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Semiclassical density-of-states and optical-absorption analysis of amorphous semiconductors

Stephen K. O' Leary* and Stefan Zukotynski
Department ofElectrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 1A4

John M. Perz
Department ofPhysics and Scarborough College, University of Toronto, Toronto, Ontario, Canada M5S 1A7

(Received 9 March 1994; revised manuscript received 14 September 1994)

A semiclassical analysis of amorphous semiconductors is presented. This analysis, cast within an
effective-mass setting, provides for the overall density-of-states by averaging a local density-of-states over
a distribution of potential fluctuations. Our density-of-states results span the transition from the tail
states to the band states, and both analytical and numerical results are obtained. We then determine the
functional form of the optical-absorption coefficient, and show that both subgap and Tauc absorption
edges are captured within this analytical framework. Finally, we apply this formalism to the case of hy-
drogenated amorphous silicon, and find that our results are consistent with those of experiment.

I. INTRODUCTION

In recent years, the fundamental properties of amor-
phous semiconductors have been the focus of consider-
able study. While much has been done, there are still
many aspects of these semiconductors which are not fully
understood. In particular, there are questions regarding
how the disorder inAuences the electronic structure, ' and
there is the issue of what impact impurities, such as hy-
drogen in amorphous silicon, have upon the electronic
and structural properties of these materials. In order to
resolve these issues, it is helpful to model these semicon-
ductors.

From a theoretical perspective, the distribution of elec-
tronic states is one of the properties of fundamental in-
terest in the study of amorphous semiconductors. While
the distribution of states in a defect-free crystalline semi-
conductor ends abruptly at the band edge, in an amor-
phous semiconductor a tail of states encroaches upon the
energy gap. ' Analysis shows that many of the tail states
are localized by the site disorder, and that there exists a
critical energy, termed the mobility edge, which separates
the localized states from their extended counterparts. '

The localized states are responsible for many of the
unique properties exhibited by amorphous semiconduc-
tors.

In order to study the general properties of amorphous
semiconductors, it is convenient to adopt a continuum
representation, in which the details of the local atomicity
are ignored. For the case of amorphous semiconductors,
for states in the vicinity of the mobility edge, the
effective-mass approximation provides a convenient basis
for analysis; see Grein and John. In this approximation,
the electronic structure is characterized by a pair of mac-
roscopic one-electron potential profiles V, (R) and V, (R)
corresponding to the behavior of charge carriers in the
conduction and valence bands, respectively. Spatial varia-
tions in these potential profiles are to be expected, these
variations rejecting the underlying structural disorder.
By solving the wave equation for the spectrum of allowed

one-electron states, the distribution of states may be
determined.

Most effective-mass analyses of the distribution of lo-
calized tail states treat the bands as being comprised of
an ensemble of randomly distributed independent poten-
tial wells, e.g. , John et al. , Chan, Louie, and Phillips
and Bacalis, Economou, and Cohen. By determining the
binding energy corresponding to each potential well, and
averaging over the distribution of such wells, the corre-
sponding distribution of tail states may be determined.
Within this context, the distribution of states is dictated
by two factors: (l) the distribution of potential wells, and
(2) the relationship between the binding energy of these
wells and the well dimensions.

While potential-well models adequately characterize
the distribution of localized tail states, they do not per-
mit the evaluation of the distribution of states beyond
the mobility edge. This is unfortunate, as many physical
properties are influenced by states beyond this edge. In a
recent review article, Cody noted that there is currently
no first-principles model which is able to account for both
the distribution of tail states trapped in the site disorder,
and the distribution of band states. However, we note
that the semiclassical effective-mass approach of Kane, '

originally developed to treat heavily doped crystalline
semiconductors, captures both a distribution of tail states
and a distribution of band states.

