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Exact solution of the Landau fixed point via bosonization

A. H. Castro Neto and Eduardo H. Fradkin
Loomis Laboratory of Physics, University of Illinois at Urbana Ch-ampaign, 1110 West Green Street,

Urbana, Illinois, 61801-9080
(Received 21 March 1994; revised manuscript received 23 May 1994)

We study, via bosonization, the Landau fixed point for the problem of interacting spinless fermions
near the Fermi surface in dimensions higher than one. We rederive the bosonic representation of
the Fermi operator and use it to find the general form of the fermion propagator for the Landau
fixed point. Using a generalized Bogoliubov transformation we diagonalize exactly the bosonized
Hamiltonian for the fixed point and calculate the fermion propagator (and the quasiparticle residue)
for isotropic interactions (independently of their strength). We reexamine two well-known problems
in this context: the screening of long-range potentials and the Landau damping of gauge fields. We
also discuss the origin of the Luttinger fixed point in one dimension in contrast with the Landau
fixed point in higher dimensions.

I. INTRODUCTION

During the last 50 years the Landau theory has been a
paradigm used to explain the experimental behavior and
electronic properties of quantum Fermi liquids. ' Ini-
tially the theory appeared as a phenomenological frame-
work with a few parameters fixed by experiments. The
presence of unknown parameters reflected, at that time,
the lack of a microscopic theory. However, it was an ex-
traordinary and necessary first step. Landau himself also
established the route for the microscopic explanation for
the validity of the theory. The Landau theory became
the main tool for the study of the effects of correlations
in electronic systems and its foundation was eventually
established on microscopic grounds using field theoretic
methods.

Although the main idea behind the Fermi-liquid the-
ory is quite simple, that is, the idea of a quasiparticle,
its realization in terms of microscopic calculations is far
from that. The idea is that when an electron interacts
with other electrons it polarizes its vicinity and a cloud
is formed around it (in an electronic system a hole is
formed around the electron due to the electron-electron
repulsion ). In its motion the electron carries an extra
inertia due to the existence of the other electrons. In
more usual words, the quasiparticle is a dressed electron.
In this picture the interaction between the electrons does
not affect the intrinsic properties of the electron (that
is, its quantum numbers) but only its dynamics. In field
theoretic terms, the existence of a quasiparticle is re-
lated to the presence of an isolated singularity in the
one-particle Green's function. This singularity produces
a Dirac b peak in the spectral function of the Green's
function. In the noninteracting case all the weight of the
spectral function (or the quasiparticle residue, Z~) is in
the peak (Z~ = 1). The ground state in this case is a
filled Fermi sea (due to Pauli's exclusion principle) with a
sharp singularity at the Fermi momentum which defines
the Fermi surface. When the interaction is turned on the

strength of the peak is weakened (0 ( Zp ( 1) but it is
still infinitely sharp. The rest of the spectral weight is
carried by an incoherent background which plays no es-
sential role in Fermi-liquid theory. The most important
consequence of the presence of this sharp peak is that
the ground state is still a filled Fermi sea with a weak-
ened singularity. The existence of quasiparticles is thus
directly related with the existence of a well-defined Fermi
surface.

Fermi-liquid theory has also been used as the start-
ing point in order to understand the nature of condensed
states of matter such as the superconducting state. The
theory which explains the behavior of superconductivity
of simple metals, the BCS theory, starts from the fact
that the normal state is a quantum liquid described by
the Landau theory. The properties of the superconduct-
ing phase thus depend on the properties of the normal
phase of the material.

The observed unusual properties of the normal phase
of the cuprates ' posed the question of the existence of
new states of condensed matter which are not described
by the Landau theory of Fermi liquids. In particular,
the phenomenology of the normal states appears to indi-
cate the vanishing of the singularity at the Fermi surface
(Z~ = 0). Many theoretical scenarios for such a non-
Fermi-liquid behavior have been proposed. '

The apparent failure of the conventional Landau the-
ory of the Fermi liquid in the context of the cuprates
(and, perhaps, in more general strongly correlated sys-
tems) has motivated a wide search for alternative theo-
retical tools that, in principle, could handle the effects
of strong correlations. In one space dimension, where
the interactions are always strong as a result of the kine-
matical constraints, bosonization has emerged as the
main theoretical tool. Recently the problem of bosoniz-
ing a dense Fermi system in arbitrary dimensions has
been the focus of intense research. The main ideas were
introduced originally by Luther, rediscovered recently
by Haldane, and developed in great detail by Houghton
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and Marston and by us. Here we will use the method
of bosonization by coherent states that we have devel-
oped recently.

