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Generalized diffusion-reaction model for the low-field charge-buildup instability
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We present a unified phenomenological model of the low-field charge-buildup phenomenon at ul-

trathin Si02-Si interfaces during negative-bias stresses at elevated temperatures and compare it with ex-

periments. Based on the microscopic understanding of interfacial charges and neutral defects as
trivalent silicon and its hydrogen compounds, the dissociation chemistry of hydrogen-passivated dan-

gling silicon bonds is extensively studied by generalizing the diffusion-reaction concept to include
charged as well as neutral diffusing species. The mathematical scheme consists of a detailed-balance
equation for the first- or second-order chemical reaction and a diffusion equation for the charged or neu-

tral reaction by-product whose interfacial concentration determines the reaction rate at the interface.
This generalized diffusion-reaction concept is shown to provide a plausible explanation for the various
dependencies of the phenomenon. The general solution of these coupled equations is characterized by its
fractional-power time dependence, —t ' for example, and the corresponding exponential dependence on
the activation energy over temperature, which comes from the temperature dependence of the diffusion

coefficient. For the neutral diffusing species, this scheme provides no first-principles-based information
on the oxide field (E„)dependence. Thus the experimentally observed field dependence, such as -E,'/,
can be ascribed to the nature of the fundamental electrochemical reaction at the interface. On the other
hand, for charged diffusing species, this scheme provides E,'„t' dependence. Comparison of these
mathematical predictions with experimental data leads us to conclude that the low-field charge-buildup
instability of the ultrathin Si02-Si interface under negative-bias temperature stresses is successfully ex-

plained by our generalized diffusion-reaction model of neutral-diffusing (atomic or molecular) hydrogen
with the boundary condition of an absorbing wall at the gate-electrode interface.

I. INTRODUCTION

The degradation of the Si-Si02 interface affects the reli-
ability of metal-oxide-semiconductor (MOS) devices.
This degradation is observed mainly after carrier injec-
tion into Si02 caused by irradiation, ' Fowler-Nordheim
electron tunneling, or the hot-carrier effect in short-
channel metal-oxide-semiconductor field-effect transis-
tors ' and is marked by the appearance of positive fixed
oxide charges and interface traps at the Si-SiO2 interface.
Considerable progress has been made in understanding
the mechanism responsible for their generation with the
introduction of the concept of hot-carrier-induced degra-
dation.

This fundamental concept has prompted many experi-
mental' ' and theoretical' ' studies on electron heat-
ing in Si and subsequent electron injection into Si02 and
reheating in SiO2 from the standpoint of high-field trans-
port and related fundamental processes, such as impact
ionization in Si (Refs. 19 and 20) or Si02 (Ref. 21)
and surface-plasmon intervention electron-hole pair
creation. However, this valuable concept cannot be ap-
plied to the problem of low-field charge-buildup phenom-
ena at the Si-SiO2 interface. The distinction between
high and low fields in MOS systems is conventionally
drawn at about the oxide field of 6X 10 V/cm for SiO2. '

At fields in the range of (6—12)X10 V/cm, Fowler-

Nordheim electron tunneling through the gate oxide of
the MOS structure is observable. ' By low fields, we mean
fields whose strengths are less than 6 MV/cm where car-
rier injection is suppressed and subsequently no direct ob-
servable current Aows through the oxide.

This low-field instability is similarly characterized by
the creation of interface traps and concurrent fixed oxide
charges at the Si-Si02 interface, except their genera-
tion becomes observable only after long-term (usually a
few hours or more) stresses at elevated temperatures with
constant low negative gate voltages ' or positive
ones. Although the amount of generated interface
traps and fixed oxide charges are strongly dependent on
fabrication processes such as oxidation and/or anneal-
ing, ' this charge-buildup phenomenon is reported to
be universal, irrespective of the gate materials, such as
Al or polycrystalline silicon, for all wet,
dry, or pyrogenic oxide layers of the Si-Si02 sys-
tems. It has also been reported that the stress under neg-
ative gate fields leads to higher generation of oxide
charges and interface traps than that under positive gate
fields. In addition to this field-direction-induced
asymmetry, the instability has a fractional power-law
dependence on time. The value of the exponent is most
likely —,

' (Refs. 26 and 28) or less. Therefore, this
long-term, low-field charge-buildup instability is of seri-
ous technological concern and has been studied as the
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problem of negative-bias temperature (BT) instability of
silicon-based electron devices for a long time.

On the other hand, recent extensive studies using phys-
ical, electrical, and theoretical methods have
considerably advanced our understanding of the micro-
scopic nature of interface traps and fixed oxide charges at
the Si-Si02 interface. The generally accepted model of
the interface trap is a trivalently bonded silicon atom
with an unpaired electron. Interface traps are passivat-
ed when they react with hydrogen. This annealing is
done at the end of the device-fabrication process by heat-
ing the silicon wafers in a hydrogen ambient.

From this microscopic understanding of the interface
defects, the low-field instability is considered to be closely
related to the dissociation chemistry (the reverse of pas-
sivation ) of hydrogen from hydrogen-passivated dan-
gling Si bonds. However, the above-mentioned t ' -like
time evolution implies this chemistry is not determined
by the first- or second-order kinetics only. From this, it
can be concluded that the generation rate of these defects
is strongly related to the rate at which the released hy-
drogen is consumed through diffusion into the Si02. This
diffusion-reaction concept was originally proposed by
Jeppson and Svensson ' ' to explain the negative BT in-
stability for a simple and ideal case where the assump-
tions make the mathematics easy.

In this paper, we have generalized this concept from an
axiomatic approach to include the charged diffusing
species as well as neutral diffusing ones and have con-
structed a general mathematical scheme to understand
the low-field instability. Through an extensive
mathematical analysis of this phenomenological model,
including short-term and long-term asymptotic
behaviors, compared with the experimental results pub-
lished in the literature, we have obtained detailed infor-
mation of this instability.

Support for this phenomenological model comes also
from the fact that it provides plausible explanations of
various experimentally observed dependencies. Especial-
ly, its validity is strongly supported by the oxide thick-
ness dependence of the charge buildup observed in ul-
trathin Si02-Si interfaces during negative-bias tempera-
ture stress whose experimental details will be soon pub-
lished elsewhere.

This paper is organized as follows. In the next section,
the phenomenological modeling with related equations is
presented. These equations are solved in Secs. III and IV
for two different boundary conditions. One is suitable for
thick gate oxides, the other is for ultrathin ones. After
briefly discussing the validity of the boundary condition
at the gate-electrode-oxide interface in Sec. V, we com-
pare the derived results with experimentally obtained
empirical equations in Sec. VI. Section VII concludes
this paper.

