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Conductance and localization in a system of coupled conjugated polymer chains

S. Stafstrom
Department of Physics, Linkoping University, S-581 83 Linkoping, Sweden

(Received 6 June 1994; revised manuscript received 19 October 1994)

The conductance in a polymeric system of nearly macroscopic dimensions is calculated using the
many-channel Buttiker-Landauer formula. A sharp decrease in the conductivity (metal-to-nonmetal
transition) is observed when the length of the polymer sample exceeds some critical value. This value
defines the electron localization length. For parameters that are realistic for heavily doped trans-
polyacetylene chains, the localization length is 3—4 times the average polymer chain length.

I. INTRODUCTION

Studies of the effects of disorder on the transport prop-
erties of inorganic semiconductors has received a tremen-
dous amount of attention since the advent of solid-state
electronics. ' Parts of these studies have been focused on
the conductance and the conditions for localization in
one-dimensional systems. ' It has been an issue of fun-
damental interest to understand these conditions; in par-
ticular, it has been shown that disorder in a one-
dimensional system leads to localization, i.e., zero con-
ductance in the limit of an infinite system, except if the
disorder is generated according to the so-called random-
dimer model. Macroscopic samples of conjugated poly-
mers are interesting in this context since they are quasi-
one-dimensional with strong intrachain interactions and
weak interchain interactions. This paper is focused on
the question of if these interchain interactions are large
enough to allow for electron delocalization over a length
scale larger than that of the individual polymer chains.

A conjugated polymer such as trans-polyacetylene can
be doped to a conductivity that is of the same order of
magnitude as those found in metals. The observed tem-
perature dependence of the conductivity is, however,
nonmetallic in the sense that it increases with tempera-
ture. In order to understand this behavior, we have to
consider the structure of the polymer sample. On a mi-
croscopic scale the polymer chains are grouped together
in weakly coupled fibrils. The general view of the elec-
tronic structure of this type of system is that the wave
functions are delocalized over a single fibril only. Thus,
within the fibril the conductivity is believed to be metallic
but between fibrils it is thermally activated (hopping
type). On the macroscopic scale, the conductivity there-
fore appears nonmetallic, even though other physical
properties such as infrared absorption and the response
to a magnetic field indicate a metallic state. Recently,
Prigodin and Efetov showed that a metallic state can ex-
ist in a network of randomly coupled metallic fibrils if the
concentration of interfibril contacts is large enough to
overcome the percolation threshold. ' Thus, there is a
possibility for a true macroscopic metallic state in heavily
doped polymeric systems. This percolation aspect of the
metal-insulator transition is also discussed in some detail
in Ref. 11.

The structure of the polymer fibrils provides a type of
disorder that previously has not been studied in the con-
text of electron localization. In terms of the nearest-
neighbor hopping, this system is regular over relatively
large length scales and with strong bonds along the chain
direction. When arriving at a chain end, however, the
coupling to the next chain in the forward direction is
weak. Thus, the electrons are backscattered at each
point of a chain interruption (chain end). In the limit of
zero interchain interactions, this will naturally cause lo-
calization of the electronic states to a single chain only.
However, the interchain interactions, even though they
are weak at each individual site, reduce the effect of back-
scattering' and, as will be shown below, allow for delo-
calization over a length scale considerably larger than the
length of the individual chains.

II. METHODOLOGY

A. Calculation scheme

The many-channel Biittiker-Landauer conductance for-
mula' is used to study the conductance as a function of
the length of the system. This formula can be expressed
as

where T. is the probability for an electron incident from
a perfectly conducting wire into channel j of the sample
to be transmitted through the sample. The ~ matrix in
Eq. (I) is a square matrix with dimension equal to the
number of channels in the system. Using the transfer-
matrix technique, ' ' the elements of this matrix are ex-
pressed in terms of the energy of the incident electron
and the parameters of the following Hamiltonian:

H=g E; a; a; +g t;; (a+; +a, +a;1a;+, 1)
l, J l, J

+g t +, (a;, +,a; +a. ;1a;1+,),
l, J

where j is the channel index and i the site index. Here,
the channels are ordered in a square lattice such that
each site has four nearest-neighbor sites on adjacent
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channels to which the hopping is nonzero (see Fig. 1).
We have also performed calculations on other types of
crystal structures that are proposed for heavily doped
trans-polyacetylene, but the results were shown to be
essentially independent of the (small) variations in inter-
chain interaction strength that exists between these struc-
tures.

