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Quantum Hall efFect in three-dimensional field-induced spin-density-wave phases
with a tilted magnetic field
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The quantum Hall effect for three-dimensional anisotropic tight-binding electrons is investigated
in the field-induced spin-density-wave phases with a magnetic field tilted in any direction. The
Hall conductivities o „and o are shown to be quantized as a function of the wave vector of the
field-induced spin-density wave, while o„remains zero, where x is the direction with the largest
conductivity and y and z are perpendicular to x.

I. INTRODUCTION

Quantum Hall effect has been observed in organic con-
ductors (TMTSF)2PFs and (TMTSF)2C104 (Refs. 1—3)
in the field-induced spin-density-wave (FISDW) phases.
These organic conductors are quasi-one-dimensional con-
ductors and described by a tight-binding Hamiltonian
with anisotropic hopping matrix elements, tb/t 0.1
and t, /t 0.003. The Fermi surface consists of two
warped planes in the absence of a magnetic field. If the
nesting of the Fermi surface is perfect, the staggered sus-
ceptibility corresponding to the nesting vector which con-
nects two planes of the Fermi surface diverges as temper-
ature becomes low. In such a case the spin-density wave
(SDW) is stabilized by the repulsive interaction of elec-
trons. The nesting of the Fermi surface is imperfect in
general due to transverse hoppings. For the imperfect
nesting case the transition temperature of SDW depends
on the imperfectness and the strength of the electron in-
teraction. Since the transverse hoppings are enhanced by
pressure, the SDW state is suppressed as the pressure is
increased. The divergence of the staggered susceptibil-
ity recovers when the magnetic field is applied, and the
successive transitions to FISDWs occur as the magnetic
field is increased. One can explain the stability of the
FISDW by the fact that the energy is lowered when a
gap at the Fermi surface is opened due to the combined
eKect of the electron interactions and magnetic Geld.

A magnetic field required to be one flux quantum,
hcp/e, per electron in each plane for these or-

ganic conductors is extremely large ( 10 T). In other
words, the quantum Hall efFect in organic conductors is
observed in much smaller field than what is necessary
to fill electrons only in the lowest few Landau levels.
Moreover, the Hall conductivity is observed to change
its sign in some region of the magnetic field. The quan-
tum Hall eKect in the presence of a FISDW has been
studied theoretically. The quantization of the Hall
conductivity is explained by using the Streda formula
or the general theory of the Hall efI'ect in the periodic
system. These authors studied the case where the
magnetic field is perpendicular to the conducting plane.

Due to the hoppings along the third direction new phe-
nomena are expected when the magnetic field is tilted.
In a three-dimensional lattice there exist three fluxes, P,
Pb, and P„per unit area in each plane, while only one
flux per unit cell is present in two dimensions. Indeed,
many cusps of the magnetoresistance have been observed
as a function of a direction of the magnetic field.
The FISDW in three dimensions in the tilted magnetic
field or in a nonorthogonal lattice has been studied.
The Hall conductivities o „and 0. , are predicted to be
quantized. These values are argued to be fractionally
quantized. ' These authors, however, studied the case
where the magnetic field is perpendicular to the axis, say
a, when two fluxes, Pb and P„exist instead of three in
the general direction of the field.

On the other hand, the general formula for the quan-
tum Hall efFect in the periodic system in three dimensions
was given by Halperin and Kohmoto pt al. 3 They have
shown that the conductivity tensor is quantized when the
Fermi energy is in the energy gap.

In this paper we study the Hall conductivity in the
anisotropic three-dimensional lattice with the magnetic
field tilted to any direction. In Sec. II the conductivity
tensor is calculated for the noninteracting electrons in the
orthorhombic lattice. The quantized value is given in the
perturbation in tb/t and t, /t . The quantum Hall effect
in the presence of a FISDW is given in Sec. III. The
generalization to the triclinic lattice is done in Sec. IV.

II. NONINT ERA CTIN C CA SE

In this section we study the anisotropic tight-binding
electrons on the orthorhombic lattice in the magnetic
field,

(2.1)
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where c~ and c, are creation and annihilation opera-
tors of the electron with spin v at site i, t, tb, and t
(t )& tb, t, ) are the hopping matrix elements along a, b,
and c directions, respectively, and

for the filled band and the integral is performed in the
magnetic Brillouin zone. Kohmoto, Halperin, and Wu2

have shown that if the Fermi energy lies in the energy
gap, the conductivity tensor is described as

2~
A dl,

0
(2.2) (2.6)

where A is a vector potential. In this section and Sec. III
the a, 6, and c axes are assumed to be orthogonal to each
other and parallel to the x, y, and z direction, respec-
tively.

