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Magnetic levitation force and penetration depth in type-II superconductors
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The superconducting levitation force F acting on a magnet placed above a type-II superconductor in

both Meissner and mixed states is calculated as a function of temperature, based upon the London mod-

el. A simple relationship between the levitation force and the London penetration depth A, is found. In
particular, in the limit of a/A, »1, where a is the separation between the magnet and the superconduc-

tor, F varies linearly with A, , regardless of the shape of the magnet. The temperature dependences of A,

and F are examined for various superconducting pairing states, including s-wave, d-wave, and s +id
states. It is found that, at low temperatures, both A, and F show an exponential temperature dependence

for s-wave, linear-T for d-wave, and T dependence in a wide low-temperature range for the s +id state
with a dominant d-wave component. The magnetic force microscope (MFM) is proposed to accurately
measure the temperature-dependent levitation force. It is shown that the microscopic size of the MFM
tip enables one to obtain the intrinsic temperature-dependent penetration depth of a single grain, in spite
of the overall quality of the superconducting sample.

I. INTR@DUCTION

The temperature dependence of the London penetra-'
tion depth A, ( T) is often used as a means of distinguishing
between difFerent models in superconductivity because at
low temperatures A,(T) reflects changes in the superfluid
density responsible for screening of electromagnetic
fields. In s-wave BCS theory, this quantity has an ex-
ponential temperature dependence due to the presence of
an energy gap. ' A number of other possible pairing
states, involving more complicated gap functions, have
been suggested for heavy-fermion and high-temperature
superconductors. For example, the d-wave pairing
state has low-energy excitations that can result in a tem-
perature dependence of A,(T) which differs from the ex-
ponentially activated behavior of conventional BCS su-
perconducors. Thus, accurate determination of the tem-
perature dependence of A.(T) is of crucial importance in
the study of superconductivity, because it can provide in-
formation about the symmetry of the pairing state. Re-
cently, there have been numerous measurements of the
London penetration depth in heavy-fermion ' and high-
temperature superconductors. " The most common
methods used thus far to measure A, (T) are complicated
microwave techniques.

We emphasize that the value of A, determined macro-
scopically, from microwave techniques, "represents the
intrinsic London penetration depth only for a perfect sin-
gle cyrstal. However, if the superconductor is not a per-
fect single crystal, then, these macroscopic measurements
only provide an efFective averaged magnetic penetration
depth. In particular, the short coherence length of high-
T, superconductors (HTS) makes these materials unusu-

ally sensitive to structural imperfections, such as grain
boundaries. Even so-called HTS single crystals or high-
quality thin films usually contain twin boundaries. The
presence of grain boundaries, screw dislocations, and oth-
er imperfections in HTS materials lead to difFiculties in

directly observing their fundamental physical properties.
Most standard experimental techniques only access aver-
aged information, from which the fundamental properties
have to be derived with the use of theoretical models.
Indeed, experimental data on the penetration depth based
on macroscopic measurements at low temperatures de-
pend dramatically on the sample quality. Klein et al."
reported a weak exponential temperature dependence,
whereas Ma et al. found good agreement with T varia-
tion, except for small deviations below 10 K.' In con-
tradiction with these results, a linear temperature depen-
dence was reported by Hardy et al. and interpreted by
the authors as an indication of d-wave superconductivity.
All these measurements were reported to be performed
on "high quality thin films or single crystals, "but, never-
theless, yielded significantly difFerent results. This shows
that macroscopic measurements of A, are sample depen-
dent and do not give the intrinsic temperature depen-
dence of the London penetration depth, as argued by
many authors. ' ' Clearly, it is important to clarify the
intrinsic temperature dependence of the penetration
depth, or of related physical quantities, in high-T, super-
conductors.

In this work, we present an alternative method of
determining the penetration depth. The approach is
based on measurements of the superconducting levitation
force acting on a magnet. ' ' We show that, at low tem-
peratures, there exists a simple relationship between the
levitation force and the London penetration depth. In
particular, when a/A, »1, where a is the separation be-
tween the magnet and the superconductor, the levitation
force varies linearly with A, , regardless of the shape of the
magnet. This result provides a new method of measuring
the penetration depth, namely, one can determine
directly from the measurements of the superconducting
leviation force.

We propose that the temperature-dependent levitation
force can accurately be measured using the magnetic
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force microscope (MFM). We know that MFM (Refs. 19
and 20) is a method that was originally developed as an
extension of atomic force microscopy (AFM). ' An MFM
consists of a tiny magnetic tip which, when placed close
to a magnetic sample, interacts with the stray magnetic
field from the sample. The force exerted on the scanned
tip is measured as a function of tip position. The perfor-
mance of scanning MFM has been tested by applying the
technique to a number of magnetic materials, yielding a
resolution of 10 nm and a sensitivity of 10 ' N.
This performance places MFM among the most powerful
techniques for investigating small magnetic structures.
Recently, scanning MFM has been suggested as a possi-
ble method for imaging vortex lattices in high-T, super-
conductors. Here, we explore another possible appli-
cation of MFM in the study of superconductivity. Name-
ly, we show that MFM provides a unique tool for deter-
mining the London penetration depth of a type-II super-
conductor.

