffusion constant of
the carriers. The reduction of AG 4p for increasing tem-
perature is included by a factor Ly /Lyt for Ly < Lot
and 1 for 7Ly > Lio,t. The question now arises which
value to use for the diffusion constant D. In a wire in
which the electrons suffer only specular boundary scat-
tering and hence electron momentum along the wire is
conserved, D takes the value of the two-dimensional elec-
tron gas. Van Houten et al.!® have discussed the change
of D if diffuse boundary scattering becomes dominant
in a wire. There are three reasons why in our case pre-
dominantly specular scattering is assumed in the follow-
ing discussion. First, diffuse scattering leads to a re-
duced diffusion constant and is expected to manifest itself
in a positive magnetoresistance around B = 0,7 which
was not observed in our measurements. Second, focus-
ing experiments with point contacts using the same het-
erostructure with very similar etching parameters clearly
demonstrate a specularity coefficient larger than 0.7.1%
Finally, using D = (vpW/n) In [Le;/W] for diffuse bound-
ary scattering!® would yield an unreasonable maximum
of L around T = 1 K since the measured values of
AGap are nearly constant below T' = 2 K, whereas
wLy /Loy with D from above would yield wLy /Lot < 1
already for T' > 0.65 K. The expected dependence of Lg
on temperature is discussed below. There is no reason
for an increase of phase coherence length with increas-
ing temperature. Although we cannot really exclude a
small influence of electrons being scattered diffusely at
the boundaries, we have used the two-dimensional value
of D for calculating the thermal length L. For instance,
for the highest temperature used in this investigation
(T = 10 K), 7Ly turns out to be 3.26 um. For lower
temperatures Lz is even larger. So, we are always in
the regime where wLz /Lot has to be replaced by 1.

Thus, the Aharonov-Bohm amplitude reads,

e? 27y
AGk ::.A7L— exp[——L;]. (2)

A is a factor which we do not know. We determine its
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value under the assumption that it is independent of tem-
perature T and of excitation energy A of monoenergetic
electrons relative to Er. Fitting the data of Fig. 2(a)
with Eq. (2) with » = 0.376 pum [deduced from the Fourier
peak maximum in Fig. 2(b)] and L = 1.1 pum (taken
from the conductance fluctuations) gives A = 2.21. We
now check the consistency of the analysis by evaluating
the second harmonic contribution in Fig. 2(b). An ex-
pression similar to A G » can be derived for A G B

AGnr = B% exp [— —} (3)

Note the length 47r for the Feynman trajectories en-
circling the annulus twice. Analyzing the data from
Figs. 2(a), 2(b) with Eq. (3) gives a value of B equal
to A, within the error bars of Lg. This is a reasonable
result. Indeed, the finite width of the ring implies Fourier
peaks in the Aharonov-Bohm spectrum of finite width,
with a broadening increasing with the harmonic number.
In other words, B should not exceed .A. This is what we
observe within the error bar. Hence, our model for the
Aharonov-Bohm amplitudes leading to Egs. (2) and (3)
is apparently based on reasonable assumptions.

We now consider the influence of temperature and cur-
rent on the Aharonov-Bohm amplitudes. Having deter-
mined A4, we will analyze our data by means of Eq. (2)
and determine Lg(T,A). A, the electron excess energy
relative to the Fermi level, is controlled experimentally
by the strength of the electrical current. As mentioned
above, we expect the main contribution on Ls to be
due to electron-electron scattering. A detailed theoreti-
cal treatment of the temperature-dependent Coulomb in-
elastic broadening in the pure two-dimensional case was
given by Giuliani and Quinn.!® They found, including
only the momentum-conserving electron-electron scatter-
ing processes, for T # 0 and A € kT < Er,

1| . Br [keT]
Tee|le—n,  2mh | Ep
(kT 2gTF
X{h’l _”E;T] —1—1In I:T;v-]} N (4)

and for T =0 and A < Ep,

~ _Er [ATP[TAT 1) 207
. anh [Bp] U |Er] 2 ke | [
(5)

gtr is the Thomas-Fermi screening wave vector and kg
the. Fermi wave vector in the two-dimensional electron
gas. In the experiment, however, we have a whole distri-
bution of electron excess energies with a maximum value,
called A, which is proportional to the value A in Eq. (5).
Increasing the temperature or the current implies an in-
crease of the surplus electron energy above Er and hence,
an increased electron-electron scattering rate.