In this paper we investigate a class of fixed-point
Hamiltonians for interacting fermions which exhibit
Landau-type behavior. The main motivation of this work
is to see how the conventional behavior predicted by
Fermi liquid theory arises in the bosonization approach.
It is important to reexamine this well-known problem not
just as a check on our methods but also since, unlike the
conventional many-body perturbation theory approach
to Fermi-liquid theory, bosonization is not based on self-
consistent resummations of perturbation theory. In prin-
ciple, it should yield exact results for the low-energy be-
havior of the system. Thus this is a necessary step if these
methods are to be applied to more interesting physical
systems in which the Landau theory is believed to fail,
such as the problem of a dense system of fermions coupled
to dynamical gauge fields. Such systems are central for
the understanding of some of the most novel approaches
to the problem of high-temperature superconductors
and to the compressible states of the fractional quantum
Hall effect

In previous papers we have examined the Landau
fixed point. Here we show by an explicit calculation that
systems of fermions (at finite density, relativistic or not,
continuum or lattice) which interact via scalar potentials
in the absence of nesting or gauge fields belong to this
universality class. We investigate the properties of the
operators that create the physical low-energy states of the
system described by Fermi-liquid theory. We construct
a Hilbert space of states which represents the physical
states close to the Fermi energy. The fixed-point Hamil-
tonians contain only marginal operators acting on these
states. We also characterize the relevant operators at
these fixed points which are connected with low-energy
instabilities of the system. We will not consider here the
problem of spin and magnetic excitations.

We have shown in our earlier work that it is possi-
ble to bosonize an interacting spinless fermionic liquid,
at long wavelengths, in terms of operators which create
particle-hole pairs close to the Fermi surface. Our re-
sults showed that the bosons of the theory are sound
waves which propagate on the Fermi surface and have no
resemblance to free nonrelativistic bosons. Essentially
these bosons are topologically constrained to the Fermi
surface and therefore they propagate in a nonfat metric.
The dynamics of these bosons is related to the elastic
properties of the Fermi surface, that is, the Fermi surface
sustains a surface tension when the quasiparticle residue
is nonzero (Z~ g 0). When the surface tension vanishes
(Z~ = 0) a phase transition occurs at the Fermi surface
and many properties of the system change abruptly. We
further showed explicitly that the bosonized theory yields
the correct thermodynamic properties of Fermi liquids.

In this paper we begin by reviewing in some detail
the bosonization procedure we have introduced before.
We use this approach to develop the generating func-
tional for the bosonic fields in terms of coherent states
which are coherent superpositions of particle-hole pairs
and represent the distortions of the Fermi surface. This

representation for the generating functional allows us to
discuss the form of the fermion operator in terms of the
bosons. Here the similarity with the bosonization in one-
dimensional systems becomes immediately clear. We also
show that bosonization and non-Fermi-liquid behavior
(or rather, non-Landau behavior) are not one and the
same thing. We argue that bosonization is a more gen-
eral concept and that the non-Fermi-liquid behavior of
one-dimensional systems is a product of the smallness of
available phase space which enhances the interactions. In
one dimension the constraints imposed by the conserva-
tion laws couple the oscillations of the Fermi surface (in
this case only two Fermi points) in a manner which will
be discussed below. In dimensions higher than one the
number of degrees of freedom (or Fermi points) is infinite
and conservation laws alone are not enough to drive the
system away from the Fermi-liquid fixed point.

We rederive an explicit formula for the fermion oper-
ator written in terms of bosons and we use it to obtain
the correct free fermion propagator in the limit of long
wavelengths. This calculation reveals many important
aspects of the bosonization procedure we have been de-
veloping and con6rms, once more, the usefulness of this
method.