The uniform magnetic field B is applied in any direc-
tion,

B = (B,By, B,). (2.3)

The fIuxes through the unit area perpendicular to the a,
b, and c axes are given by

= bcB, (2.4a)

Py = caBy, (2.4b)

P, = abB„ (2.4c)

where a, 6, and c are the lattice constants.
First we consider a rational Aux case, i.e., the Hux

through a unit area in each plane is a rational number,
(P /@p Py/Pp @ /Pp) = (p /q py/qy, p /q ) with mu-
tually prime integers p and q (n = x, y, or z). Then
the Hamiltonian in the presence of the magnetic field is
described as a generalization of the problem in two di-
mensions studied by Azbel and Hofstadter to three
dimensions. ' The energy spectrum for the rational
fIux case can be obtained numerically as the eigenvalue of
Harper equations. The size of the Harper equations is the
least common multiple of q, q„, and q, which we define
as Q. The volume of the magnetic Brillouin zone is 1/Q
of the Brillouin zone in the absence of a magnetic field.
For a Bxed momentum k in the magnetic Brillouin zone
there exist Q eigenvalues and Q eigenstates. By varying
the momentum we get Q bands. In two dimensions these
bands do not overlap. Although the bands may overlap
in three dimensions, it has been shown that the energy
gaps due to a magnetic Geld exist; in the wide range of
parameters. '2 We can use the extended zone by un-
folding the magnetic Brillouin zone to the Brillouin zone
in the absence of a field. Then the energy is obtained
uniquely for each momentum.

The quantum Hall efFect is expected in the three-
dimensional case when some of the energy bands are com-
pletely filled and the other bands are empty. ' ' ' The
conductivity tensor for a filled band is given as

with the vector in the reciprocal lattice,

C = —(l G +lbGb +l, C, ), (2.7)

where G, Cb, and G are the fundamental reciprocal
vectors satisfying B - G = B . Cb = 0 and l, Itb,

and l, are integers. These integers are the first t hem
numbers on the tori obtained by slicing the three-torus
of the magnetic Brillouin zone. Since we can take any
fundamental reciprocal vectors, G is written as

G = —(l G +lbCb+l, G, ), (2.S)

where G = (2a/a)x/~x~, Gb = (27r/b)y/~y~, and G
(2a/c)z/~z~ for the orthorhombic lattice and l, lb, and
l, are integers. If the direction of the magnetic field is
changed infinitesimally, G stays constant as long as the
Fermi energy lies in the energy gap. Although G. , Cb,
and G, depend on the direction of the magnetic field,
G, Cb, and C do not depend on the magnetic field.
As a result, while l, Ib, and l are not constant, l,
lb, and l are constant for the infinitesimal change of the
magnetic Beld.

If the Fermi energy lies between the rth and (r + 1)th
band from the bottom of the energy, the conductivity ten-
sor is given as the summation of the contributions from
filled r bands. The contributions from the filled bands
cancel each other except that from the upper energy gap
of the r th band.

In order to calculate the Hall conductivity explicitly,
we take the vector potential A as

A =
~

0, (B,*—B..), — "(B,*—B..) ~

.C

B, (2.9)

'Rp = t ) 2cos(a—k )ct(k)c (k)

tb ) e ' ""—ct (k —u)c (k) + H.c.
k,o.

4~4@—t,e' «+* ) e ""*ct(k+u')c (k) + H.c. ,

In the above we have assumed B g 0 without loss of
generality, since we may exchange y and z in the case of
B = 0. With this vector potential the noninteracting
Hamiltonian is written

e' 1 s 0 ( 0
a. p

——2 — dk

4
Okp ( Ok )

(2.5)

where the factor of 2 comes from the spin degrees of free-
dom, n and P are x, y, or z, ~4) is the wave function and

/2vr P, 2vr P. iu=
i

——', 0, ———
a Qp c Pp)

where H.c. means Herrnitian conjugate,

(2.10)

(2.11)



4308 YASUMASA HASEGAWA

u = —u.I

We de6ne the state as

(2.12)
The Fermi surface is given by k = 4k~ in the zeroth

order perturbation in tb/t and t, /t . When the condi-
tion

g (k) = ct (k) l0), (2.i3)

with vacuum l0). The Hamiltonian mixes Q (k) with
g~(k 6 u) and @~(k 6 u'). If P~ = 0, k„and k, are
constants of motion. If P g 0, k, is not a constant of
motion but k„and (P, k, +P k )/A/2 + P2 are constants
of motion.