Given the Hamiltonian, the elements of the ~ matrix
are calculated in the following way. The probability am-
plitude for finding the electron on site l of the mth chan-
nel, cl is obtained from the solution of the Schrodinger
equation H~ci ) =E cI ). Using Eq. (2), the equation of
motion for the amplitudes is

FIG. 1. Sketch of the many-channel system. Thick lines indi-
cate the chains and thin lines sites that are weakly coupled ei-
ther via interchannel couplings or end-to-end interactions. T
and R denote the transmission and reflection coeKcients, re-
spectively.
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where the amplitudes in each of the M channels at a par-
ticular position l along the channels are represented by
the M spinor c, with elements e», e», . . . , e,M. The pro-
motion matrix P'" is given by

where 1 is the unit matrix, t is an M XM diagonal matrix
with elements defined by the intrachain hopping between
sites I and I + 1 on each of the M channels in the system
[see Eq. (1)],and P", ,

' has the form

P(I)
11

E —c1I

2, 1

1,2

E —
C2)

1,3

23 t2, M

tM, 1
—tM M 1 E EMI

and

=g 5k 5k [ A„tiexp(ik„ tel)
a,P

+8 pexp( ik„ ttl)], —
—~ &l &0, 1&a&M, , 1&f3&M, (6a)

g(x =/, p,p, )

=g 5k ~ 5k [C tiexp(ik tel)
a, P

The interchain ordering is that of a square lattice. Only
nearest-neighbor interchain interactions are considered,
i.e., in the actual calculation many of the matrix elements
are set zero.

The promotion of the probability amplitudes from one
end of the M-channel sample to the other is then obtained
by setting l =0 in Eq. (3) and multiplying the right-hand
side of this equation by P"'P' ' - . P' ', where I. is the
number of sites in each chain. By simple algebraic ma-
nipulations, the solutions at the ends of the polymeric
sample can then be matched to the plane-wave solutions
in the perfect conductors that are connected to the ends
of this sample. These wave functions are

g(x =l,p,p, )

Finally, the coeKcients on each side of the sample are re-
lated via the scattering matrix in the following way:

B S11 S12 A
C S21 S22 D

B. System

where the coefficients in Eqs. (6a) and (6b) now are col-
lected in the M spinors (M =M XM, ) A, B, C, and D.
The transfer matrix ~, which relates the incoming wave
on the left ( A) to the outgoing wave on the right (C), is
identical to the submatrix S2, of the scattering matrix.
This matrix involves the product of the promotion ma-
trices and the exponential functions of Eq. (6). The r ma-
trix can therefore be expressed in terms of the product of
the promotion matrices and the wave vector of the in-
coming electron. Finally, the energy E of the incoming
electron is introduced via its relation to the wave vector.
By applying periodic boundary conditions in the plane
perpendicular to the channel axis we have

E =2tocosk„&+2ti(cosk» +cosk, &) .

Using this relation and the promotion matrices, which
depend on the parameters of the Hamiltonian only, the
energy-dependent conductance G =G (E) can now be cal-
culated numerically.

+D @exp( ik ill)], —

I. +1&l & oo, 1&a&M„1&P&M, . (6b)
A typical width of a polymer fibril is 100—200 A,

which corresponds to a large number of chains in each
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fibril. In order to simulate this in the calculations,
periodic boundary conditions are applied in the plane
perpendicular to the channel axis. Based on a study of
the variation of conductance with the number of channels
in the system (see Fig. 3 below), the number of channels is
chosen to be sufticiently large to avoid any dependence on
this quantity. In the results presented in Figs. 2 and 4
below, the total number of channels is 25.

Each channel contains several polymer segments
separated by chain interruptions (see Fig. 1). Thus, the
intrachannel hopping t;;+ &

involves two different types of
elements, the intrachain hopping (t) and the hopping be-
tween two adjacent chain ends (5t). The intrachain hop-
ping is usually assumed to depend linearly on the bond
length between two adjacent carbon atoms. ' In the
heavily doped system, however, the bond-length varia-
tions along the chains are very small. ' Therefore, in this
work we set t, , + &

equal to a constant t unless two neigh-
boring sites in the same channel coincide with a chain in-
terruption. By using the optimized values for the intra-
chain hopping, which correspond to a soliton lattice, we
obtain only minor differences in the conductivity as com-
pared to the case of a constant value of the hopping along
the chain for doping levels above 12%%uo.