Since the boson operator is a product of two particle
operators in terms of the original fermions, we show that
a two-particle interaction (which is written as the prod-
uct of four particle operators) can be written only in four
di8'erent forms which are bilinears in bosonic operators.
Assuming an isotropic interaction for the fermions (that
is, no dependence of the interaction on the position of
the Fermi surface) we diagonalize exactly the problem
in the thermodynamic limit. We calculate explicitly the
fermion propagator and the quasiparticle residue for any
strength of the potential. We show that, for local in-
teractions, in dimensions greater than one, Fermi-liquid
behavior is always expected. Recently, Houghton et al.
have examined this problem using bosonization. In their
work, they were able to reproduce the expected behav-
ior of the self-energy for Fermi liquids in two and three
dimensions. The main difFerence between our approach
and that of Houghton et a/. is that we make use of the
full diagonalization of the bosonic Hamiltonian by means
of a generalized Bogoliubov transformation which mixes
all pieces of the Fermi surface.

We reexamine the problem of dynamical screening of
the fermion-fermion interactions. Unlike the conven-
tional random-phase approximation (RPA) approach, we
do not resum the bubble diagrams self-consistently since
bosonization is a nonperturbative approach. Hence one
has to work with the bare interaction and let the dy-
namics of the system decide. Thus, instead of assuming
a "screening first" scenario, we approach the problem
of dynamical screening by calculating directly the full
fermion one-particle Green's function. We show that dy-
namical screening of long-range interactions is due to the
excitation of partic]e-hole fluctuations with momentum
transfer tangent to the Fermi surface. We further show
that assuming screening first, as it is usually done in the
conventional approach to Fermi-liquid theory, leads to
physically incorrect results for one-dimensional systems.
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We also discuss the problem of screening of external
probes in the bosonic language. We show that while
external scalar potentials are always screened, external
gauge fields are not screened but get Landau damping in-
stead (this is the case of a nonsuperconducting material).
The reason is well known; liquids do not screen transverse
oscillations at low frequency. We also show how bosoniza-
tion can explain the differences between the screening
of scalar (longitudinal) and vector (gauge) fields and in
particular we obtain expressions for the susceptibilities
(response functions) in both cases. We rederive the well-
known fact that the RPA result is exact in the limit of
long wavelengths.

The paper is organized as follows: in Sec. II we re-
view our bosonization procedure introducing some details
which were not discussed in our previous works; using the
coherent states defined by the boson annihilation oper-
ator we obtain the generating functional for the bosonic
fields in Sec. III; in Sec. IV we discuss the form of the
fermionic operator in terms of the bosons and its rela-
tionship with the coherent state path integral developed
in the preceding section; with this machinery at hand, in
Sec. V we obtain the noninteracting one-particle Green's
function; in Sec. VI we study what kind of interactions
the bosonic Hamiltonian can have if we start with a two-
body interaction between the fermions, we show that
we have only four kinds of terms which are possible in
the bosonic language, and we are able to classify them;
in Sec. VII using a generalized Bogoliubov transforma-
tion we diagonalize exactly the bosonized Hamiltonian
for fermions interacting via isotropic interactions in di-
mensions higher than one; in Sec. VIII we calculate the
one-particle propagator and the quasiparticle residue as
a function of the potential strength for Fermi liquids; in
Secs. IX and X we obtain the well-known results for the
response functions for scalar and vector fields, respec-
tively, and in Sec. XI we discuss the differences between
one and higher dimensions in the context of bosonization.
Section XII contains our conclusions.

II. BOSONIZATION

The bosonization of a fermionic system is based on the
algebra obeyed by the densities and currents. This al-
gebra is obtained in a restricted Hilbert space which con-
tains the states close to the Fermi surface. The relevant
operator, which generates all the states in this Hilbert
space is defined as

nq(k) = c„,-cg+,-.
2

(2 1)

In general the commutation relations between the op-
erators in (2.1) are written in terms of an expansion of
operators. However, in the restricted Hilbert space, we
expect that the substitution of the commutation relations
by their expectation value on the state

~
PS) (representing

the filled Fermi sea) will generate all the relevant dynam-
ics of the interacting fermionic system. The commutation
relation is obtained for the case of small momenta normal
to the Fermi surface (there is no restriction for momenta

tangent to the Fermi surface). We have shown that, in
this Hilbert space, the commutation relation between the
operators in (2.1) is written asis

nq(k), n -, (k') = hg „-,b -, q v„-S(p—ef) + O. (2.2)

The operator 0 in Eq. (2.2) represents additional oper-
ators whose effects become negligible as q -+ 0. These
operators will drop from our formalism once properly
smeared operators are defined (see below).