II. A GENERALIZED DIFFUSION-REACTION MODEI,
FOR THK GENERATION QF INTERFACE TRAPS

AND FIXED OXIDE CHARGES

In this section, we mill present a comprehensive and
complete description of the equations and boundary con-

ditions used to evaluate the increase of the interface traps
and the corresponding fixed oxide charges at the Si-SiO2
interface during low-field stress at elevated temperatures.

The original diffusion-reaction model proposed by
Jeppson and Svensson ' ' is based on a detailed micro-
scopic structural model of Si-Si02 interface defects in-
cluding the trivalent silicon and its hydrogen compounds.
However, we will attack this instability problem from a
more axiomatic and abstract approach. As a result, the
general conclusion drawn from this model is not at all
dependent on the details of chemical reactions occurring
at the interface. We will concentrate only on the
mathematical scheme of the model and its deductive
resultants.

In the following, we will first review the diffusion-
reaction concept briefly, then we will generalize the con-
cept by considering two points: (l) the charging state of
diffusing species, and (2) the importance of the consum-
ing process of the diffusing species at the gate-electrode-
oxide interface, which provides the boundary condition
at the interface.

In the Svensson model, ' an interface trap is identified
as an interfacial trivalent silicon atom with an unsaturat-
ed electron (a dangling bond, represented below by a dot)
at the Si-Si02 interface. The expression Si3 ——Si denotes
an active interface trap. A positive fixed oxide charge
(Qf +

) is also created as a by-product trivalent silicon de-
fect in the oxide, i.e., 03=Si+. At the actual interface,
there exists a large number of hydrogen-terminated
trivalent Si bonds, Si3=Si—H, which are electrically
inactive in this form. However, when the terminated hy-
drogen is released from the Si3=Si—H bond by some
controversial dissociation mechanism, which is not dis-
cussed here in detail, the remaining interface trivalent sil-
icon dangling bond acts as an interface trap.

As mentioned in the preceding section, the essence of
the diffusion-reaction model is that the rate at which the
reaction causing the generation of interface traps takes
place is controlled by the diffusion of hydrogen that has
been released from hydrogen-passivated defect sites pre-
viously. As a result, we would theoretically expect the
fractional-power law of interface-trap generation as ob-
served in many experimental studies.

Although there is no doubt of the relevance of this
hydrogen-depassivation reaction, i.e., Si3 =Si—H
—+Si3——Si +H, for example, to the charge buildup,
there stiH remains some controversy and debate about the
chemical species involved in this dissociation reac-
tion. ' ' ' As possible diffusing species, intersti-
tial atomic hydrogen, ' ' molecular hydrogen,40, 41,43 —47 39,48

and the hydroxyl (OH) group ' ' including the hydroni-
um (H30+) (Refs. 30 and 53) and the hydroxide (OH )

ions have been proposed. Each of these is strongly
dependent on details of the assumed dissociation process.
For example, interstitial atomic hydrogen is proposed as
the species in accordance with the atomic hydrogen at-
tack model: Si3 —=Si—H+ H ~Si3 =Si+H2.
Furthermore, recently the involvement of ionic hydrogen
transport in the reaction has also been proposed.

Therefore, we have to generalize the original diffusion-
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reaction concept to include the charged diffusing species
as well as the neutral-diffusing ones, and have to ignore
details of the dissociation reaction. We should, however,
stress here that any of these depassivation reactions may
occur under the low-field stress (less than 6 MV/cm) be-
cause the activation energy required to break an Si—H
bond is estimated to be about 0.3 eV.

Consider a surface where x=O, as is schematically
shown in Fig. 1, at which an interface trap generating
chemical reaction takes place. Since the diffusing state of
released hydrogen, (i.e., whether it is atomic or molecu-
lar, or ionic or neutral) has not been identified yet, we
denote it by the symbol X. It is schematically expressed
as

dependent rate constants, and the exponents a and b are
related to the reaction coe%cients, which are determined
by the details of the reaction. Here, [ ] indicates the con-
centration. The first term on the right-hand side of Eq.
(l) comes from the dissociation of Si3=Si—H into

Si3=Si, and the second term comes from the competing

passivation of Si3=Si by released hydrogen-related
species, which has a suppressing effect. If this process is
difFusion-limited rather than reaction-rate limited, the in-
terface reaction will be in quasiequilibrium, i.e.,
BN;, (t ) Idt =0, giving

[N,,(t )]'~'[Cx, (t )]'~'=(G!S)ND .

and

(interface defects)~(fixed oxide charge)+

+(interface trap)

+Xinterface

+e (to the silicon),

diffusion

Xinterface Xbulk

Here XD may be considered constant if we assume that
the reaction is always far from saturation (N;, ((ND ).

Diffusion control means that the generation rate of N;t
is controlled by the diffusion of X away from the inter-
face, i.e.,

dN, ,(t } =+x(t) .
Bt

Here, %x is the Qow rate of the species at the interface
(x =0) by diffusion from the interface into the oxide, i.e. ,

When the interface defect (Si3=Si—H) is electrically ac-
tivated, the diffusing species leaves a defect site at the
Si-Si02 interface where an interface trap and a positive
fixed oxide charge are left. This model agrees with obser-
vations that equal numbers of interface traps and fixed
oxide charges are produced. Furthermore, this process is
field dependent since a transfer of charge takes place.

The rate of interface-trap generation may then be ex-
pressed by the detailed-balance equation

aN, ,(t) = G I ND —N;, (t ) }
—S[N,, (t ) ]'"[Cx,(t ) ]'~',

de(x, t )
'px(t ) =——Dx

Bx x=0

where Dx is the diffusion constant of X and BCx(x, t ) IBx
is the concentration gradient of X in the oxide at a dis-
tance x from the interface.

For neutral-difFusing species, as previously considered
by Jeppson and Svensson, the electric field has no effect
on its transport. Thus, the diffusion rate is given by the
ordinary diffusion equation

BCx(x, t) 8 Cx(x, t)

where N;, (t)=[Si3=Si ] is the concentration of the in-
terface traps, ND = [Si3——Si—H] is the initial concentra-
tion of interface defects, Cx;(t) is the concentration of
diffusing species X at the interface, G and S are field-

where C„(x,t) is the concentration of X[CX;(t)
=Cx(0, t)].