In this paper, we examine the electronic properties of
amorphous semiconductors following the semi-classical
approach of Kane. ' In Sec. II we lay down the basic
framework in which our analysis will proceed, focusing
on the determination of the one-electron density-of-states
(DOS) function N(E), N(E)b, E representing the number
of one-electron states, per unit volume, between energies
[E,E+b,E]. Then, in Sec. III, we use these DOS results
to determine the functional properties of the optical-
absorption coefficient a(%co), these being of considerable
theoretical and experimental interest. "This formalism is
applied to the case of hydrogenated amorphous silicon
(a-Si:H) in Sec. IV. Finally, conclusions are presented in
Sec. V.
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II. ANALYTICAL FRAMEWORK

N, (E)= .

e 3/2

QE —V, (R), E~ V, (R)
rr'fi' ' ' '

(1)

0, E&V(R),

where m,* represents the effective mass of electrons in the
conduction band, this being the standard DOS result for
a three-dimensional continuum of states. To simplify our
analysis, we treat V, (R) as a homogeneous, static, ran-
dom field. To determine the overall DOS, we assert the
ergodic hypothesis, and statistically average this local
DOS over the distribution of conduction-band potential
Auctuations, i.e.,

The band tailing which occurs in amorphous semicon-
ductors is fundamentally related to the disorder which
characterizes these materials. There are many sources of
disorder within an amorphous semiconductor, e.g. , lattice
vibrations, impurities, dangling bonds, weakened bonds,
vacancies, and others. ' Within the framework of the
effective-mass approach, this disorder leads to Auctua-
tions in the potential profiles V, (R) and V, (R). The
dominant potential fluctuations are usually on the scale
of a few lattice constants in range.

Focusing on the conduction band, Ziman' shows that
if the kinetic energy of localization associated with the
site disorder is small with respect to the magnitude of the
conduction band potential Auctuations, then the semi-
classical approach of Kane' is valid, i.e., the
conduction-band DOS function N, (E) in a local region
about R may be approximated as

z X:-(z)—: &z —x exp — dx .
&2m. 2

This result suggests that while g, determines the posi-
tioning of this DOS function, 0., dictates the spread.

The dimensionless DOS function =(z) is displayed in
Figs. 1(a) and 1(b). Note that these plots exhibit the
basic features expected of the amorphous semiconductor
DOS function. ' We find that as z ~ ~

:-(z)—+ &z

while as z —+ —ao

1 —3/2 z 2

:"(z)~ (
—z) / exp

2&2 2

Thus high in the band,
e 3/2

N, (E)~ QE —q, ,
~A

~ 2.0- (a)
0

~ f+~l

M0
~ 1.0-

0
~ I++I

I 3/2

N, (E)=
2 3 I "I/'E zfI, (z)dz, —

~A C

where fI, (z)Az denotes the probability that V, (R) is be-
C

tween [z,z+bz]. Thus our calculation of the overall
conduction-band DOS function reduces to an integration
over this potential fluctuation distribution function
fv, (».

We perform our subsequent analysis under the assump-
tion of a Gaussian distribution of conduction-band poten-
tial Auctuations, i.e.,

0
~ II%I

U

0.0
,

-2

10o

10

1
fv (z)= exp

(z r),)—
20

(3)

where g, denotes the mean conduction-band potential
level, o., being the corresponding standard deviation; see
the Appendix for a determination of fv (z) from first

C

principles. From Eqs. (2) and (3), it can be shown that
the overall conduction-band DOS function

M0

~ 1O
—4-

0
~ IK

.~ 10—6

-2

e 3/2

N, (E)=
E —g,

(4)

where the dimensionless DOS function "(z) is defined as

FIG. 1. (a) The dimensionless DOS function =(z) (linear
scale). The asymptotic form Eq. (6) is also depicted. (b) The di-
mensionless DOS function =(z) (logarithmic scale). The asymp-
totic form Eq. (7) is also depicted.
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o.„being the corresponding standard deviation.
We now quantify the Zirnan condition. For potential

fluctuations of linear range L the kinetic energy of locali-
zation associated with the site disorder is of the order of

Q2

2m L
(12)

Under the assumption of a Gaussian distribution of po-
tential fluctuations, the Ziman condition is satisfied if

o. &&5 . (13)

If the kinetic energy of localization associated with the
site disorder is large, and the Ziman condition is not ex-
actly satisfied, Ziman' suggests that the semiclassical
formalism of Kane may be modified by a simple energy
shift by the zero point energy. This will merely shift the
results without changing their fundamental form.