We begin by defining a complete set of one-particle
states with spectrum ek which is used to build the full
Hilbert space. The velocity of the particles is defined in
the usual way,

~k = +~a. (2.3)

The Fermi surface is defined by the set of vectors (k~}
which obey the relation

(2.4)

aq(ky ) = ) 4~(~k —kp ~)

k

x[n~(k)8(vk . g + n q(k)8( —v„- .
qQ]

(2.5)

and

at(kp) = ) 4~(~k —kp ~)

x [n ~(k)O(v„- qQ + n~(k)8( —v„- q)],
(2.6)

where 8(x) = 1(—1) if x ) 0(( 0) and 4~(~k —k~~) is a
dimensionless smearing function which keeps the vectors
k close to k~, that is,

r,im e~(~k —k~~) = S„-„-, (2.7)

where A can be viewed as a cutoff in momentum space.
The idea is to construct spheres of radius A which cover
all the states on the Fermi surface. We parametrize each
one of these spheres by the Fermi momentum kg, with
q at the center of the spheres (alternatively, we could
also have constructed pill boxes of height A and length
D instead of spheres, the difference will be immaterial
since none of the physical quantities will depend on the
way we introduce the cutofF). This construction will give
good results whenever the states in the problem have

where p is the chemical potential of the system.
Although the particle-hole operators (2.1) have almost

bosonic character, the operators do not annihilate the ref-
erence state ~FS). We need to normal order these oper-
ators relative to this state. Also, canonical bosonic com-
mutation relations are only obeyed by suitably smeared
operators at each Fermi point. We define creation and
annihilation operators,
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momentum close to k~ with fluctuations of order q such
that q && A « k+.

It is straightforward to see that, by construction, we
have

which obey the usual bosonic algebra (independent of the
cutoff),

(2»)
aq(k~) I

FS& = 0 (2.8)

and the smeared operators aq(k~) are found to obey the
commutation relations

These relations between bosonic operators, which have
particle-hole character, will be the basis of our work.

a;(kg), a~, (k'F) = N (k )V I q i7„-

xb„- „-, b -, +b (2.9)

III. COHERENT STATES
AND GENERATING FUNCTIONAL

where NA(kF) is a local density of states defined as fol-
lows (V is the volume of the system):

N~(k~) =
V ):Ic'~(lk —k~1) I'b(s —ei-. ). (2»)

1
N(0) = —) h(p, —eg) (2.11)

Equations (2.8) and (2.9) show that these operators have
bosonic character and generate the restricted Hilbert
space of interest.

The local density of states is a measure of the number
of states per unit of energy per solid angle in the Fermi
surface. In general, in the absence of Van Hove singu-
larities, the local density of states is well behaved and
independent of the cutoK In this case we substitute it
by its natural average which is the total density of states
N(0),

Although we have a closed algebra and a reference state
to work out the physics, we do not yet have a clear phys-
ical interpretation for the bosonic operators. We know
from Eq. (2.1) that they are related to particle-hole ex-
citations. However, in order to develop more physical
intuition about the excitations created by these opera-
tors, we use the coherent states associated with them.

The coherent states are defined via a unitary operator,

V- =

x
gbq (k~) n q(ky )

where U i = Ut implies P q(kp) = P*-(k~). The op-

erator U is a functional of the fields Pq(k~) which are
defined on the Fermi surface.

We can also rewrite (3.1) as

divided by the solid angle on the Fermi surface Sp
f dO. Indeed, in our previous papers where we have stud-
ied the transport and thermodynamic properties of Fermi
liquids we have used NA(k+) = N(0)/Sd.

Although we could work directly with the operators
defined above it is usual to rescale the operators in such
a way as to absorb the density of states in its definition.
We set

N, (k.) VIq .-„
IF,q, q v& &0

x[gq(kF)n q(kF)

—P,*-(kg )n;(k~) 3

- —1/2
bq(kF) = NA(k~) V Iq. ~p. I a;(kF), (2.12) and using the definitions (2.5) and (2.12) we have

U([P]) = ex
) 1/2

(Nii(k~)VIq vq I j
Pq(kF)bt (kF) —P*-(kp)bq(kp) (3.3)

The coherent state is defined as the evolution of the reference state via the operator U,

I[&3& = U(f&3) I+s&. (3.4)

It is easy to show that this state is an eigenstate of the destruction operator,

bq(k~) I [+3& = — -
I @;(k~)I [+3&.