In the past several years, there have been some scan-
ning tunneling microscope (STM) observations of the
Abrikosov Aux lattices on the conventional low-
temperature superconductors, such as NbSe2. It is well
known that STM is a contact probe, and thus requires the
samples to have extremely clean surface. For this reason,
STM studies on HTS's have mostly failed due to the rela-
tively poor surface characteristics in HTS materials. By
contrast, MFM is a noncontact probe, and has been
recognized as probably the only method that yields high
resolution under ambient conditions without substantial
sample preparation, which makes MFM a powerful,
universal, and practical noncontact probe technique.
Its primary advantage for the study of HTS materials
with grain boundaries is that we can still treat a single
HTS grain as perfect single crystal, since the size of the
MFM tip is small relative to the micrometer size (or @-
size) superconducting domains.

In Sec. II, we calculate the magnetostatic interaction
between a magnet and a type-II superconductor in the
Meissner state, based on the London theory. In the limit
of a/A, »1, we show that the levitation force depends
linearly on the penetration depth. Even when a/A, -1, a
simple relationship between the levitation force and the
penetration depth still exists for a point dipole magnet.
The levitation force between a tiny magnet (or the MFM
tip) and a superconductor in the mixed state is presented
in Sec. III. In Sec. IV, we derive the expressions of the
penetration depth and examine the temperature depen-
dence of the levitation force for di8'erent superconducting
pairing states. In Sec. V, we show that the intrinsic tem-
perature dependence of the London penetration depth
can be determined by MFM through the levitation force
measurements. Finally, Sec. VI includes discussions and
conclusions.

V A(r) — A(r)=0, z &0,1

iL (T)
(2.2)

where po is the vacuum permeability. The magnetic in-
duction can be calculated by taking the derivative of A,
i.e., B(r)=V X A(r), and can be written in the form:

B,(r)+Bi(r), z &0,B"='B,( ), &0, (2.3)

where Bi(r) is the direct contribution from the point di-
pole [i.e., the particular solution to Eq. (2.2)], Bz(r) is the
induced field due to the presence of the superconductor,
and 83(r) is the magnetic field penetrating inside the su-
perconductor. These fields must satisfy the following
boundary condition:

Bi(x,y, O)+Bz(x,y, O) =B3(x,y, O) . (2.4)

Similarly, the vector potential A can also be written in
the form

Ai(r)+ A2(r), z & 0,
A3(r), z &0 . (2.5)

By the use of the cylindrical coordinates, it is easy to
show that A has only the 8 component As(p, z) due to
the symmetry of the problem. The particular solution
A, s(p, z) is easily found,

Pom
A is(p, z)=

4~ [ 2+(z u)2]3/2
(2.6)

and Azs(p, z) and A3s(p, z) satisfy the following equa-
tions:

aw„a'w„
+

ap
' a

1
226) =0,

p'
(2.7)

Z

0

tance a above a superconductor, as shown in Fig. 1, based
on a simple London theory. ' ' ' From Maxwell's and
London's equations, the vector potential A can be ex-
pressed as

V A(r)=pomX V[5(x)5(y)5(z —a)], z &0, (2.1)

II. LEVITATION FORCE IN MKISSNKR STATE

A. Point dipole model

Let us first consider the levitation force acting on a
magnetic point dipole with moment m placed at a dis-

FIG. 1. Diagram of a magnetic point dipole with moment m
placed above a superconductor.
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BA3e t} A3e
p +

p r)p ~p

1 1

p A, (T)q A3g —
~ A3g =0 .

(2.8)

(2.16) give the same approximate result:

F(T)=a P-A,(T)
a

(2.17)

The solutions of A2& and A 3& have the general forms:

A ze
= f dk Cz(k)e "'J&(kp),

0
(2.9)

=f dk ( (k)e+k +~jk ~T~~J (kp)
0

(2.10)

where J„(x) is the nth order Bessel function, Cz and C3
are determined from the boundary condition (2.4):

+1+k A, (T)—kA, (T) —ka

't/1+k A, (T}+kk,(T)
(2.1 1)

C (k)
2k', (T)

V 1+k A, (T)+kA, (T)
(2.12)

Rom
dk k2 V 1+k A, ( T)—kA, ( T)

4~ o &1+k A, (T)+kk(T)

Xe k(z+a)J (kp) (2.13)

The self-interaction energy can be written in the form:

1U= ——m. B2(0,a), (2.14)

and the levitation force acting on the magnetic dipole can
then be obtained from the interaction energy through
S', = —aU/aa:

2

F= POPl

64m.a
2

Xf dtte ' 1+— t~
0 2 a

t+1+1/4(A(T)!a )'t'
a

(2.15)

The z component of the induced magnetic field is calcu-
lated from 8z, =(1/p) A2e+t}Aze/Bp.

with a=3pom /32m. a and p=4a. Figure 2 shows the
calculated levitation force as a function of a, the separa-
tion between the dipole and the superconductor. The
solid line represents the result from the London theory
[Eq. (2.15)], the dotted line is the linear-A, result from Eq.
(2.17). The approximate result from (2.16) is also present-
ed in the figure (dashed line} for comparison. It is seen
that all results converge to the linear-A, behavior when
the ratio of a/A, & 10. When a/A, & 10, there exists a big
deviation from the linear-A, result. But, it is clear that the
approximation (2.16) is still in good agreement with the
London theory (2.15) almost for all range of a/A, &1.
Thus, in the large a/A, limit, we can estimate the levita-
tion force from the linear-A, approximation in Eq. (2.17),
while the approximation (2.16) should be used when
a /A, —1.

B. Shaye efFect of the magnet

The above calculation is only valid for the simple mag-
netic dipole model, and does not take the size and
geometry of the magnet into account. Here we argue
that, in the limit of a/A, »1, the shape of the magnet
only affects the coefficients a and P in Eq. (2.17), but does
not change the linear-i, dependence of the levitation force
at low temperatures. It can be shown that the levitation
force acting on a magnet with arbitrary shape over a
type-II superconductor in the Meissner state is given by
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U

This result gives the exact levitation force for a point
magnetic dipole over a superconductor in the sense when
the superconductor can be described by the London mod-
el. In fact, this force can also be estimated by simulating
the field penetrating completely into the superconductor
by a layer of thickness equal to the penetration depth A, .
In this case, a magnetic dipole is induced in accordance
with the potential theory, and the force is given by
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1e-07
0.1
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3pom

32m [a+A,(T)]
(2.16)

In the limit of a/A, »1, both expressions (2.15) and

FICx. 2. Levitation force as a function of the separation a be-
tween the dipole and the superconductor. Solid line represents
the result from the London theory, Eq. (2.15), dashed and dot-
ted lines are the results from the approximations Eqs. (2.16) and
(2.17), respectively.
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E(T)= f dkk e "f'drf dr'M(r))(d(r')e "'*+r''d [k+(x —x') +( — ))'(2)8)
4m o +1+1, (T)kz+d((, (T)k v v

where a is the distance between the lower end of the magnet and the superconducting surface, Vis the volume of the
magnet, M(r) is the magnetization density distribution of the magnet which is assumed to be polarized along the z
direction for simplicity, and the integration for volume elements dr=dx dy dz and dr'=dx'dy'dz' is carried out over
the space distribution of the magnet. Here the origin of the coordinates has been chosen at the lower end of the mag-
net.

In the limit of a /A, » 1, we can show that the levitation force in Eq. (2.18) is still given by the linear-A, approximation
(2.17), but the coefficients a and P have to be replaced by

a= dt t e ' dr dr'M(r)M(r')e ' "+' 'Jo '!/(x —x') +(y —y')Io t f t/2~(z+z)
64m.a V V 2a

I~

(2.19)

P= f dt t e 'f dr f dr'M(r)M(r')e '~ "+''Jo '!/(x —x') +(y —y')
64m.a V V 2a

(2.20)

This result means that, in the limit of a/A, )&1, the levitation force between the magnet and the superconductor de-
pends linearly on A, , regardless of the shape of the magnet. Here we list the corresponding coefficients a and P for the
homogeneously polarized cylindrical and spherical magnets. The following expressions apply for a cylindrical magnet
of moment m:

Potrt "
( —1)'(2i+ 1)!(2i+2)!a=

4nh R; o i![(i+1)!](i+2)!
R

4a +4h

2l +2
h1+

2l 2
h+ 1—

2l 2

(2.21)

Pottt "
( —1)'[(2i+2)!] R

4~h R . if[(i+ 1)1] (i+2)! 4a +4Ii

2l +2
h

a+h

2l 3
h+ 1—

2l 3

(2.22)

2l +2J

8a +8R
1)k (2.23)

where 2h is the height and R is the radius. For a spherical magnet of radius R and moment m, the coefficients are
found to be given as follows:

2 '2k
9P0m ~ Ra= C

—1

4~R4, J 1
2a+2R sJk

l~J 1

9P0m 2
R4'; J ( 2a+2R

2l +2J

8a+8R( 1)k
2k

0
C~Jk (2.24)

ere the magnets have been assumed to be polarized in the levitation direction. The constants C, „ in Eqs. (2.23) d
(2.24) are defined by