FIG. 2. The conduction-band DOS function N, (E), corre-
sponding to various selections of cr, (linear scale). The
conduction-band mean potential level g, is set equal to zero in
all cases.

while deep in the tail,

III. OPTICAL ABSORPTION
IN AMORPHOUS SEMICONDUCTORS

In an amorphous semiconductor, momentum is a poor
quantum number. As a result, only energy conservation
need be satisfied for a successful optical transition. This
being the case, an elementary analysis shows that the
optical-absorption coefficient a(A'co) may be expressed as

N, (E)-exp a(irico) =D (iiico)J(irico), (14)

Ziman, ' using semiclassical transport arguments, sug-
gests that the mobility edge occurs at energy 71, —o,

To study the effect of disorder, we examine the sensi-
tivity of N, (E) to variations in o, . In Fig. 2, we plot this
DOS function for a number of selections of o.„m,* being
set to the free-electron mass m, . In the disorderless limit,
where o.,~0,

e 3/2

(

0, E(71

For finite o.„adistribution of tail states appears. As o.,
increases from this disorderless limit, the tail further en-
croaches into the gap. It may be shown formally that the
total number of states remains conserved, regardless of
the strength of the disorder. Thus we conclude that the
potential fluctuations are redistributing states, removing
them from the band and adding them to the tail.

A similar valence-band analysis can be performed. As-
suming that the valence band kinetic energy of localiza-
tion associated with the site disorder is small relative to
the magnitude of the valence-band potential Auctuations,
and assuming a Gaussian distribution of valence-band po-
tential Auctuations, the overall valence-band DOS func-
tion N, (E) may be shown to be equal to

&2a, m,*'"
N„(E)=

where 71, denotes the mean valence-band potential level,

where J(fico) denotes the joint density of states, D(fico)
being the optical transition matrix element. ' ' At low
temperatures, in the undoped or lightly doped case, this
joint density-of-states function may be approximated as

J(iiico)= f N, (E)N„(E %co)dE . — (15)

Thus, from Eqs. (4), (11), (14), and (15), we see that

&2m*' ' &2m*' '
a(irico) =D (A'co)

m. fi

X 8(A'co; rl„rl„cr„o,), (16)

where cP'(fico;i)„rI„o„cr„)denotes the normalized joint
density-of-states function, this being defined as follows:

cf(%co;rj„i)„,o „o', )

E—g, 71, +%co—E
dE .

(17)

Following the lead of Grein and John, ' we assume that
D(Aco) exhibits a relatively weak dependence on A'co, and
focus our analysis on determining the functional proper-
ties of cP(fico; i)„r)„o„cr,).

We first consider the form of cF(fico;i)„i)„,cr„cr, ) in
the disorderless limit, i.e., as o.,~0 and o „~0. From
Eq. (17), we see that in this limit
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(—fico E—) Aei E
8( fico; ri„rj„,o' „o', )~ .