On the other hand, for charged diffusing species, the
external field strongly affects transport across the oxide
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FIG. 1. Schematic diagram showing the
geometrical configuration considering the
diffusion-reaction kinetics for (a) thick gate ox-
ides and {b) thin oxides. X may be interstitial
atomic hydrogen, molecular hydrogen, or a
hydroxyl group (OH).
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where IM is the mobility of the positively charged diffuser
in the oxide, and the + sign corresponds to the oxide-field
direction. The second term is required to provide the
above field-induced asymmetry. In this case, the diffusion
of charged species in an external uniform oxide field E,„
is described by the generalized equation

ac (x, r) a'c (x, t) ac (x, r)+ (7)

where the plus sign corresponds to drift diffusion under
positive-bias-temperature (+BT) stress, and the negative
sign to that under negative-bias-temperature ( —BT)
stress.

If the diffusion process in Eqs. (5) or (7) coupled with
the detailed-balance reaction in Eq. (1) can be ignored,
and the whole reaction occurs uniformly similar to the
way it does in the liquid phase, the problem is a trivial
one, which is discussed in textbooks on basic electro-
chemistry. However, when the reaction is in the solid-
state phase, such as in Si-Si02 systems, we can no longer
ignore the diffusion process, which makes the solution
diS.cult to derive, and we have to take into account the
importance of the geometrical boundary condition, which
makes the mathematics more complicated.

In the Jeppson and Svensson model, the oxide was as-
sumed to be infinitely thick so that the effect of gate-
electrode-oxide interface could be completely ignored.
This treatment was suitable for thick oxides at that time.
However, for the ultrathin gate oxides that will be used in
future technology, we can no longer ignore the gate-
electrode effect for the interface-trap generation at the
Si-SiOz interface, i.e., we should take into account the
effect of the finite thickness of the oxide. For the concen-
tration Cz of diffusing species X at the electrode-SiOz in-
terface, two possible boundary conditions are considered:

(i) The gate electrode acts as a perfect refiector of
species X. In this case, the flow J~ species X across the
interface is completely blocked by the gate:

ac (x, r)
J»(x, r) = —D»

' =0,
Bx

where x is at the Si02-gate-electrode interface, and D~ is
the diffusion constant of species X in the oxide. This con-
dition is generally not realistic because the diffusing
species can always escape from the oxide to the gate ma-
terial or the species may be consumed at the gate-oxide
interface, both of which give finite current flow at the in-
terface.

(ii) The second boundary condition is that the gate
electrode acts as an absorbing wall at the interface. If the
gate is a perfect absorber, the concentration of species X

so the polarity of the field can be expected to cause
asymmetrical results, as observed in the low-field instabil-
ity under negative and positive gate biases at elevated
temperatures. Therefore, we assume the charged species
diffusing through the oxide follows the drift-difFusion
current model of the form

ac (x, t)
J»(x, t ) = D» — +@E,„C»(x, t ),

III. SOLUTION FOR INFINITELY THICK OXIDES
(RKFS. 55 AND 56)

The boundary-value problem for the concentration
C»(x, t ) is as follows:

aC»(x, t) a C»(x, t) aC»(x, t)
=Dx +pE,

Bt gx' " ax

(0&x & ~),
(7a)

C»(x, O) =0 (initial condition), (7b)

and

ac (x, r)

x=0
=%»(t) (at x=O), (7c)

C»(~, t)=0 (r &0) . (7d)

The problem in the Laplace transform of C»(x, t ) is then

sC»(x, s) D»C», (x,s )—

+pE,„C» (x,s) =0 (0&x & ~ ), (10)

with C»(O, s)=C»;(s) and lim„„C»(x,s)=0, where, x
and, xx mean the first and second derivatives with
respect to x, i.e., d/dx and d /dx, respectively. The
solution of ordinary differential Eq. (10) is

C»(x, s)=exp(+Px)(C, expI —[(s+y )/D»]' x]
+C2 exp I + [(s+y )/D» ]'i x ] ),

with p=pE „/2D„, y=(D„)'~ p, and C( »t)x=0 for
t &0. Using the condition C»(~, t)=0, we obtain C2=, 0
and C&=C»(O, s)=C»;(s). Note that this assumption is
valid only if the oxide may be considered infinitely thick,
i.e., if T„/4D~t ))1 where T„ is the oxide thickness.
Thus, Eq. (11)becomes

is exactly zero at the interface;

C»(x, t)=0 (t&0),

where x is at the Si02 gate electrode interface. This con-
dition is not so unrealistic. For example, if species X is
atomic hydrogen, two diffusing interstitial hydrogen
atoms recombine with each other at the interface to form
molecular hydrogen, which is easily diffused away from
the interface into the gate material.

In the next two sections, we wiH solve the system of
Eqs. (2)—(4), and (7) for two cases. One is the same
boundary condition considered by Jepp son and
Svensson, i.e., the oxide thickness T,„ is sufficiently
larger than the characteristic diffusion length L,L, of the
species in the oxide, defined as LD—:(4D» t )', i.e.,

T,„))I.&. The other is our case where the oxide is too
thin to ignore the geometrical confinement for the
diffusing species imposed by the thin oxide and the gate
electrode, which acts as an absorbing wall.
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C»(x, s ) =C»;(s)exp(+Px )exp[ —[(s+y )/D»]'~ x ],
(12)

with the Laplace inversion in the form

For neutral species, P=y =0. Therefore, Eq. (14) gives

(s)=QD sC, (s)/v's

C»(x, t)=f, , dA, C»,. t-
x /I 2(D/t )

X exp —
A, + Px

2A,

2

(13)

Since s ' =L [(~t) '
] and sC», (s)=L [C», (t) j

+C»;(+0), assuming that C», (t) is a continuous func-
tion, then the Bromwich integral (i.e., the inverse Laplace
transform) with the aid of the convolution is easily ob-
tained as

The Laplace transform of the How of X from the inter-
face is obtained from Eqs. (4) and (12) as

q'»(s)=(D») ' C» (s)[(s+y ) +y]
Xexp(+Px )exp[ —[(s+y )/D»]'r x I,

(14)
I

%»(t ) =(D»/rr)' C»;(+0)/&t

+ f dr C»;(t r)/V—'v.
0

The Laplace transform of Eq. (3) with Eq. (12) gives

N;, (s ) =%»(s ) /s

+y&t
2+D»t

+y erfc
2+D»t

=C»;(s )L [(D»/t )' 4i( +y&t )},

=QD»C»;(s ) z»z exp(+Px )exp[ —[(s+y )/D»]' x ],»»l
[( + z)i ja-

r

1=(D»)' C»;(s)L . exp
rrt

+y&t
x=0

(15)

where

@,(x ) =— d rI erfc(rI ) = —exp( —x ) —x erfc(x ),00 — 1 —2—
x

with the definition of the complementary error function

where the negative (positive) sign corresponds to negative
(positive) low-field bias-temperature instability.