' Since this paper
is focused on the issue of localization caused by chain in-
terruptions and not on the detailed structure of the me-
tallic state, we assume that the doping level is high
enough so that we can neglect the differences between the
real structure and the perfect metallic chain as far as the
localization properties are concerned. At such doping
levels, variations in the intrachain hopping caused by sol-
itons, the potential due to the counterions, etc. , all have
negligible effect on the localization as compared to the
effect of chain interruptions.

The chain interruptions along the channels can be
caused by sp defects, cross linking between chains, etc.
The hopping across such a chain interruption should
therefore be reduced considerably compared to the intra-
chain hopping. It should, however, remain nonzero since
some interaction between 2p, atomic orbitals is expected
even though they are not participating in a chemical
bond (hyperconjugation). The chain interruptions are
generated at random and both rectangular and Gaussian
distributions of chain interruptions are considered. The
effect of the form and the width of the distribution is dis-
cussed in detail below. Calculations are performed on
systems where all channels contain the same number of
chain interruptions X as well as on systems with a vary-
ing number of chain interruptions per channel.

The site energies c; and the interchain hopping t + I

[see Eq. (2)] are assumed to be site independent. The
value of c, is therefore set to zero and the interchannel
hopping is set to 0.04. (These values are realistic for
trans-polyacetylene and correspond to an interchain hop-
ping of 0.1 eV when the intrachain hopping is 2.5 eV. '

)

These site-independent values naturally represent an
idealized situation as compared to the real polymeric sys-
tem. However, as stated above, this work is focused on
the electron-localization problem and studies have shown
that weak disorder in the site energies and/or the inter-
chain hopping are unimportant in this context as com-

pared to the effect caused by chain interruptions. ' '
The energy of the incident electron determines which

state is involved in the electronic spectrum of the disor-
dered system in the transport process. The local varia-
tions in the density of states of the disordered system will
therefore cause variation in the conductance as a function
of the energy of the incident electron. These variations
are, however, observed to be small compared to the Auc-
tuations caused by the different distributions of the chain
interruptions. Nevertheless, the conductance values
presented below are the average values obtained in an en-
ergy regime b,E =0. 1 (in units of t) around the Fermi en-
ergy.

III. RESULTS
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FIG. 2. Conductance (g) as a function of the channel length
(L). The dashed line connects the average values of the conduc-
tance for each value of L and the solid line is drawn between
average conductance data points for the system with a random
number of chain interruptions per channel.

In Fig. 2 is shown the dimensionless conductance
g =(~A/e )G as a function of the channel length (L).
The average distance between two chain interruptions
( ( 8 ) ) is 200 in this case and the end-to-end hopping ot is
0.04. This value is identical to the interchain hopping
strength (see above), i.e. , the electron has the same proba-
bility to hop across a chain interruption within one chan-
nel as between chains in two neighboring channels. The
set of data points for each value of L corresponds to
different randomly generated distributions of chain inter-
ruptions but with the restriction that each channel con-
tains the same number of chain interruptions. The distri-
bution of chain interruptions is rectangular with a width
equal to (8)/2=100. Also included in Fig. 2 are the
average conductance for each value of L, and the average
conductance in the case when the number of chain inter-
ruptions per channels is allowed to vary (see below).

For channel lengths less than 1000 sites, there is a very
small change in the conductance even though the number
of chain interruptions per channel increases from one up
to three in this interval. The average conductance in this
regime is in fact very close to the conductance of the per-
fect polymer fibril without any chain interruptions.
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Clearly, the interchain interactions are important to
reduce the effect of the backscattering caused by the
chain interruptions.

In the case of a fixed number of chain interruptions per
channel, a sharp decrease in the conductance is observed
at L =Le=1000. The average conductance is reduced
by nearly four orders of magnitude in increasing the
length of the system from 900 sites per channel to 1000.
This drop in the conductance corresponds to a metal-
insulator transition at which the length of the channels
exceeds the localization length of the electronic wave
function. For the set of parameters used in this calcula-
tion, the transition occurs when the number of chain in-
terruptions per channel is equal to four. As the length of
the system is further increased we observe a staircase
type of behavior of the conductance. This situation arises
in the case of a fixed number of chain interruptions per
channel only (cf. dashed and solid lines in Fig. 2), since in
that case an increase in the number of sites in one chan-
nel from 1000 to 1100 does not increase the number of
chain interruptions in the system. This shows clearly
that the most relevant parameter in discussing the cause
of localization in this type of system is the number of
chain interruptions and not the channel length.