0, A~(E
gp

where

This parabolic absorption edge, arising as a consequence
of optical transitions between the bands, is referred to as
the Tauc absorption edge, ' E being the value of theg

Tauc gap in the disorderless limit.
We now introduce the effect of disorder. In Fig. 3(a),

we plot QZ(A'co;i)„il„o „cr, ) for a number of selections
of o., and o.„E being held at 2 0 eV;

gp

8(irido;i)„i)„o„o„)may be shown formally to be only a
function of %co —E, o.„and o, It is seen that for high

gpss

energies in all cases, Q8(fico;g„g„o„o,) approaches a
linear functional dependence on Ace, i.e., Tauc absorption
edges are observed. Extrapolating this high-energy Tauc
absorption behavior to low energies, an extrapolated
Tauc gap may be defined; see, for example, Kruzelecky
et al. ' It is seen that the extrapolated Tauc gap E de-
creases monotonically from E as the disorder is in-

gp

creased. This result suggests that the disorder, in of it-
self, directly influences the extrapolated Tauc gap, as was
found experimentally by Cody et al.

In Fig. 3(b), we depict the functional dependence of
these 8(A'co;i)„i)„o„0,) plots over a much broader
range of photon energies. This time, however, we focus
our analysis on the low-energy optical-absorption tail
that is observed in the subgap region, this tail corre-
sponding to optical transitions between the tail states.
We note that the width of this tail decreases monotoni-
cally as the disorder decreases, as was observed experi-
mentally by Cody et al.

IV. APPLICATION TO a-Si:H

0.2-

10o
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We now demonstrate that our DOS results are con-
sistent with those of experiment. At the outset, it must be
pointed out that there are no direct means of determin-
ing, experimentally, the distribution of states. Further-
more, most means of determining the DOS are only valid
over very limited ranges of energy. As a result, the exact
form of the DOS function is still subject to debate, e.g.,
see Tiedje ' and Longeaud and Vanderhaghen.

In this analysis, we use DOS results which are derived
from time-of-Aight measurements of high-quality a-Si:H,
these results being sensitive to the distribution of states
just below the mobility edge. In Fig. 4, we display the
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FIG. 3. (a) The square root of the normalized joint density
of states function 4(Ace;g„q„o.„c7,) (linear scale). The disor-
derless Tauc gap Eg is set to 2 eV in all cases. (b) The normal-

ized joint density of states function d(fico, g„g„o.„o., ) (loga-
rithmic scale). The disorderless Tauc gap Eg is set to 2 eV in

all cases.

FIG. 4. The conduction-band DOS function X,(E). The re-
sults of Tiedje (Fig. 17 of Ref. 21) and Longeaud and Van-
derhaghen (Fig. 5 of Ref. 22) are shown. Our theoretical result
is represented by the solid line; o., =94 meV and g, =0 meV.
The mobility edge is represented by the light dotted line; this
edge is at energy level g, —o.„in accordance with Ziman's (Ref.
13) suggestion.
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conduction-band DOS results of Tiedje ' and the more
recent results of Longeaud and Vanderhaghen; the
properties of these samples are believed to be quite simi-
lar. Tiedje ' interpreted his results to necessarily yield a
linear-exponential distribution of states, while the results
of Longeaud and Vanderhaghen were obtained in a
more direct manner. Setting m,*= 1.08m„ this being the
DOS effective mass associated with crystalline silicon,
we find that selections of o., between 90 and 100 meV
yield distributions of states which are consistent with
these experimental results. In Fig. 4, we plot the case of
o., =94 meV. A similar valence-band analysis, m„* being
set equal to 0.56 m„shows that selections of o.„between
130 and 145 meV leads to distributions of states which
are consistent with the valence-band DOS experimental
results of Tiedje. '