2k@ = m, u + m„u' + s(2m/a) (2.i4)

is satisfied with integers my, m, and s, the degener-
ate states at k = k~ and k = —k~ are mixed, result-
ing in the energy gap at the Fermi energy in the lm, lth
perturbation in (tb/t ) and the lm„lth perturbation in
(t, /t ). The magnitude of the energy gap is of the order
of ll'p(k) l, where

—imy& y y" —imzbk„( ick, ic(k, + — ") ic[k, +(~m„~ —1)—+ +" ])sSc(m )

i(—m, ,bk„+m, „ck,)4+4@
(2.i5)

u = Pzuo)
Iu: Pyup y

(2.16a)
(2.16b)

where integers Py and P are defined by

Since the Aux is assumed to be rational, u and u' are
written as the integer multiples of the vector up as

On the other hand, the phase of the wave function can
be defined globally in the torus of ky and k for G.xed
k, which is the slice of three-torus by the plane with a
fixed k . Therefore the second term in Eq. (2.5) is zero
by partial integration with respect to k„or k, if P = y or
p = z. Then the conductivity tensor is written assi'is

P, (2.17)
1 e 1"=2,h2' n-/b

dk~
l

O'
c)ky

The Harper equations are obtained by using the one-
dimensional basis states k. =k+ J

(2.20a)

g, = @(k+jup), (2.i8)

r = sQ+ —Qm, + —"Qm„.
0 0

(2.i9)

The wave function for the rth band gets the phase of
I'p(k) at k k~, i.e. , the phase of the wave function
cannot be defined globally in the magnetic Brillouin zone.

with integer j. The number of Harper equations obtained
by this basis set is not always Q but the integer multiple
of Q, because gg is not necessarily the same as gp. Thus
the basis Q~ may be overcomplete, although the eigenen-
ergy is obtained correctly by the overcomplete basis. In
order to get the complete basis for the rational fIux case a
careful choice of the vector potential is necessary. The
overcomplete basis set corresponds to the larger unit cell
in the real space or the folded magnetic Brillouin zone in
the momentum space. The Hall conductivity is, however,
obtained even if the integration in Eq. (2.5) is done in the
folded magnetic Brillouin zone, since the degeneracy of
the bands due to the overcomplete bands compensates
the folded region of the integration.

The magnetic Brillouin zone has the volume
(2vr) /(Qabc) and 2k~aQ/(2vr) = r is the number of
filled bands below the Fermi energy. Then we get from
Eq. (2.14) that m„and m should fulfill the Diophantine
equation,

]. e
CJxz 2

b 6 27ti

m/c

dk,
l

8
z

k =k+~ I
(2.20b)

oy, ——0, (2.20c)

where k& ( k+ ) is the momentum smaller (larger) than
the Fermi momentum. Since the wave function changes
only in the phase at the Fermi momentum, the integra-
tion with respect to k„or k gives the minding number
of I'p(k) in the complex plane around zero when k„or k
is moved. Using Eqs. (2.15) and (2.20), we obtain

2
o.~y = ——mz)c 6 (2.21a)

2e
b h

(2.21b)

The conductivity per plane is quantized as
2(e /6) m, and cr, = 2 (e2/h) m„.

Unfortunately, the energy gap will be very small if
lm&l + lm,

l
)) 1, which is the case for l@&l, l@ l

(( Pp.
For the quantum Hall efI'ect, it is not necessary that

all of P /Pp, P„/rtpp, and P, /r/pp are integers. The only
required condition is Eq. (2.14).
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III. THREE-DIMENSIONAL QUANTUM HALL
EFFECT IN THE PRESENCE OF FISDW

In this section we take account of the interaction

Z'= U

This interaction is written as

(3 1)

D 0,0
—t e'bk

R' = —U
] ~

dk dk' dK ct(k)cg(k+ K)f abc 't

( 2vr 'p
xct~(k'+ K)cg(k') . (3.2)

The order parameter of the spin density is defined in the
mean Geld approximation as —kp