When the diffusing species are electrically neutral, the
analytical expression for N;, (t ) can be easily obtained by
noting the relation

QO

erfc(x ) = 1 —erf(x ) = — dt exp( —t ) .
V'7r x

Thus, the Laplace inversion gives the time evolution of
N;, (t) as

@i(—y r)
N;, (t)=(D»)'r'f dr C», (t r)—

0 1

lim@, (+y&r) = 1/&n .
@~0

Assuming the power law for the Aow rate of species X
at the interface, C»; (t ) = At~, the time evolution of
interface-trap density N;, (t ) is

p+1
N (t)= A~D t~+'n P+ F ( —' +—' — t)+ + t + (P+

I (p+3/2) i i 2~P 2' y —y +1 y

( y't)" —I (@+3/2)
k!(k+1/2) I (k+5/2+p)

where, F, (a,P;z ) denotes the confluent hypergeometric
function of argument z and parameters a and P, I is the
gamma function, and the plus (minus) sign correspond to
the negative (positive) bias-temperature instability.

For neutral species, it is easy to obtain a closed analyti-
cal expression for N;, (t ), since the second and third terms

in the right-hand side of Eq. (17) vanish. Therefore, we
obtain by noting that, F, ( —,',p+ —'„0)= 1,

N;i(t ) = A (D»/~)' 'B( ,',p+1)t—
where
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1B(m+ l, n+1) =—J dt t (1 t)—"
0

=1 (m }I(n )/I (m+n )

=const . (19}

For the first-order reaction kinetics with coefficients
a=b=1, the power exponent p is determined to be
p = ——'. Hence, the time dependence of N;, (t ) is

is the beta function. The quasiequilibrium condition of
Eq. (2) imposes the constraint for the power p;

(t )]1/~[C (t }]1lb t [(p +1 /2) /a +p/b!

which is nothing but the t ' dependence.
On the other hand, for the charged species, it is no

longer possible to obtain a closed analytical solution. In-
stead we have to treat the asymptotic behavior of Eq. (17)
for small and large t.

For small t, the expression in Eq. (17) can be approxi-
mated by Eq. (18), since the field-dependent (second and
third) terms are negligibly small. Therefore, the asymp-
totic behavior of Eq. (17), which satisfies the quasiequili-
brium condition of Eq. (2), for small t is the same as Eq.
(20), i.e., t'l dependence.

For large t or large y, we must examine the asymptotic
behavior of each term. Noting the functional relation

N ( )=(D )' ' N—s D r(s/4)

1/2

(20)
,F1(a,P;z) =e',F, (P a, P; ——z),

and the asymptotic representation of,F, (a,P;z )

I " ( —1)"(a)k(a—p+1)k"z-"+O(~z~-"-')
r(p — ) k!

(P—a)„(1—a)„(P}ezZ
—(p—a) y k k

Z
—k+0(

~

—n —1)r(a}' ' . , k!

where ( ~argz
~

~ 1r—5,p%0, —1, —2, . . . , ). The first term of Eq. (17) behaves as exp( y t)y '—p+"t 'l, which con-
verges to zero for sufficiently large t or y. Furthermore, the third term in Eq. (17) can also be proved to converge to
zero for large t, by noting the inequality

( —y2t)" I (k+3/2) "
( y't)"—

k!(k+1/2) I (k+5/2+ ) „k!
Therefore, for large t, N;, (t ) evolves asymptotically as

N, ,(t ) -+y A (Dx )'/2tp+ '/(p+1), (21)

where the plus (minus) sign corresponds to the negative- (positive-) bias-temperature instability. Since N;, (t) is the
amount of generated interface-trap density, the mirius evolution can be interpreted as no generation. Thus, this model
naturally provides asymmetrical behavior under positive- and negative-BT stress aging.

With the same argument leading to Eq. (20), the quasiequilibrium condition of Eq. (2) imposes a constraint on the
power as p = —

—,'. In the case of charged-diffusing species, the time dependence of N;, (t ) is

1/2

1/4t 1/2 G
N

r(3/4}
s r(5/4)

0 for +BT aging,

for —BT aging
(22)

which predicts the E,'„t' dependence of N;, generation under negative low fields at elevated temperatures when the
diffusing species are positively charged.

IV. SOLUTION FOR FINITE OXIDE THICKNESS: T„(00 (REFS. 56 AND 57)

If the oxide thickness T,„ is not thick enough to ignore the gate-electrode effect where species X is absorbed, we can
no longer impose the infinite thickness boundary condition of Eq. (7d). In this case, the boundary value problem in
Cx(x, t ) is almost the same as that expressed in Eqs. (7a)—(7c), except for Eq. (7d). Instead, we impose the boundary
condition

Cx(T,„,t)=0 (t &0) .

The solution of the ordinary differential equation, i.e., Eq. (7), that satisfies the conditions (7b) and (7e) is

sinh [(T,„—x )[(s+y )/Dx ]'
Cx(x, s ) =Cx;(s )exp(+Px )

sinh[T, „[(s+y )/Dx]'/2]

(7e)

(23)
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Hence, from Eq. (3), the Laplace transform of N;, (t ) becomes

cosh I ( T,„—x )[(s+y ) /Dx ]'

(s+y )'~ sinht T,„[(s+y )/Dx]'~ j

sinh[( T,„—x )[(s+y )/Dx ]'~ } .exp(+Px )
sinh I T,„[(s+y ) /Dx ]

'~
}

2

N;, (s ) =Cx, (s )(Dx )'~ ~ 1+

Correspondingly, the Laplace transform of the liow rate %x(t ) is

cosh I ( T,„—x )[(s+y ) /Dx ]'i j
'I'x(s)=Cx;(s)(Dx)' ~ (s+y )'

sinh I T,„[(s+y ) /Dx ]
' ~

}

sinh[(T, „—x)[(s+y )/Dx]'~ }+y, -exp(+Px )
sinh I T,„[(s+y ) /Dx ]

' ~
}

(24)

(25)

Using the Bromwich contour integral method ' and noting an infinite number of simple poles at s = —n ~ and s =0,
the inverse Laplace transforms of the convolution kernels in Eq. (25) are

sinh t ( T,„—x )[(s+y ) /Dx]' j

s sinh I T,„[(s+y ) /Dx ]'~ j

T,„—x 2 "
( 1)~ n~(T,„—x)

+—g sin T-
2 2 2 2
OX V n mD~ 2 2 2 2+ exp( —y t nm—. Dxt/T, „)

T y2+n ~ D/ T y

(26)