To assess the validity of our DOS fits over a much
broader range of energy levels, we consider the form of
the optical-absorption coefficient a(A'co), since a(A'co) de-
pends on both the distributions of band states and tail
states. In Fig. 5, we plot the optical-absorption data of
Cody et al. and Roxolo et al. ; the properties of these
samples are believed to be quite similar to those of
Tiedje ' and Longeaud and Vanderhaghen. These re-
sults have been scaled to facilitate a comparison with
cP(Ace; ri„ri„o„o„), the scaling between a(irido) and
cF(A'co;il„il„o„o„)being consistent with that of Jackson
et al. ' Alongside, we plot our theoretical result for two
different parameter selections: (1) o, =94 meV, cr„=140
meV, and E =2 eV, and (2) cr, =94 meV, o, = 132 meV,

and E =2 eV. Note that the selections of o., and 0., are
gp

consistent with our previous analysis, i.e., Fig. 4. The

10

disorderless Tauc gap, E is set to 2 eV, this being the
gp

disorderless limit Tauc gap observed experimentally by
Cody et al. We note that our theoretical projections
correspond well with experiment, the transition from the
subgap absorption tail to the Tauc region being captured
quite adequately by our semiclassical analysis, over many
orders of magnitude. For values of %co less than 1.60 eV,
a discrepancy between the results of theory and the ex-
perimental results of Cody et al. is noted. This
discrepancy may be attributed to a number of factors: (1)
the existence of dangling bonds and other such impuri-
ties, (2) the breakdown in the efFective-mass approxima-
tion as one goes deeper into the gap (see Grein and
John' ), and (3) the use of a direct optical measurement
technique, which becomes poor at low values of a(fico).
Note that the more recent results of Roxolo et al. agree
with our theoretical predictions over a much broader
range of photon energies.

Throughout our analysis, we have implicitly assumed
that the Ziman condition is satisfied. We now test this
assumption for the case of a-Si:H. Hydrogen atoms are
believed to produce the dominant potential fluctuations
in this material; see Brodsky and O' Leary, Zukotynski,
and Perz. High-quality a-Si:H is characterized by con-
centrations of hydrogen of the order of 10 at. %. At such
concentrations, the distance between the hydrogen-atom
clusters is somewhere between 10 and 13 A. ' Thus,
for the conduction band, 5 is somewhere between 18 and
35 meV. While this is not completely negligible com-
pared to o.„it is a factor of 3—4 lower, and is thus small
enough to suggest that potential fluctuations play the
principal role in determining the DOS of a-Si:H. Correc-
tions for the kinetic energy of localization, such as the en-
ergy shift suggested by Ziman, are needed to obtain more
accurate results. The form of the DOS function, N(E),
and of the optical-absorption coefficient, a(fico), will not
be modified by such an energy shift.

10

10

1.5 1.6 1.7 1.8 1.9 2.0
6~(eV)

FICr. 5. Optical absorption: A comparison with experiment.
The normalized joint density-of-states functions
8(%co,'g„g„~„o., ), for two different parameter selections are
represented by the solid lines. The disorderless Tauc gap E~ isg'p

set to 2 eV in all cases. The data points of Cody et al. (Fig. 1 of
Ref. 20), for the case of room-temperature high-quality a-Si:H
are depicted; these points correspond to the solid upper triangle
data points of Cody et al. (Ref. 20). The data points of Roxolo
et al. (Fig. 2 of Ref. 24) are also shown.

V. CONCLUSIONS

In conclusion, we have presented a simple semiclassical
analysis of amorphous semiconductors which successfully
predicts some of the basic qualitative and quantitative
DOS features. This analysis spans the transition from the
tail states to the band states, and focuses on potential
fluctuation effects. This contrasts with the potential-we11
approach in which the focus is the kinetic energy of local-
ization, only the localized tail states being considered.
Our results suggest that, for high-quality a-Si:H at least,
potential fluctuations effects play the dominant role in
shaping the distribution of states, the kinetic energy of 1o-
calization playing a lesser role.

Using this analysis, we have demonstrated analytically
that as the disorder increases from the disorderless limit,
a tail of states emerges, these tail states being produced at
the expense of band states. Corresponding to these tail
states, a subgap absorption edge appears. We also ob-
serve a high-energy Tauc absorption edge, and note that
the extrapolated Tauc gap E varies as a function of dis-
order, all other parameters being held fixed. This
confirms the experimental results of Cody et al. , and
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provides insight into the fundamental relationship be-
tween the Tauc gap E and the characteristic width of
the subgap absorption tail.