Figures 4 and 5 show two series of measurements, the
first demonstrating the influence of temperature and the
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FIG. 4. Magnetoresistance R, versus magnetic field at
I = 10 nA for a series of temperatures. From top to the
bottom: T = 0.33 K, 2 K, 5 K, 7 K, 10 K. The curves are
vertically offset for clarity by a value of 300 Q.

second the dependence of the oscillations on the electron
excess energy (5) The strong Aharonov-Bohm oscilla-
tions observed with a current of 10 nA at 330 mK die
out if either the temperature or the excess energy is en-
hanced. We have analyzed the amplitude of Aharonov-
Bohm oscillations in the field range of —0.47 < B < 0.4T
using Eq. (2).

The phase coherence lengths Lg deduced from the T
and A dependent data are presented in Fig. 6. Obvi-
ously, Ls saturates at low temperatures and the satu-
ration value decreases with increasing A. In accordance
with the expected two-dimensional behavior,?? the satu-
ration occurs at higher temperatures if the electron excess
energy increases. As long as A is smaller than kgT, the
thermal smearing of the Fermi edge, Ls is approximately
identical for all electron excitations. For A > k BT, the
temperature-independent effect becomes dominant and
the saturation levels for different values of A become ob-
servable.
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FIG. 5. Magnetoresistance R;, versus magnetic field at
T = 0.33 K for a series of electron excess energies A. From top
to the bottom: A=0.054 meV, 0.8 meV, 3.25 meV, 6.2 meV.
The curves are vertically offset for clarity by a value of 300 Q.
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FIG. 6. Calculated phase coherence length Ls as a func-
tion of temperature for various electron excess energies [(0)
A = 0.054 meV, (A) A = 0.27 meV, (+) A = 0.56 meV,
(O) A = 0.8 meV, () A = 1 meV, (o) A = 325 meV]
(EFr = 38 meV). Lines are plotted as guidance to the eyes.

However, it turns out that there is a maximum in
the saturation value for Ls of around 1.1 pm, which
is reached for A = 0.1 meV. Reducing A further to
0.01 meV leads to the same saturation value. Hence,
there must be additional mechanisms limiting the phase
coherence length Lg which is independent of temperature
and current. We consider two possible mechanisms: spin-
orbit scattering and broadening of the electronic states at
the Fermi level due to elastic scattering by alloy induced
disorder and/or by ionized impurities. Remember that
the 2DEG in the present heterostructure is located in the
ternary compound In,Ga;_,As. Spin-orbit scattering,
which would manifest itself in antilocalization and should
lead to a positive magnetoresistance,?! was not observed
in the temperature range investigated here [see Fig. 2(a)].
Although we cannot exclude other effects, we can explain
the observed saturation of Ls by ionized impurities. Ion-
ized impurity scattering broadens the electronic states at
the Fermi level by 6 E & %i/7¢;. Thus, the phase space for
scattering is no longer reduced for temperatures T below
0E/kp and Lg is limited to a value of around 1.1 um.
With u ~ 37 m?/Vs, we calculate a critical value for T
of about 1 K in accordance with the observed bending of
the curve in Fig. 6 for A = 0.054 meV.