&Dx 1+2 g ( —1)"cos
OX n=1

c soht( T,„—x)[(s+y )/Dx]' j1+
(s+y )'~ sinhI T,„[(s+y )/Dx]' }

nm(T, „—x ) T,„y
T2 y2+ n 2~2D

2 2n m. D~ 2 2 2 2+ exp( —y t n~ Dxt/—T,„)T2 y +n 77DX

(27)

Therefore, N;, (t ) is expressed as

oxy + oxy +2 g xT T n ~D
QDx QDx „=& T,„y +n m Dx

Dx
N;, (t)= f dr Cx, (r r) . —

,t T xi
Dx

exp( yr n~ Dx—r/T—,„) . ,

(28)

where the plus (minus) sign corresponds to the negative- (positive-) bias-temperature instability.
For neutral species, with vanishing field-dependent terms including y, and noting the relation

lim z cothz =1,
z —+0

Eq. (28) can be reduced to

N;, (t)= f dr Cx;(t —r) 1+2 g exp( —n ~ Dxr/T, „)
Tox n=1

(29)

Note both Eqs. (28) and (29), except for the second term in Eq. (28), explicitly include the geometrical scaling factor
T,„. Hence, we conclude that the absorbing wall at the Si02-gate electrode leads to the inverse proportional law of the
oxide thickness for X;t generation.

The series expansion in the above expressions is rapidly convergent if vr(Dxr)' /T, „ is moderate; if it is 1, the
second exponential in the sum is e =0.018, and the next e =0.0001. If n.(Dxr)' /T, „ is small, the convergence is
slow. In this case, we can use the relation

1+2 g exp( nor Dxt/T, „)—cos = exp[ —x /(4Dxt)} 1+2 g exp( —T,„m /Dxt) cosh
D~T

(30)
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[This relation is easily proven by noting the transformation property of Jacobi's elliptic theta function

83(z:o.) = 1+ g exp( —mo n ) cos(2nz )
n=1

=o '/ exp( z—Intro )83(iz/cr:1/o ),

n TOX

2D~t
—p /2 —1/4, 1/4

and putting 2z =irx/T „, o =vrDxt/T „.] Thus, for small m(D+r) /T, „, the series expansion in Eq. (29) can be ap-
proximated by the first term in Eq. (30).

Assuming the power law for the flow rate at the interface, i.e., C~;(t ) = At~, and using Eq. (30) as an asymptotic ap-
proximation of Eq. (29) for small t, the time evolution of Eq. (29) can be expressed as

(D )
1/4 n T,„

N;, (t)= A(Dx/n)'/ B( ,',p+—1)t~+' +21 (p+1)t~+ g exp
QT, „,&n

where W„(z ) is the Whittaker confluent hypergeometric function of argument z and parameters p, and
first term is the same as Eq. (18). Therefore, the time evolution of N;, (t ) follows the t '/ law, as previously

For charged species with CX;(t ) = At~, Eq. (28) becomes

v. Here, the
shown.

X 1F1 1,P+2; —y t—n 2~2DX
2
OX

(31)

Thus, in this case, for large t or y, the second term in
Eq. (31) becomes the leading term, which gives the same
field and time dependence as in Eqs. (21) and (22), i.e.,
E,'„t', without the explicit T,„' dependence.

V. THE VALIDITY OF THE ABSORBING
BOUNDARY CONDITION

In this section, we discuss the validity of the absorbing
boundary condition at the gate-electrode-SiOz interface.

In the preceding two sections, for the sake of
mathematical simplicity we assumed the concentration of
diffusing species at the gate-SiOz interface is zero. In
general, if the diffusion constants of species X are D, and
D2 in the oxide and the gate material, respectively, the
boundary condition for the concentration of X diffusing
in the two-phase region without any loss due to annihila-
tion of species at the interface is given by

C, =kCz, and D, BCi/Bx ~;„„,t„,
=D aC, /ax (,„„„.„, (32)

where C, and C2 are the concentrations of species X in
the oxide and the gate, respectively. This condition
makes the mathematics for analytical solutions very corn-
plicated. The problem is to determine what condition
makes it possible to simplify Eq. (32) to C;„„,t„,=0.
Here, factor k is the ratio of equilibrium concentrations
C1 and C2, which is related to the square root of the ratio
of D1 to D2. Thus, if k is sufficiently large, Cz can be
considered to be negligibly small.

With this in mind, let us consider the diffusion
coe%cients in the oxide and several electrode materials.
In general, the diffusion coefficient Dx for chemically
stable species X in the oxide is accurately given by

D =Do exp( E„/k~ T—), (33)

where Ez is the activation energy. By consulting data in
the literature, ' the diffusivity of hydrogen mole-
cules, for example, is expressed by Eq. (33) with
DO=5. 64X10 [cm /s] and E„=0.45 eV in the ox-
ide, and with Do=9.4X10 [cm /s] and Ez =0.48 eV
in the crystalline silicon. ' In the range from 150 to
290 C, the diffusivity of Hz in Si is about ten times
greater than that in Si02. Thus, k is about 3.2, which im-

plies the solid solubility of Hz into crystalline silicon is
negligible. ' ' Thus, the condition C+=0 inside poly-
crystalline silicon is valid at least for molecular hydrogen
as species X. The same argument is applicable to the
aluminum gate, because H2 diffusivity, expressed by Eq.
(33) with DO=0. 2 —2X10 [cm /s] and E„=0.42 —0.52
eV, is also much greater than that in Si02.

VI. DISCUSSION

A. Comparison with experimental results

N;, (t)= AE,„t"exp( E„/ksT), — (34)

where m is the exponent to specify the power-law field
dependence, n is the exponent for the time dependence,
and A is a constant independent of the field E,„and time
t. The value of m is reported most likely to be —,', ' and

In this section, we will determine the possible mecha-
nism of the low-field charge-building instability by com-
paring the above results with the experimental data on
thick oxides in the literature and our experimental
results on ultrathin oxides.

For sufficiently thick gate-oxide MOS samples (in the
range of 40—110 nm), the Ni, generation is empirically
expressed as 5
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the exponent n has been observed to be —',
or less. The value of the activation energy E„ is report-

P 18 P 2P29, 42 P326, 27 028 04528 d 064
V 25

As shown in Sec. III, for the process controlled by the
rate at which neutral species X diffuses away from the in-
terface into the infinitely thick oxide, the interface-trap
density N t(t ) is proven to increase [see Eq. (20)] as

Here, t is the stress-aging time and R is the field-
dependent rate constant of N;, generation reaction. Com-
bining the diffusion coefficient D~ expressed in Eq. (33),
Eq. (35) yields

N;, (t)=R(E,„)(DO)' t' exp( E~/4—k~T) . (35a)

This equation formally reproduces empirical Eq. (34) ex-
cept for the oxide-field E,„dependence, denoted by
R (E,„).