(2i+2J+2k+(u)!(i+j+2k+ 1)!
k!(i+j +k+1)!(2i+2 k+1)!!( j2+2k+)1!! (2.25)

In the limit as h and R approach zero, it is easy to
show that the results of cylindrical [Eqs. (2.21) and (2.22)]
and spherical [Eqs. (2.23) and (2.24)] magnets reduce
back to those for a magnetic point dipole, Eq. (2.17), as
expected. The above results for cylindrical and spherical
magnets indicate that, at the lowest order of approxima-
tion, a magnet of any shape can be treated as a simple
magnetic point dipole. At low temperatures, although
the size and geometry of the magnet strongly affect the
coefBcients, they do not alter the simple linear relation
between levitation force and penetration depth in the lim-
it of a/A, »1. Therefore, it is possible to determine the
London penetration depth directly from measurements of
the levitation force, regardless of the shape of the magnet
used in the experiment.

C. Shape effect of the superconductor

In all the above calculations, the superconductor is as-
sumed to fill half of the infinite space. In fact, for practi-
cal rneasurernents, the superconducting samples have
their size and geometry. Here we study a simple case,
i.e., a point dipole over a superconducting thin film with
a finite thickness d. We examine the thickness depen-
dence of the levitation force in the Meissner state. In this
case, above the superconducting film (z) d/2, here the
origin of the z axis is chosen at the center of the film),
Maxwell s equation (2.1) is still valid. Inside the film
( —d/2&z &d/2), the electrodynamics is described by
London's equation (2.2). Below the film (z & —d/2), the
vector potential satisfies the Laplace's equation:
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V A(r)=0. (2.26)

The problem then reduces to solve Eqs. (2.1), (2.2),
and (2.26) under the continuous condition of B at the

boundaries. ' Following the similar procedure as we did
in the case of the half infinite superconductor, we find the
levitation force acting on a point dipole placed above the
superconducting film to be given by

@pm 3, t A, tA,
2

F= dt t e ' 1+ + +I+(t A/4, a )coth —P1+t A, /4a2 Z 2

64~a o 2a 2
(2.27)

It is seen that, when the thickness of the Glm d —+ ~, the
above result reduces back to Eq. (2.15), as expected. In
the limit of a /A, » 1, we find

of the levitation force may be neglected. Otherwise, Eq.
(2.27), or its approximation (2.28) in the limit of a/A, » 1,
has to be used to calculate the levitation force.

F=a P ——coth (2.28) III. LEVITATIQN FGRCE IN MIXED STATE

where a and P are the same as those given in Eq. (2.17).
Figure 3 shows the thickness dependence of the levitation
force for a magnetic point dipole model with a fixed dis-
tance a /A, = 1 (solid line) and 100 (dashed line). It is clear
that, in the smaller a case, the thickness of the film has a
larger effect on the levitation force. The levitation force
has reached about 95% for a /A, = 1 and 99% for
a/A, =100 of its saturation value when the thickness is
equal to the penetration depth, and quickly increases
close to its saturation value when the thickness is larger
than the penetration depth. From a physical point of
view, A, indeed shows an e6'ective measure of the depth to
which the magnetic field from the magnet can penetrate.
Namely, when d (A, , the magnetic field can leak into the
superconducting thin film, which results in a significant
reduction of the levitation force. On the other hand,
when d ) A, , the thin film can e6'ectively block the
transmission of the magnetic Geld, which leads to an in-
crease in levitation force. In practice, the thickness of
the sup erconducting film is usually larger than the
penetration depth. Therefore, the thickness dependence

I I I I

0.8

0.6C)
LL

0- 0.4

0.2

0 I I I I I I I I l

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B,(r}+82(r), z &0
B(r)= B3(r)+B~(r), z &0, (3.2)

where Bi(r) and 85(r) are, respectively, the particular
solutions of Eqs. (2.1) and (3.1):

Potn 3p(z —a)
4~ ) 2+( a)2)5/2

In this section, we calculate the levitation force acting
on a magnet over a type-II superconductor in the mixed
state. Here we consider a simple case, i.e., the applied
magnetic field H is very close to the lower critical Geld

H„(H, i &H «H, 2 with H, 2 being the upper critical
field) and only one flux line exists in the superconductor
near the bottom of the tiny magnet (or the MFM tip).
Generalization to the case with more Aux lines is
straightforward. In this case, the force acting on the
magnet (or the MFM tip) includes two parts: one is due
to the shielding field caused by the magnet itself (Meiss-
ner effect), and the other is due to the presence of the flux
line. Both of them can be analyzed within the London
framework of vortex lines in type-II superconductors, as-
suming a normal core of radius roughly equal to the
coherence length g. If H, i

& H «H, 2, this model is valid
almost in entire temperature region below T, in the limit
x =A, /g » 1, or when the radius of the vortex core is very
small.