—t eibk

kp

kx

I

kp+ llx+ U x

abcA(K)—:-U dk'(cd(k' + K)cg(k')) . (3.3)
kF+ Ux

A(K) = ) D„„„,b(K —K„„„), (3.4)

The interaction term mixes the states g~(k) and @g(k+
K). As a result an energy gap at the Fermi surface is
opened by the order parameter when A = +2k~. The
y and z components of the wave vector should be deter-
mined to give the lowest energy, which can be calculated
numerically with further approximation such as the lin-
earization with respect to k . ' ' Since we focus on the
quantization of the Hall conductivity, we do not have to
calculate the values of Ky and Kz explicitly. The Hall
conductivity is zero in this case.

There are other possibilities for opening gaps in the
presence of the magnetic Geld. The order parameter may
have many components with respect to the wave vec-
tors as in the two-dimensional case. In the three-
dimensional case the order parameter has the form

FIG. 1. Schematic diagram of opening the gap at the Fermi
momentum. The right arrow labeled by Dp, p indicates the
order parameter of the SDW with K = 2k~ by which two
states at k = +k& are coupled. The right arrow labeled by
Dq, q indicates the SDW with wave vector K = 2kF+u +u' .
The left arrows indicate the coupling of the states caused by
the magnetic field in the perturbation in tb/t and t, /t .

A(K) = D„„,„„8(K—K„„,„„), (3 7)

the k-dependent phase change is exp[i( —n, pbk„+n„pck )]
and the Hall conductivity is obtained by Eqs. (2.20) as

the Fermi momentum changes the phase due to this gap
function. The Hall conductivity is calculated by Eq. (2.5)
as in the noninteracting case.

If only one component of the order parameter is dom-
inant, i.e. ,

(K„„„)= 2k' + nyu' + n, u

2~ P„2~P,= 2k~+ ny ——"+n. ——,
40 ii il 0

(3 5) and

with the x component of the wave vector K~„~ given
by

2 c
~y = — nzo)c h,

2

Ozx =
~ ~ nyo)

(3.8a)

(3.8b)

I'(k) = ) I'„ „ exp i~ —n, bk„ + n„ck,
YL Q

„24*4m &
(3.6)

where I'~ ~ is a constant of the
of D „~ (ts/t~)~ *~(t~ t/~)~ &~. The wave function near

order

where ny and n, are integers. The vectors u and u'
are given in Eqs. (2.11) and (2.12). By this wave vec-
tor the state at k = —k~ is mixed with that at k
k~ + n„u' + nzu~. The state at k~ = k~ + n„u' + nzu~
is mixed with the state at k = k~ by ]n„]th per-
turbation in tsexp(ibk&)/t and ]n, ~th perturbation in
t exp(ick, )/t . As a result two states at the Fermi en-
ergy at k = 6k~ are mixed by a combined eKect of SDW
and the magnetic field. (See Fig. 1.) The gap function
is given by

ay ——0. (3.8c)

Comparing Eqs. (3.8a)—(3.8c) with Eqs. (2.6) and (2.8)
we find that

l. =0,
lb ——ny,

lc = nz-

(3.9a)
(3.9b)
(3.9c)

If the order parameter consists of many components with
respect to the wave vectors K, the Hall conductivity
cr „(o ) is obtained as a winding number of the gap
function I'(k) as k& (k, ) is moved from 7r/b to 7r/b (from-
—m/c to vr/c). Note that P appears as the relative phase
between the components of the order parameter, so the
Hall conductivity may depend on P implicitly.

If the magnetic field is changed in magnitude or direc-
tion by a small amount, the wave vectors and the order
parameter will change in order to keep the Fermi energy
in the same energy gap. As a result the plateau of the
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Hall conductivity is realized without the effect of a local-
ization. When the energy gap is closed and opens again
at the Fermi energy as the magnetic field is changed, the
Hall conductivity changes. The sign change of the Hall
conductivity may happen as the direction or the magni-
tude of the magnetic field is changed.

The condition for the rational flux is not necessary to
get the quantum Hall effect. The wave vector of the
order parameter is adjusted to satisfy Eq. (3.5) for any
direction and amplitude of the magnetic field. If Py/P, is
irrational, n„and n are determined uniquely for a given
wave vector (K ) . On the other hand, n y and n,
are not uniquely determined if Py/P, is rational.