In this scheme with neutral species, there is no first-
principle-based explanation of the field-induced asym-
metry between the effects under negative- and positive-
bias stresses at elevated temperatures because, for
neutral-diffusing species, the external field has no effect
on their transport. Thus, we cannot deductively derive
the functional dependence of N;, (or the coefficient R ) on
the field E„. We can only infer from the experimental
observation that R(E,„) varies with the oxide field as
R =CE,„,where C is a field-independent constant. This
field dependence can be ascribed to the nature of the elec-
trochemical reaction at the Si02-Si interface.

On the other hand, our experiments for ultrathin oxide
samples have provided the following simple empirical
expression for various dependencies of the N;, generation:

N;, ( t ) =BE,P t '~ exp( Ez Ikz T ) /T—,„, (36)

where B is a field (E,„), oxide-thickness (T,„) indepen-
dent constant.

Figure 6 of Ref. 42 shows the fractional-power time
dependence of integrated interface-trap densities 1V;, ob-
served for 6.2-nm-thick oxide MOS capacitors under
various stress conditions. t ' dependence of X;, genera-
tion is derived independent of the applied oxide fields
ranging from —3 to —5 MV/cm. This t' relationship
is also observed at 150 and 250'C.

In Eq. (36), the N;, generation for ultrathin oxides has
an inversely proportional dependence on the oxide thick-
ness (T,„). This T,„' dependence can be easily seen in
Fig. 9 of Ref. 42, which depicts the (1/T,„)dependence
of the constant A in Eq. (34) applied for ultrathin oxides
with the model fitting curve. The constant A is obtained
by normalizing the observed integrated interface-trap
density (N~, ) by the empirical equation E,P
t '~ exp( Ez Ik~ T), i.e—., Eq. (34). The experimental de-
tails on Eq. (36) and these figures will soon be published
elsewhere.

As discussed in Sec. IV, two simultaneous conditions
on the neutral diffusing species in the oxide give formally
the same dependence as in Eq. (36). The reason is two-

fold. First, the diffusion-limiting reaction leads to the
t' law of the time evolution of N;, . Second, the geome-
trical boundary condition of an absorbing wall at the
gate-oxide interface expressed in Eq. (7e) leads to the in-
versely proportional law of N;, to T,„, as in Eq. (29).
Thus, for the finite T,„, the diffusion-limited N;, genera-
tion is expressed [see Eqs. (20) and (29)] as

N;, (t)=(DX)' R't' /T, „, (37)

where Dx is the diffusion coeKcient of species X in the
oxide, and R is an appropriate constant that is indepen-
dent of D~ and the time t but dependent on the ratio of
the generation rate (G) to the suppression rate (S) of re-
action. [See Eqs. (1) or (39) for further details. ] Similar
arguments as that for the thick oxide case provides the
relation

N;, (t)=(Do)'~ R't'~ exp( Ez/4—k~T)/T, „, (37a)

by combining Eq. (33} with Eq. (37}. This equation also
formally reproduces empirical Eq. (36) except for the
oxide-field E,„dependence. This field dependence can
also be ascribed to the nature of the electrochemical reac-
tion.

B. The nature of the neutral-di8'using species

The above time and oxide-thickness dependencies of
the X;, generation model including neutral diffusing
species with an absorbing wall at the gate-electrode-oxide
interface thus explain the experimental data in the litera-
ture and our observations very well. However, in
this phenomenological scheme the actual species have not
yet been identified.

From Eqs. (35a) and (37a), it turns out that the experi-
mentally observed activation energy is one-fourth of the
real activation energy, i.e., E'„'"=4E&"~. From experi-
mentally observed values [for example, 0.20 eV (Ref.
42)], the real activation energy Ez is expected to be 0.80
eV, which is almost the same value as the 0.75 eV (Ref.
40) of hydrogen atoms in the oxide. (This value is about
two times larger than that of molecular hydrogen, i.e.,
0.415—0.45 eV. ) This coincidence appears to support
the atomic hydrogen transport model ' ' '" of N;, gen-
eration.

Unfortunately, from this kind of argument, we cannot
say anything conclusive about species X. This is because
the observed activation energy involves all fundamental
processes related to X;, formation, including the diffusion
of species X and the electrochemical reaction at the inter-
face. The above argument provides a correct conclusion
on species X if and only if the transport process of species
X is dominant compared to other fundamental processes.
However, this is not the case. Furthermore, the diffusion
coe%cient of atomic hydrogen in Si02 was estimated to
have an activation energy of 0.18 eV, much lower than
our 0.80 eV, but certainly within the range of 0.18 (Ref.
48) —0.92 (Ref. 49) found in the literature. ' ' The
0.18-eV energy is also known to be the value seen in high-
ly damaged oxides. "

In order to obtain more information on the N;, forma-
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G,
Si3=Si—H=Si3=Si +H, ,

SI

G2

Si3——Si—H+H; —Si3—=Si +Hz,
S2

k

H, +H; ~H2,

(38a)

(38b)

where —means a reversible process, 6 is the generation
rate, and S is the suppression rate. Reaction (38c) de-
scribes dimerization of interstitial atomic hydrogen (H; )

into H2 with the rate constant k. Note that two species
of hydrogen are involved in this model, i.e., molecular
and atomic. Thus, the problem is which is the rate-
limiting process characterized by ~: an atomic or a
molecular hydrogen involved process.

Atomic hydrogen is highly reactive and considered to
be a fast diffuser in the oxide. It is possible atomic hy-
drogen acts as the promoter of N;, formation, as in Eq.
(38a) (from left to right), as well as the suppressor of N;,
formation, as in Eq. (38a) (reverse direction). The
released atomic hydrogen will directly attack other inter-
facial defect sites, as in Eq. (38b), or it will immediately

tion reaction at the Si-SiOz interface, in addition to its
E„dependence, ' let us consider the physical rnean-
ing of the observed T,„' dependence. The dependence
implies the existence of the characteristic time ~, which is
defined as r =LD I(4DX ) where LD is the characteristic
diffusion length of the diffusing species in the oxide. The
relative value of this diffusion length LD to the oxide
thickness T,„determines the boundary condition at the
gate-oxide interface, i.e., for T,„)&La, the infinitely
thick oxide boundary condition is employed whereas the
finite oxide boundary condition is applied for T,„-LD. z
is the time after which the boundary condition of the ab-
sorbing wall at the gate-oxide interface starts affecting
the interfacial concentration of diffusing species at the
Si-Si02 interface.