Naturally, in the real polymeric system, it is not realis-
tic to have the same number of chain interruptions in all
channels. Some channels might be essentially free of de-
fects whereas others contain a large number of interrup-
tions. The major effect of introducing a variation in the
number of chain interruptions per chain comes from the
channels having a large concentration of such defects.
The conductance (sample average) is therefore reduced as
compared to the results of the system where all channels
have the same number of interruptions (see Fig. 2). Note
also that the decay in the conductance above L =900 is
exponential. The slope of the solid line follows closely
the (average) slope of the dashed curve and could, in prin-
ciple, be used to determine the localization length from
the exponential relation for large L, g-exp(L/Lc).
However, this definition would result in a localization
length of the order of 20.sites along the chain direction,
which is somewhat inconsistent with the conductance
data. The observation of a conductance that is essentially
unaffected by the presence of chain interruptions up to a
certain critical number of chain interruptions in the sys-
tem suggests instead that the critical chain length for
which the conductance starts to drop should be used to
characterize the transition between diffusive and
nondiffusive conductance. This chain length is here re-
ferred to simply as the critical length LC.

As stated above, the results presented in Fig. 2 are ob-
tained for a system of 25 channels. We have performed
the same type of calculation for systems with the number
of channels varying from 4 up to 100. In Fig. 3 are
shown the average conductance data as a function of
channel length for these systems. The results are for sys-
tems where the number of chain interruptions is allowed
to vary between channels. Clearly, the conductance de-
pends strongly on the number of channels when this
number is small. The conductance shows a nearly ex-
ponential dependence of the chain length in the ease of 4
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FICx. 3. Conductance vs channel length (L) for a different
number of channels M in the system.

channels. This dependence changes gradually into the
behavior discussed above, where the conductance is
essentially independent of the length of the system up to
a certain critical length above which it decreases ex-
ponentially. Note that the same behavior is observed in
the case of 25 and 100 channels, i.e., 25 channels is
enough to represent systems with realistic fiber dimen-
sions, at least for the concentration of chain interruptions
considered here.

The unusual behavior of the conductance vs chain
length shown in Fig. 2 is a result of the type of disorder
considered here, as well as of the quasi-one-dimensional
(quasi-1D) nature of the system. If the interchain hop-
ping term is set equal to the intrachain hopping strength
(3D case) or if the number of channels is very small (1D
case, see Fig. 3), the usual type of disorder-induced ex-
ponentially localized wave functions appear. This shows
that the quasi-one-dimensional nature of conjugated po-
lymeric systems provides an example of a class of materi-
als that differ from previously studied materials in the
way the conductance responds to disorder in the form of
chain interruption.

The behavior of the conductance shown in Figs. 2 and
3 above is a result of the particular type of disorder dis-
cussed here, namely, sparsely distributed for strong de-
fect sites. As pointed out above, the essential parameter
in this case is the number of such defects. In a situation
where the number of defects is the same for all channels
the drop in the conductance occurs when this number
exceeds some critical value. In this case the conductance
is essentially independent of how these defects are distri-
buted. However, when the number of defects per channel
is allowed to vary, the drop in the conductance occurs for
smaller values of L, the broader the distribution of de-
fects is. As shown in Fig. 4, the drop in the conductance
curve starts already at L =600 if the defects are com-
pletely randomly distributed. (The separation between
chain interruptions varies between 0 and 400 sites in this
case. ) This is due to the fact that channels with a larger
number of defects than the average value decrease the
conductance, whereas channels with the average number
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of defects or less all have the same conductance. In Fig.
4 is also shown the calculated conductance vs L for a
Gaussian distribution with a full width at half maximum
(FWHM) equal to 100 which in this case corresponds to
half the average separation between defects. This case re-
sults in a conductance that behaves very similarly to that
of the rectangular distribution of defects with a width
equal to 100 sites.

As discussed above, these interruptions could be of
various types, actual chain breaks, sp defects, cross link-
ing between chains, etc. A number of studies have been
performed on so-called segmented polyacetylene, with a
high concentration of sp defects. It was shown that in
such systems, clustering must occur to explain the prop-
erties of this material. In the highly conducting sys-
tems, however, the number of defects is very small, typi-
cally below 1%, and it is questionable how important
clustering is in these systems. Moreover, for extremely
low concentrations of sp defects, other types of chain in-
terruptions are probably equally important. The fact that
the Gaussian distribution of defects gives results that are
very similar to those of the rectangular distribution
shows that the conductance does not depend critically on
the exact type of distribution and that the results present-
ed in Figs. 2 —4 are rather general.