A(K) = ) D„,„,h(K —K„,„,), (4.6)

where nb and n are integers and the wave vector K,
satisfies the condition

K„„„.. a = 2ak~ + nbw . a+ n, w a
aCy Bz GCz +y= 2ak~ + ng2vr

abc/(2)r) . As in the preceding section, the energy gap
opens at the Fermi momentum by the effects of the order
parameter and the perturbation in ti, /t and t,/t, if the
order parameter has the form

IV. TRICLINIC LATTICE

In this section we consider the triclinic lattice with
a, b, and c not being orthogonal to each other. The
fundamental reciprocal vectors,

abyB, —ab, By
C 27t

b C= 2ak~+ ng2~ —+ n 2vr —.
4o

'
4o

(4 7)

bxc
G = 2'

V

cxa
G g ——2'

V

axb
C = 2'

V

are not orthogonal, where

(4.la)

(4.1b)

(4.1c)
P, =a. (bxB),
Pb= —a (cxB).

(4.8a)

(4.8b)

In the above Ps and P, are the fluxes through a unit area
in a-c and a-6 planes, respectively,

y = Ia. (b «) I. (4.2)

We take a
II

x. Hopping matrix elements t, tb, and t,
(lt I

)) lti, l, lt, l) are assumed between the nearest sites
along a, b, and c axes. The vector potential is taken as
Eq. (2.9) by using the orthogonal x, y, and z axes.

The noninteracting Hamiltonian is

'Ro ———t ) 2 cos(a . k) ct (k)c(k)
k, a.

—t),e' ' ) e * "ct (k —w)c (k) + H.c.
k, o.

—t,e' ) e ' ct (k + w') c (k) + H.c. , (4.3)
k, cr

where

exp [i (—n, b . k+ nsc k)j . (4.9)

The conductivity tensor is calculated by

The phase of the wave function is not defined globally
as in the previous sections. In the perturbation in tz, /t
and t,/t, the mismatch of the locally defined phase for
the wave function of the highest occupied band is at-
tributed to the phase of the gap at the Fermi momentum.
The wave function changes the phase as the momentum
is moved at the Fermi momentum as in the preceding
section. We consider the case where one component is
dominant in Eq. (4.6). Then the k-dependent part of the
phase change is

Ob = —
I by — "b I(B,b —B b, ),

a„

~ t' a„0, = —
I
c„— "c, I(a.c. —a.c,),

2)r ( B„w= —
I by — "b, I(Bx —B z),B, '

a„w' = —
I

cy — "c, I(B,x —B i).

(4.4a)

(4.4b)

(4 5-)

(4.5b)
Oyz = o.

(4.10a)

c 8
dk„dk,

I6 2)r'z
=A;z F

(4.10b)

(4.10c)

Note that w
II

w'.
The Fermi surface in the zeroth order in tb/t and t, /t

is the plains given by a- k = +ak~. The order parameter
is defined by Eq. (3.3) with the factor z)/(2)r)s instead of

Because of the nonorthogonality of a, b, and c, the slice
of the magnetic Brillouin zone by the plane perpendicular
to k„or kz is not the torus. As a result, o~y and o. are
not quantized to be integer but they are quantized as
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2

0 y
——2—(n, by

h
e nba2

h ]bye,

a—nancy)—

—nbcy
—b, c„l

' (4.11)

2 a
a., = 2—(—n, b +nsc, )—

e' —n.b. + nbc.
h, lbyc. —b, c„l

(4.12)

In the above we have used the facts that a ll x and
that the area of the Brillouin zone in the k„-A: plane is
(2') a/v. Comparing these results with the general ex-
pression of the Hall conductivity in the three-dimensional
periodic system [Eq. (2.8)], we get

V. CONCLUSION

%"hen the magnetic Geld is tilted to any direction, there
is a possibility for the new wave vector for the FISDW.
We have shown that the Hall conductivities o „, o
and o„are quantized as a function of the wave number
of the FISDW. When the lattice is orthogonal, both o „
and o, per plane are quantized as integers and o„, stays
zero as long as tg/t and t, /t are treated in perturba-
tion. Since the quantization is realized with respect to
the fundamental reciprocal lattice, o „and o, are not
quantized as integers if the a, b, and c axes are not or-
thogonal to each other. Even in that case the quantum
values of o & and o, are given as a function of the wave
vector of the FISDW, which is characterized by integers.

l =0,
lb ——nb,

l =n, .

(4.13a)

(4.13b)

(4.13c)
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