Let us consider the simplest case, i.e., a point dipole is
placed just over the Aux line. In this case, inside the su-
perconductor, the London equation (2.2) has to be re-
placed by

V B(r)— B(r)= — z5(x)5(y), z &0 . (3.1)
1 p

A, (T) A, (T)
Where $0 is the flux quantum. Above the superconduc-
tor, Maxwell's equation (2.1) is still valid. In order to
solve Eqs. (3.1) and (2.1) under the boundary condition
(2.4), it is convenient to write B in the form:

FICx. 3. Thickness dependence of the levitation force between
a magnetic dipole and a superconducting thin film for a/A, =1
(solid line) and 100 (dashed line).

2(z —a} —p
[ 2+ ( )2]5/2

(3 3)
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0
B3(r)= Eo z, (3.4)

where Iho(x) is the zeroth-order Bessel function of the
imaginary argument. The general solutions of Eqs. (2.1)
and (3.1) have the forms:

F2(T)=— f dk

(3.12)

k2 —ka

1+k I, (T)+kA(T)(/1+k A, (T)

X f dr M(r)e "'Jo

X[k+(x —xo) +(y —yo) ],
82(r)= f dk kD2(k)e "'[Ji(kp)P+ Jo(kp)z],

0

B,(r)= f dkkD, (k). "'+'"
0

X —+1+1/k A, Ji(kp)p+Jo(kp)z

From the boundary condition (2.4), we find

D~(k)=— 1 k
2~ &1+k'X'+kX

r

X e "' +k +1/A, —k
2

'
0

km&1+ k'X'

(3.&)

(3.6)

(3.7)

X —Q(x —xo) +(y —yo)

p'= 2f dtt e
Porn f
27M

X ~M re "'J0

(3.13)

X —Q(x —xo) +(y —yo)

where (xo,yo) is the location of the fiux line. Again, in
the a/A, ))1 limit, a linear-A, dependent levitation force
as given in Eq. (3.11) can be obtained, but with

Poma'= tt e
2~a

X wM re "'J0

Dq(k) =
2~ Ql+k2g2+kg (3.14)

X pomke "' +k +1/A, —k
0o

1+k A,

IV. PENETRATION DEPTH AND LEVITATION FORCE
FOR DIFFERENT PAIRING STATES

F=F +F =— [m B (O, a)],1 a
2 ga

(3.9)

where Fi is exactly the same as that given in Eq. (2.15),
caused by the magnet itself (Meissner effect), while Fi,
caused by the Aux line, is found to be

Fi(T)

Pom k2 ka

dk
1+k A, (T)+kA(T)+1+k A, (T)

(3.10)

In the limit of a/A, »1, we find

F = —a'+P', A(T)
Q

(3.11)

where a'=mgo/m, and P'=3a'. This result indicates
that, in the limit of a/A, )&1, we can still obtain a linear-
A, dependence of the levitation force as given in Eq. (2.18),
but the A,-independent coefficients a and p are modified to
a —a' and p —p'. Namely, the presence of the pinned
Aux line only decreases the strength of the levitation
force, it does not alter its linear-A, dependence.

For a magnet with an arbitrary shape, we find

(3.8)

Then the levitation force acting on the magnetic dipole is
given by

From the above calculations, we see that the tempera-
ture dependence of the levitation force originates com-
pletely from the penetration depth, which implies that
the temperature dependence of the levitation force con-
tains the same amount of information as that of the
penetration depth. It is well known that the temperature
dependence of A, ( T) is different for different pairing sym-
metries. We now present results for three particular pair-
ing states, which are currently of interest in the study of
high-T, superconductivity, i.e., (i) s wave with a constant
gap function b«, (ii) d wave with a gap function
hd(k)=Ed(k„—k~)=bdcos2$, and (iii) s+id state with
a gap function 5, +,„(k)=6, +i bd cos2$. Here, we
have chosen to work with a BCS weak-coupling super-
conductor and a cylindrical Fermi surface' for simplici-
ty.