ACKNOWLEDGMENTS

fects per unit volume. If we associate with each type-i
point defect a conduction-band potential Auctuation
v,"( ), by applying either the method of Klauder, ' or
these of Holtsmark and Chandrasekhar, ' it can be
shown, from Eq. (A3), that
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fv, (z) = exp i co—z
c 27T —co

APPENDIX: DISTRIBUTION DETERMINATION

Throughout our analysis, we have assumed a Gaussian
distribution of potential Auctuations. This assumption is
usually justified by means of the central limit theorem;
see John et al. However, more recent analyses have
suggested that substantial deviations from this Gaussian
distribution of potential Auctuations may arise, e.g. ,
Kemp and Silver. Clearly, such deviations may have a
dramatic effect on the distribution of tail states, and
should be investigated. Thus we present a point defect
formahsm which will allow one to determine fi, (z) from

C

first principles.
We assume that the physical structure of an amor-

phous semiconductor is characterized by a number of
point defects, these point defects being distributed
throughout an otherwise perfect solid. ' These point de-
fects represent the effect of the various forms of disorder.
Each point defect will induce a certain conduction-band
potential Auctuation, and the conduction-band potential
V, (R) may be written as a sum over these potential fiuc-
tuations, i.e.,

V, (R)= V,'(R)+ V, , (A 1)

where V, denotes the level of V, (R) which would result if
there were no point defects, and

V,'(R)=gv, (R—r ), (A2)

where r denotes the location of the mth point defect,
v, ( ) being the conduction-band potential fiuctuation as-
sociated with that particular point defect. Clearly the
statistical properties of V,'(R) depend on (1) the distribu-
tion of these point defects, and (2) the form of the indivi-
dual point defect potential profiles, v, ( ).

We treat the case of there being N types of point de-
fect, these point defects being uniformly and indepen-
dently distributed. It can be shown that the probability
of finding n such type-i (i = 1, . . . ,N) point defects in a
volume Vis

Prob[n type-i point defects in V]=e —~. "v(~"V)"
n!

(A3)
where k" denotes the average number of type-i point de-

+ gA,"f(e ' —1)dr dw,

1
fv (z)= exp

+2~o,'

where

(z —il, )'

20
(A5)

g, = y X"f v,"'(r)dr+ V' (A6)

aild

Ã
o = gA"f [v ", (r)] dr . (A7)

For 6nite point defect densities, deviations from this
Gaussian distribution may occur, particularly for ener-
gies far from the mean, i.e., when ~(z —il, )/o, ~

))1.
We now estimate the magnitude of o, from this point

defect formalism. As was mentioned earlier, there are
many sources of disorder within an amorphous semicon-
ductor. From basic considerations, it is reasonable to as-
sume that the density of point defects in an amorphous
semiconductor is of the order of 10 ' cm . Further-
more, it is reasonable to assume that each potential Auc-
tuation is of the order of a few lattice constants in range,
and that the magnitude of these potential Auctuations is
of the order of 100 meV; Brodsky and O' Leary, Zuko-
tynski, and Perz suggest that the magnitude of the
conduction-band potential Auctuations exhibited within
a-Si:H are of the order of 100 meV. From Eq. (A7), it
may then be shown that cr, is of the order of 100 meV.
This is consistent with the selections of o, that we have
made. A similar analysis may be performed for o „.

(A4)

where all integrals over d r are taken over three-
dimensional space in its entirety. This result is a general-
ization of that from Kane Kane' only dealt with the
N =1 case. A similar analysis may be performed in the
valence band, the valence-band potential Auctuations be-
ing distinct from those in the conduction band.

Using the method of stationary phase, in the limit of
infinite point defect density, a Gaussian distribution of
potential Auctuations is found, i.e.,
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