As mentioned before, Fasol* has predicted, for the
one-dimensional case and in the temperature range con-
sidered here, no dependence of Ly on A. Figure 6
shows that obviously the pure one-dimensional transport
regime is not yet realized in our samples. The value of
W =~ 85 nm for the rings exceeds n/kp and, thus, we
are dealing with more than one one-dimensional conduct-
ing channel. Additional information about the sample
dimensions can be obtained by analyzing the slope of
L3(T) in the range where kgT > A. We find the phase
coherence length to be proportional to 77 with p = 0.53.
Comparison with Eq. (4) yields a discrepancy between
experiment and theory, where a value of p between 2 in
the ballistic transport regime and 1 for diffusing elec-
trons is expected. Including momentum-nonconserving
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electron-electron scattering events, Al'tshuler et al.??

have calculated 7 in disordered metals for one, two, and
three dimensions. In the presence of ionized impurities
or fluctuations in the boundary potential, the expected
exponent —p of the temperature becomes 1/4 < p < 2/3
for electron transport in one dimension and 1/2 <p <1
in the two-dimensional case. Comparison with our ex-
perimental data gives two major results. First, the di-
mensionality of the electron transport in our rings is be-
tween one and two. Second, there is a remarkable effect
of momentum-nonconserving scattering processes in our
samples.

Finally, we discuss the advantages of In,Ga;_,As/InP
heterostructures for electron interference devices. The
dependence of the phase coherence length on the carrier
concentration n, and on the carrier mass m* is given in
the diffusive and in the ballistic regime by®20:23

Le=+/D7s ~ "—n—l‘@

diffusive regime  (6)

3/2
Ng
Ly =vpTe ~ =

ballistic regime. (7)

Here, it is assumed, that electron-electron scattering is
the process limiting the phase coherence length. Then,
according to Egs. (4) and (5), 7 is proportional
to Ep, ie., ¢ ~ n,/m*. The diffusion coefficient
D = v%714/2 = wh®/e X n,u/m* is expressed in terms
of the mobility u, the Fermi velocity vrg is given by
khv27mng/m*. Obviously the effective mass m* plays a
crucial role for the absolute value of Lg. In our strained
In,Gaj;_,As/InP system, we have determined m* by the
temperature dependence of Shubnikov—-de Haas oscilla-
tions and have found m* = 0.037m(.'® In comparison,
the effective electron mass in an Al,Ga;_,As/GaAs het-
erostructure is m* = 0.067mo. Beside this, n, values
of approximately 6.5 x 10'' cm~2 with only one pop-
ulated two-dimensional subband and no bypass in the
doped layer cannot be reached in the Al,Ga;_,As/GaAs
system, where the sheet carrier concentration in typi-

cal layer systems is limited at around 4.5 x 10! cm™2.

Mainly DX centers are responsible for the Fermi level
pinning over a wide range of various dopant concentra-
tions, thus preventing high electron concentrations in
the two-dimensional channel. Although higher values
of electron mobility can be obtained in a 2DEG formed
in GaAs, the influence on the phase coherence length is
compensated by the effective mass and the sheet carrier
concentration. The advantage of the In,Ga;_,As/InP
heterostructure becomes even more pronounced in the
ballistic transport regime, where there is no influence of
mobility on L but a large influence of concentration and
effective mass. In addition, the system under investiga-
tion does not show any depletion zone at the edges of the
rings. As a consequence, the lithographical structure is
identical with the electrically active structure.

IV. CONCLUSIONS

In summary, we have fabricated mesoscopic rings in
a strained high mobility Ing 77Gag.23As/InP heterostruc-
ture, where periodic oscillations in the magnetoresistance
due to Aharonov-Bohm effect can be observed. The ma-
jor phase breaking mechanism below 10 K is electron-
electron scattering. The depfgidence of Ls on tempera-
ture, electron excess energy A, and on disorder related
scattering are clearly established. The dimensionality of
the transport in the ring is between one and two and there
is evidence of nonconservation of electron momentum in
electron-electron scattering in a disordered system. Fi-
nally, the small effective mass and the high electron con-
centration in the 2DEG in strained Ing 77Gag 23As/InP
heterostructures make this system an excellent candidate
for devices based on interference phenomena.
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FIG. 1. Scanning electron micrograph of a typical ring under investigation.