In order to determine the penetration depth, we calcu-
late the electromagnetic response tensor E, relating the
current density j to an applied vector potential A:
j=—EC A. If the K, . is diagonal, it is simply related to
the eigenvalues of the penetration depth: (4m /c)IC;;

, where A, is the penetration depth for current flow
in the i direction. In the BCS-like model for an aniso-
tropic superconductor, the response tensor is given by

Xi= v;(h)U (k)f drutanh Re ~z ),C 0 2T (
2 g2 )3/2

(4.1)
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where ( . ) represents an angular average over the Fermi surface, and v(k) is the Fermi velocity. For a general s+id
gap function b,, +;k(k), we find

A,(0)
A, ( T)

N 2 2
S4 Qh, +62d ego/T

dco K
~+eau/T 2

00 e co/T
+ dco K

Qg2+g2 (1+e~/ ) Q 2 g2 Q 2 g2
(4.2)

where K(x) is the complete elliptic integral of the first
kind and A.(0) is the value of the penetration depth at
zero temperature. If we set Ed=0, the above equation
reduces to the conventional s-wave result'

2
A, (0) 2
X(T)

co/T
(4.3)(1+e /

)

co/T
+ dco K

( 1 +e co/T)2

(4.4)

In order to find the temperature dependence of the
penetration depth, or of the levitation force, one must
also know the temperature dependence of the gap func-
tions. In our calculation, we use the standard approxima-
tion from Ref. 1

b,,(T)=h, (0)tanh(1. 74 i/ T, /T 1), —(4.5)

which fits the numerical solution of the weak-coupling
BCS gap function very well. The temperature depen-
dence of the d-wave gap function should be determined
from the gap equation

On the other hand, Eq. (4.2) gives the pure d-wave result
if we put 5, =0:

2
A,(0)
A, ( T)

This means that, at low temperatures, A, (T) depends ex-
ponentially on T for the s wave, while it has a linear-T
dependence for the d wave.

Figures 5(a) and 5(b) show A,(T) as functions of T and
T, respectively, for the s-wave (dotted line), d-wave
(dot-dashed line), and s+id states (solid line). It is obvi-
ous from the figure that the penetration depth shows a T
dependence in a wide low-temperature range for an s+id
state with a dominant d-wave component [in this calcula-
tion, 5,(0)/b&(0)=0. 2 is used]. This result provides an
alternative explanation for the T dependence of A, , ob-
served in high-quality single crystals of Bi-Sr-Ca-Cu-0
and Y-Ba-Cu-0 thin films by Ma et a/. ' It can be under-
stood that the high-T, superconductors are in the s +id
state with a small s-wave component. At high tempera-
tures, the d-wave component dominates the thermo-
dynamic properties, while the small s-wave component
becomes important at very low temperatures (T~O).
The crossover between the d wave and s wave in a wide
low-temperature range gives a T dependence of X, in
agreement with the experimental observations. ' More re-
markably, at very low temperatures, our result shows a
deviation from T towards an exponential temperature
dependence due to the existence of a small s-wave com-
ponent. Such a fine structure at very low temperatures
was also observed experimentally. ' Ma et al. noted that

z'(//~~&& I/I

+co„+Ed / f ]

(4.6)
0.9-

0$-

with f=cos2$ and y is the dimensionless coupling con-
stant, co„ is the Matsubara frequency and the sum over
co„ is cutoff' at co„=e,. The gap equation (4.6) has been
solved recently by Won and Maki, and b.d(T)/hd(0)
(solid line) is shown in Fig. 4 as a function of T/T, to-
gether with h, (T)/b. ,(0) (dotted line) for the s-wave su-
perconductor. We see from the figure that hd(T)/b, d(0)
behaves basically similar to the s-wave one. Therefore,
we may also use the same formula (4.5) for hd( T) for sim-
plicity. When T~O, we can find analytic expressions for
pure s wave and d wave

0.7-

Q 06-
&l

0.5-

0.4-

0.1-

0% 0.4
I

0.6 0.8

—5, (0)/T1+Qmb, ,(0)/2Te ' for s wave,

g(0) 1+0.693T/b. d(0) for d wave . (4.7) FIG. 4. The superconducting gap function as a function of
temperature. Here the solid line is for d wave and the dotted
line for s wave.
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FIG. 5. Penetration depth as functions of T (a) and T (b) for d-wave (solid line), s-wave (dashed line), and for the s +id state with

4,(0)/4q(0) =0.2 (dotted line).

the temperature dependence of A,(T) is T for all samples
used in their experiment, except at lowest temperatures,
where there is a deviation towards a .Hatter temperature
dependence. Quantitative analysis shows that these devi-
ations can be viewed as a crossover to an activated
behavior with a small gap, in agreement with the s+id
state. Previously, it has been pointed out that for a d-
wave superconductor, the strong impurity scattering (un-
itarity limit) could change the linear-T dependence of A,

o T212

Now the temperature-dependent levitation force can be
calculated by substituting the expressions for A, ( T), given
in Eqs. (4.2) —(4.4}, for the s+id, s-wave, and d-wave

states, into Eq. (2.18} in the Meissner state, or into Eq.
(3.12) in the mixed state. At low temperatures, the
asymptotic behavior of the levitation force acting on a
magnet with arbitrary shape in the Meissner state for
pure s- and d-wave states can be obtained from Eqs. (2.18)
and (4.7):

—~, (0)/TB+mb, (0)/—2Te ' for s wave,
F(T)= A —0.693BT/b«(0) for d wave,

where A and 8 are temperature-independent constants:

Po f dt t3 Yl +t t 2at/k(o)— —
4m', (0) o V 1+t +t

X f deaf dr'M(r)M(r')e ' "' "'+''J +(x —x') +(y —y')
V V A, (0)

(4.9)

Po ~d t ' 1+t t —2arrx(o)—e
2~~ (0) o +1+t' (/1+t'+t

X f d~f drM(r)M(r. )e irido)(. +. )J Q(x x )2+(y+yi)2
v v A,(0)

(4.10)

These results show that, at low temperatures, the levita-
tion force depends linearly on temperature for the d
wave, while it varies exponentially with temperature for
the s wave, regardles of the shape of the magnet.

Figure 6 shows the calculated levitation force for a
point dipole model with a/A, (0)=1 (a) and 100 (b). We
see from the figure that the difference in the temperature
dependence of the levitation force between s-wave and d-
wave superconductors extends over almost the entire
temperature region below T, . In addition, we find that,

the closer the magnet is to the surface of the supercon-
ductor, the larger the difference. The levitation force
versus T is plotted in Fig. 7 for different pairing states
with a/A, (0)=1 (a) and 100 (b). A nice T dependence of
the levitation force is found for the s +id state, regardless
of the separation between the magnet and the supercon-
ductor. Thus the low-temperature behavior of the levita-
tion force is very similar to that of the London penetra-
tion depth. Therefore, one may distinguish between the
different possible symmetries of the pairing state by



432 J. H. XU, J. H. MILLER, JR., AND C. S. TING

0.1 0.096

0.09 0.094

0.08

0.07

E~ 0.06

0.05

0.09265

0.09

~ 0.088

CO

0.086
U

0.04 0.084

0.03
0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.082
0.0 I 0.02 0.03 0.04 0.05 0.06

(Tnc)

0.96 0 961 ~P%

~ 0.955
6$

0.95
CO

0.945
CD

n 0.94
0

0.935

0.93

0.1 0.2 0.3
I I

0.4 0.5
I

0.6 0.7

0.96
CV

0.959
C)

0.958C9

LL

0.957
I

0.01
I

0.02
l

0.03 0.04 0.05 0.06

FIG. 6. Levitation force versus temperature for a magnetic
dipole model with a/A, (0)=1 (a) and 100 (b). The different
curves represent the results for different pairing states. For the
s +id state, the ratio of 5,(0)/Ad(0) =0.2

FIG. 7. Levitation force versus T for a magnetic dipole
model with a/A, (0)=1 (a) and 100 (b). The different curves
represent the results for difFerent pairing states. For the s+id
state, the ratio of 6,(0)/hd(0) =0.2 is used.

directly examining the temperature dependence of the
levitation force.

V. USE OF MFM TO DETERMINE
PENETRATION DEPTH

In the previous sections, we have calculated the levita-
tion force, and have found that there exists a simple rela-
tionship between the levitation force and the penetration
depth. From such a simple relation, it is possible to
determine the penetration depth directly from the levita-
tion force measurements. Thus, the problem now be-
comes how one can accurately measure the levitation
force. As mentioned in the introduction, MFM has been
recognized as probably the only method that yields high
resolution under ambient conditions without substantial
sample preparation, which makes MFM a powerful,
universal, and practical noncontact probe technique.
Its primary advantage for the study of HTS materials
with grain boundaries is that we can still treat a single
HTS grain as perfect single crystal, since the size of the

MFM tip is small relative to the micrometer size (or @-
size) superconducting domains. In fact, the intrinsic tem-
perature depend. ence of the magnetic levitation force be-
tween the tip and the superconductor may be determined
by the following steps:

(i) scan a superconducting surface by MFM or STM
(Ref. 35) and select an appropriate p-size superconduct-
ing domain which we are going to study;

(ii) place the magnetic tip of the MFM at the center of
the domain;

(iii) measure the levitation force as a function of tem-
perature.

This procedure enables one to avoid, -the effects of grain
boundaries and related imperfections on our microscopic
measurements of the magnetic levitation force, by con-
trast to macroscopic experiments, where grain boundaries
and inhomogeneities have a strong effect on the results.
We will show in the following discussions that the intrin-
sic levitation force of a single grain can be used to deter-
mine the London penetration depth. For simplicity, we
use a magnetic point dipole model to simulate the MFM
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tip, and only present the result in the Meissner state. The
generalization to the case where the tip has arbitrary
shape and the superconductor is in the mixed state is
straightforward.