In the diffusion-controlled reaction, this time ~ also has
the following physical meaning: It is the time during
which the N;, formation reaction is reversible, and corre-
spondingly the formed N;, is unstable. In other words, if
the released species from the interfacial defects are
sufficiently consumed by diffusion during time ~, the
detailed-balance reaction moves to form more N;, at the
interface. On the other hand, if the species is not
sufficiently consumed during ~, the reverse reaction
suppresses the formation of N;, .

To make a rough estimate of ~, we assumed a charac-
teristic diffusion length of about 7 nm by considering the
T,„dependence shown in Fig. 9 of Ref. 42. With the
values of Dz in the literature, ' ' ' the value of ~ at
room temperature is estimated to be about 1.3X10 s
for atomic hydrogen and 7.9X10 s for molecular hy-
drogen. (See also Table 1 of Ref. 48.)

On the basis of the above findings, let us consider criti-
cally the traditional microscopic model ' ' of N;, gen-
eration. This is a two-reaction model involving the atom-
ic hydrogen dimerization and hydrogen-interface reac-
tions

form molecular hydrogen with other freed atomic hydro-
gen, as in Eq. (38c). On the whole, an excess of atomic
hydrogen moves the detailed-balance equation, i.e., Eq.
(1), to increase N;, generation. Thus, the estimated time

is too long to characterize such a rapid atomic-
hydrogen-involved reaction. Therefore, it is natural to
relate ~ to any one of the fundamental processes involv-
ing molecular hydrogen.

Molecular hydrogen acts as the suppressor for the N;,
formation process because of the existence of the reverse
reaction of Eq. (38c) (from right to left). In the reaction
scheme expressed in Eqs. (38a)—(38c), interface traps may
be created when there is an excess of atomic hydrogen
(H; ) and annihilated when there is an excess of molecular
hydrogen (H2). Thus, the consumption of excess molecu-
lar hydrogen by diffusion determines the formation rate
of N;, . Consequently, the characteristic time ~ is natural-
ly considered to be the time constant of the suppressing

reaction Si3 —=Si +H2~Si3 =Si—H+ H, , i.e., it re-
quires a time ~ on the order of 10 s to suppress the for-
mation of N;, by capping interface traps with H2.

Actually, Brower observed that molecular hydrogen
(rather than interstitial atomic hydrogen) attacks dan-
gling Si bonds to anneal them out. This means
the suppressing term in the rate equation, i.e., Eq.
(1), is approximated as —S[Si3——Si ][Hz]; where [];
indicates the interfacial concentration. Putting ND
= [Si3=Si—H], N;, = [Si3——Si ], the rate equation for
this model is

a
at N;, (t ) = G {ND N;, (t ) I

—SN;, (t )[—H2];, (39)

which is the same form considered in Eq. (1). Therefore,
we are naturally led to conclude the neutral-diffusing
species is molecular hydrogen.

However, recently, Cartier, Stathis, and Buchanan
directly observed that atomic hydrogen can simultane-
ously passivate and depassivate silicon dangling bonds at
the interface via the passivation reaction expressed in Eq.
(38a) (from right to left) and the depassivation, as in Eq.
(38b) (from left to right). According to Brower and
Myers, both reactions are exothermic with at most a
very small energy barrier. If this is the case, the corre-
sponding detailed-balance equation becomes a pair of
coupled first-order nonlinear differential equations,

at N;, (t)= {G,+G~[H;];] {ND N;,(t)I—

and

—{5,[H; ];+$2[H2];]N;, (t ) (40a)

[H2]bulk ~ [ i ]bulk ~at

with the corresponding diffusion equations for the con-
centration of interstitial atomic and molecular hydro-
gens, i.e., [H, ] and [Hz], respectively. Here, the suffixed
square bracket [];means the interfacial concentration.

For this system of equations, three cases are considered
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in accordance with the relative contribution of the hydro-
gen dimerization process in Eq. (40b).

First, if the recombination in the bulk [Eq. (38c)] is
negligibly small, the most dominant diffusion is that of
the atomic hydrogen because it is a fast diffuser. There-
fore, we can omit the final term in Eq. (40a), i e.,—Sz[H2];N;, (t). In this case, the quasiequilibrium con-
dition becomes (for N;, (ND ),

(3) The balance of these competing processes deter-
mines the net generation of Si-Si02 interface traps by de-
creasing the concentration of molecular [or (3') atomic]
hydrogen by diffusing it away to the gate electrode.

In conclusion, the experimental data support a general-
ized diffusion-reaction mechanism of N;, formation in-
volving neutral-diffusing species with an absorbing wall
at the gate-oxide interface.

( G, +G2 CX, ( t ) ]ND =S,CX, ( t )N;, ( t ), (41) C. The possibility of ionic hydrogen transport

with Cx;(t ) = [H;];(t ).
With this condition, the integration kernels in Eqs. (16)

and (29) would provide the very complicated dependen-
cies on time and oxide thickness of N;, formation, which
are inconsistent with the experimental data found by us
and in the literature.

However, if atomic hydrogen preferentially passivates
dangling bonds, as in Eq. (38a) (from right to left), rath-
er than hydrogen-induced depassivation in Eq. (38b) (left
to right), we can set the coefficient G2 equal to zero, re-
sulting in the same quasiequilibrium condition as Eq. (2).
In this case, we find a complete parallelism between
atomic and molecular hydrogen diffusion models. Both
models provide phenomenologically the same dependen-
cies on time and thickness of N;, formation.

Next, let us consider the other extreme case where hy-
drogen surface recombination [Eq. (38c)] is dominant be-
cause of their relative high concentration at the interface,
thereby most of the diffusing species may be molecular
hydrogen. In this case, the atomic hydrogen concentra-
tion becomes negligible, then the terms including [H; ]; in
Eq. (40a) can be omitted, resulting in the same equation
as Eq. (39).

The case where recombination in the bulk is dominant
is unrealistic in the case of negative-bias-temperature in-
stability experiments, since such recombination is possi-
ble if and only if there is a large amount of atomic hydro-
gen in the bulk, as in the atomic-hydrogen-exposure ex-
periment ' where a lot of atomic hydrogen was con-
stantly supplied from a remote microwave-excited hydro-
gen plasma. On the other hand, negative-bias-
temperature instability is caused by releasing hydrogen
from hydrogen-terminated interfacial dangling bonds
whose number is estimated to be at most 3 X 10' cm

On the basis of these findings, we can construct a mod-
el for low-field charge-building instability under
negative-bias stresses at elevated temperatures that has
three sequential phases.