By studying 6 as a function of ( 8 ) and 5t, we obtain
the dependence of the localization length of the electronic
wave function on these two parameters. In these studies
we have chosen to use a rectangular distribution of chain
interruptions. The width of the distribution is (8)/2.
Furthermore, in order to facilitate the location of the
critical length (Lc, see above) the number of chain inter-
ruptions is the same in all chains. One should therefore
keep in mind that in a situation where the number of
chain interruptions varies between chains, Lc is slightly
reduced as compared to the results presented here (see
Figs. 2 and 4).

For ( 8 ) less than approximately 1200 sites (5t =0.04)

10

0

the transition into the metallic state is very sharp and Lz
is well defined, i.e., the qualitative behavior of g is similar
to that shown in Fig. 2. For larger values of (8), the
transitions become more smooth and it is less obvious to
define a critical length. In this case, the number of chan-
nels in the system has to be very large in order to simu-
late the characteristic quasi- 1D behavior discussed above.
This regime is practically inaccessible to numerical stud-
ies. However, in practice it is very dificult to synthesize
fully conjugated segments that are much longer than
those included in Fig. 5 ( ( 8),„=1200). The data
presented here are therefore those of interest from a prac-
tical point of view.

For all values of (8) included in Fig. 5 we observe a
critical length of the system that is of the order of 3—4
times the average separation between chain interruptions
(5t =0.04). The increase in the critical length with (8)
is in qualitative agreement with the large increase in con-
ductivity observed by reducing the number of sp de-
fects. Our result also shows that coherent transport,
even though it is limited by the number of chain interrup-
tions, extends over a length scale which is larger than
(8 ). This can explain why the mean free path of highly
conducting polyacetylene, which is of the order of 600
A, can be considerably longer than the structural coher-
ence length, which is around 100 A (as obtained from x-
ray diffraction studies). Note, however, that the structur-
al coherence length is not limited by chain interruptions
(e.g., sp defects) only; interchain ordering and the posi-
tions of the dopant ions also play an important role in
this context.

The number of chain interruptions that causes electron
localization is observed to decrease for increasing values
of (8). Following the solid line in Fig. 5 (5t =0.04), we
notice that the first two points ((8 ) =200 and 300, re-
spectively) represent systems where the critical length is
five times the value of (8 ), i.e., localization is caused by
four chain interruptions (Xc=4). As ( 8 ) increases, the
value of Xc decreases as indicated by the breaks in the
solid line connecting the data points in Fig. 4. Between
( 8) =400 and 700 this value is reduced to Xc =3, and
above (8 ) =700 two chain interruptions are enough to
cause electron localization. In systems where the end-to-

-10
5000

4000-

-20 3000

400
I

600
I

800
I

1 000 2000

FIG. 4. Conductance vs channel length ( L, ) for di6'erent dis-
tributions of chain interruptions: rectangular distribution,
width (1)/2; constant number of chain interruptions per chain
(dotted line), rectangular distribution; varying number of chain
interruptions per chain, width (1)/2 (solid line) and width (1)
(dashed-dotted line); and Gaussian distribution,
FWHM = (1 ) /2 (dashed line), (1 ) =200 in all cases.
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FICx. 5. Critical length (Lc) as a function of (8) for three
different values of 5t, 5t =0.008 (~ ), 0.04 ( ~ ), and 0.08 (()).
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end coupling has been doubled (5t =0.08), the value of
jV'c is increased by 1 except for (8 ) ~ 300 where the in-

crease is even larger. In systems where the end-to-end
coupling is very weak (5t =0.008), two chain interrup-
tions are needed to cause localization for (8) less than
600 whereas a single chain interruption causes localiza-
tion for ( 8 ) & 600. These results indicate that for
infinitely long channels, a single chain interruption would
cause electron localization for any value of 6t different
from the intrachain hopping strength, provided that the
number of channels is finite as in this paper. In this limit
the system is essentially one dimensional and this result is
in agreement with the general statement that disorder of
the type discussed here should lead to localization in
one-dimensional systems.

vidual chains but short as compared to typical fibril or
sample dimensions. The conductance properties are
different from those found in three- or one-dimensional
systems. The quasi-one-dimensional nature of the system
gives rise to a conductance that is constant over some re-
gion of the system and decays exponentially outside of
this region.

The application of these studies are of a fundamental
nature, i.e., to understand the localization properties and
the conductivity in conjugated polymers. Moreover,
there are a number of interesting aspects of transport in
conjugated polymers that are discussed today in the con-
text of polymer-based electronic devices, which could be
studied using the approach outlined here.
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