The principle of the MFM operation is that there exists
a levitation force acting on the MFM tip integrated with
a cantilever placed close to the center of the selected su-
perconducting domain. The cantilever on which the tip
is mounted will bend upwards due to such a magnetic lev-
itation force, this deflection is detected, and the levitation
force exerted on the lever can then be calculated from Eq.
(2.15) for a point dipole tip. We now estimate the range
of the levitation force from Eq. (2.15) for a conventional,
well-studied superconductor NbSe2 with a penetration
depth A, =69 nm. For simplicity, we consider a Fe tip of
a spherical shape with a radius of 200 nm, and take
a =1000 nm. The levitation force is found to be about
10 ' N. While for a typical HTS material, this force
reduces to —10 " N because this material has a larger

It is clear that the levitation force is well in the range
of the MFM sensitivity. Therfore, the MFM can be used
to accurateIy determine the temperature-dependent levi-
tation force. We have shown in Sec. II that, when the
separation between the tip and the superconductor is
comparable with the penetration depth, we can use the
approximation (2.16); while the linear-A, approximation
(2.17) is applicable for a/1, »1. As long as the levitation
force is measured by the MFM, the temperature-
dependent penetration depth at low temperatures can
readily be determined from the following relation:

1/4
F(0)

A, ( T)
A(0) 1 g

4 A(0)

a
A,(0)

a & A,(0)
A, O

a
4 F(T)

A,(0) E(0)

(5.1)

a»A, (0) .

VI. DISCUSSIQNS AND CGNCLUSIDNS

We have calculated the levitation force acting on a
magnet place above a type-II superconductor with
different pairing symmetries in both the Meissner and
mixed states. To our knowledge, this is the first attempt
to relate the magnetic levitation force to the supercon-

Finally, we should point out that the difficulty of quan-
titatively determining temperature dependence of the lev-
itation force using MFM is the measurement and stabili-
zation of the sample-tip separation. There are a number
of causes of unwanted fluctuations in the sample-tip sepa-
ration, the most significant being differential contraction
due to changes in temperature. In response to this prob-
lem, fortunately, a new technique, called optically stabi-
lized double-interferometer technique, has been
developed. This approach allows the sample-probe spac-
ing to be held constant or varied in a quantitative manner
during data acquisition. Therefore, it is possible to real-
ize our theoretical results in the laboratory using MFM
by incorporating this optical technique.

ducting pairing state. Our main results include two
parts .First, we have examined the temperature depen-
dences of both the London penetration depth and levita-
tion force for various pairing symmetries including s-
wave, d-wave, and s +id states. We have shown that the
temperature dependence of the levitation force and
penetration depth is different for different pairing states.
One may distinguish between the different possible sym-
metries of the pairing states by directly examining the
temperature-dependent levitation force. We have found
that, for the conventional s wave, both of the penetration
depth and levitation force have an exponential tempera-
ture dependence due to the presence of an energy gap.
While for the d wave, they show a linear-T dependence.
In particular, for the s +id state with a dominant d-wave
component, a T dependence in a wide low-temperature
range has been obtained. This result may provide an al-
ternative explanation for the T dependence of A, , ob-
served in high-T, superconductors, if the HTS materials
are assumed to be in the s +id state with a small s-wave
component. Of course, one cannot rule out that the T
dependence of A, may also be accounted for by a proper
anisotropic pairing state.

Secondly, we have found a simple relationship between
the levitation force and the London penetration depth.
In the limit of a/A, & 10, the levitation force varies linear-
ly with the penetration depth, regardless of the shape of
the magnet. We have also studied the thickness effect on
the levitation force between the magnet and the super-
conducting thin film, and have shown that the thickness
effect on the levitation force can be neglected if the thick-
ness of the film is larger than the penetration depth.
These results provide a method of measuring the London
penetration depth, namely, one can determine A, directly
from the levitation force measurements. In order to real-
ize our method in the laboratory, we have proposed that
the temperature-dependent levitation force can accurate-
ly be measured using MFM. The microscopic size of the
MFM tip and the noncontact feature of the MFM enable
us to obtain the intrinsic temperature-dependent levita-
tion force of a single grain, regardless of the overall quali-
ty of the superconducting sample. In the past, Abrikosov
flux lattices have been successfully observed using STM
in the conventional low-temperature superconductors,
such as NbSe2. It is well known that STM is a contact
probe, and thus requires the samples to have extremely
clean surface. For this reason, STM studies on HTS have
mostly failed due to the relatively poor surface charac-
teristics in HTS materials. Instead, the noncontact MFM
provies a unique tool for study of the HTS materials.

We have emphasized the microscopic character of
MFM that makes it possible to avoid the effects of grain
boundaries and related sample imperfections on the in-
trinsic temperature dependence of the penetration depth.
The advantage of the present method is clear in compar-
ison with the macroscopic approach, such as microwave
technique. Macroscopic methods only measure the
effective averaged penetration depth. The presence of the
grain boundaries and other imperfections in HTS materi-
als leads to difhculties in directly observing their funda-
mental physics properties by macroscopic methods.
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