(1) The applied negative field dissociates interfacial
Si3 ——Si—H bonds into interstitial hydrogen (H;) atoms
and electrically active dangling Si3=Si bonds left at the
Si-Si02 interface.

(2) Two diffusing hydrogen atoms recombine rapidly
with each other to form molecular hydrogen, which then
attacks the interfacial dangling Si bonds at the Si-Si02 in-
terface to recover the interfacial Si3=Si—H bonds
within the time period of r, or, (2') released hydrogen
atoms attack the interfacial dangling Si bonds at the Si-
SiO2 interface to recover the interfacial Si3——Si—H
bonds.

Up until now, we have discussed the case of the
neutral-diffusing species. However, there is a possibility
of the transport of hydrogen ions released from the
interfacial Si-H bonds through the oxide during
negative-bias stresses at elevated temperatures. The
possible origin of the ionic hydrogen is consi-
dered to be dissociation that involves holes

(Si3——Si—H+h+~Si3 ——Si +H+). This possibility is
based on the observation that the released hydrogen
transports in the oxide as a proton. ' ' Protons are stable
diffusing species as is neutral molecular hydrogen. The
identification of the ion as H+ is based on a large amount
of circumstantial data in the literature suggesting a link
between hydrogen ions and X;, formation.

In Secs. III and IV, we solved the system of equations
consisting of a detailed-balance kinetic equation, i.e., Eq.
(1); fiow-rate equations, i.e., Eqs. (3) and (4); and a
diffusion equation for charged species with the infinitely
thick oxide boundary condition (Sec. III) and the finite
oxide boundary condition (Sec. IV). The asymptotic
behaviors of the analytical results for large t are

N;, ~ (Dx ) Eo„t ' for —BT aging,

-0 for +BT aging,

(42a)

(42b)

irrespective of the boundary conditions of the infinite or
finite oxide thickness. The numerical results are shown
in Fig. 2. These results provide qualitatively the required
asymmetrical behavior of the generation of N;, under
positive- and negative-bias stresses at elevated tempera-
tures.

However, Eq. (42a) does not quantitatively reproduce
the functional dependence of N;, ( t ) on the oxide field

E,„,aging time t, and the oxide thickness T,„ofempiri-
cal Eqs. (34) and (36). The derived t' dependence can
be ascribed to the assumed constantness of the drift mo-
bility of the charged species under the field, since this as-
sumption inevitably leads to the ballistic transport of
the species in the oxide.

The actual transport of hydrogen ions in the oxide un-
der the external fields was observed to be highly disper-
sive. ' This property of hydrogen transport in the ox-
ide is completely ignored in our calculation. In the
analysis, for the sake of mathematical simplicity, we as-
sumed unrealistically that the drift mobility of hydrogen
ions across the oxide under the external electric field was
constant. Furthermore, we have analyzed asymptotically
the time dependence of X;, generation for large t on the
basis of the quasiequilibrium condition in Eq. (2), which
holds only for a sufficiently small degree of generation,
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i.e., X;, &&XD. Ho~ever, this condition does not hold for
large t. Instead, for large t, we have to solve the non-
linear integrodifferential equation for CX;(t ), i.e., Eq. (1).
This is because III;,(t ) solved for oxides of infinite or finite
thickness, i.e., Eq. (16) or Eq. (28), respectively, contains
the concentration CX, ( t ) as a convolution integrand, if
the species is assumed to be charged.

Therefore, the disagreement with the empirical expres-
sions does not directly imply a failure of the hydrogen ion
transport model, rather it can be ascribed to the inade-
quacy of our mathematical treatment. Showing quantita-
tive agreement with experiments will require more ela-
boration.

VII. CONCLUSIONS

In order to explain the various dependencies of the
negative-bias-temperature instability at the ultrathin
Si02-Si interface, we have generalized the diffusion-
reaction concept to take into account the charged species
as well as neutral diffusing species. The mathematical
scheme consists of a detailed-balance equation for the
first- or second. -order chemical reaction and a diffusion
equation for the reaction by-product whose interfacial
concentration determines the reaction rate at the inter-
face. The general solution of these coupled equations is
characterized by its fractional-power time dependence
and the corresponding exponential dependence on the ac-
tivation energy over temperature, which comes from the

N. ,
- t;+ BT Aging

0.10 =

O S ~ I I I III ~ I I I I ~ I Ill ~ I II ~ III I I ~ ~ I III

0.01 0.10 1.00 10.00 100.00
Aging Time (Arb. Unit)

FIG. 2. Numerically calculated values of integrated
interface-trap generation N;, for positive- and negative-bias-
ternperature stresses for the positive ion transport model and
neutral species model. The calculation is based on the
diffusion-limited N;, formation model for charged and neutral
species discussed in detail in Secs. III and IV. Oscillations at
the initial stage of generation are due to the numerical noise of
the finite difference scheme used for numerical integration.

temperature dependence of the diffusion coef5cient. For
the neutral-diffusing species, this scheme provides no in-
formation on the electric-field dependence. Thus, the ex-
perimentally observed field dependence can be ascribed to
the nature of the fundamental electrochemical reaction.
On the other hand, for charged-diffusing species, this
scheme provides E,'„t ' dependence.

Comparison of these mathematical predictions with ex-
perimental data leads us to conclude that the low-field
charge-buildup instability of ultrathin SiOz-Si interfaces
under negative-bias temperature stresses can be success-
fully explained by our generalized diffusion-reaction mod-
el of diffusing molecular or atomic hydrogen with the
boundary condition of an absorbing wall at the gate-
electrode-oxide interface.

At this point, we would like to stress the generality of
this scheme, i.e., the fact that its application is not re-
stricted to the problem of negative-bias-temperature in-
stability, which is of concern to the silicon-based
electron-device community only. The diffusion-reaction
concept can be applied to a wider range of physical phe-
nomena, such as plasma etching and electrochemical re-
action in the solid-state phase.

The physicoelectrochemistry in nanometer-range
confined systems has been given less attention in spite of
the recent great interest in the physics of nanometer-
range electronic devices. The latter is widely studied be-
cause of characteristic "mesoscopic" phenomena, such as
quantum interference and conductance fluctuation.
However, the former has a close relationship to the long-
term degradation of device characteristics, which conse-
quently determines device reliability. Therefore, this
problem is considered to have its own importance.

From this point of view, the investigation of the low-
field instability at ultrathin SiO2-Si interfaces has twofold
significance: (1) The Si-Si02 interface is the most suitable
system for investigating interface instability because of its
reproducibility and controllability, and (2) silicon is suit-
able for fabricating nanometer or smaller features.
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