(Nii(k )VIq. v"„- I)
(3 5)
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This last result has a clear physical meaning. It means that the coherent state represents a deformation of the
Fermi surface at the point k~ in the direction of q due to a coherent (collective) superposition of particle-hale pairs.
Therefore the bosonic field P~(k~) is a measure of this deformation at that point. These bosonic fields are topologically
constrained excitations which propagate on the Fermi surface.

As usual with coherent states, we can show that they are not orthogonal to each other and that they are overcom-
plete. The overcompleteness of these states physically means that the bosons which propagate on the Fermi surface
are wave packets. This is fully consistent with the standard picture of the Landau theory.

The propagation of the many-body system in time, from time 0 to time t, can be obtained by a calculation of the
S matrix with initial and final states of the kind considered above. The S matrix is defined in the following way:

l tlat] o) = ([elle '"'IV]) (3.6)

where H is the Hamiltonian of the system.
Using the closure relation for these states it is easy to show that it can also be written in terms of path integrals,

([y], tlat], 0) = exp &
— ) ) lv;(k~)l'+ v;(k+)I'

2NA(kF)V ( q k q - )
lvl

x D'[y]"( ~

[vl
(3.7)

where

D'[&] = dpi' (kI:,7.)dp*(kI;, r)
vrN~(ky )V lq i7k

&+)7 iQiQ &p

is[(t] = ) — g q(kF)$* (kF, 0) +-p*-(kp)Pq(kp, t) +
NA(kp)Vlq v-

Al~ igig'VI- )0 kF
d~L(g(r) ) (3.8)

I(&) = ) 2
&;(kI")

kF

—iH[(t (r)]

dPq(kg-) )
dr

(3.9)

is the Lagrangian density. The rescaled Hamiltonian H
is defined as

H[4'(r)] = ).N~(k~) Vlq
(k~ [&]lk~ [(t])

(3.io)

In the path integral the boundary conditions are defined
by the S matrix (3.6),

P~(kp, o) = Pq(ky),

(kF, t) = &p*-(kp-).

(3.).i)

As in any field theory we can also write a generating
functional Z which is the trace of the 8 matrix. In terms
of path integrals it is written as

is the classical action for the motion of the bosonic fields
and

g D2[@]
'i f &t P j-, L($~(kP' )Piq(k+ c)) (3 y2)

vrhere the Lagrangian is the same as in (3.9) and (3.) 0).
Now we have periodic boundary conditions due to the
trace. As usual the Euler-Lagrange equations for the
classical action will generate the semiclassical dynamics
for the problem. We have shown that in the case of a
Fermi liquid the semiclassical dynamics is represented
by the Landau equation of sound waves. Therefore the
bosonic fields represent these waves which are distortions
of the Fermi surface evolving in time. Moreover, the same
functional integral in imaginary time reproduces the ther-
modynamics of the Fermi liquids.

As we will see in the next section these results, besides
providing a physical insight into the physics of fermionic
systems (and an interpretation for the existence of bosons
in a fermionic theory), are also powerful tools vrhich @rill

allow us to calculate correlation functions of interest. To
this end, however, we need a dictionary to translate from
the language of fermions to bosons. The aim of the next
section is to provide it.

IV. THE FERMIQN OPERATDR

The connection between bosons and fermions is in-
spired from the bosonization methods in one-dimensional
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systems. Luther was the first to explore the analogy
between one dimension and higher dimensions. Luther's
idea was to define at each point of the Fermi surface a
one-dimensional system using the radial directions. How-
ever, Luther worked only with noninteracting fermions.
Here, we present an argument paralleling Luther's work.

The fermion operator g(r) is written in momentum
space as

is represented as a coherent state of bosons. Since, as
we will see, the bosons diagonalize the problem of an
interacting electronic system, the fermion operator is a
nonperturbative object in the language of the bosons.
Moreover, since the operator U is a functional of the
fields, we observe that the fermion operator 4(r", kp) is
given by U for the following choice of the fields:

Pq(k~) = e * 'bk (4.8)

k

(4.1)

g(r) = ) C (r, k&),
kF

where

Inspired by the results in one-dimensional systems we
follow Luther's construction of the fermionic operator
4(r, k~) as follows:

which Ineans that while the fermions interact among
themselves the bosons are free excitations in the Fermi
surface.

From this observation we conclude that the fermion
propagator,

K(r-- r, t —t') = ) (FS~et(r-, k~, t)e(r, k~, t')~FS),
kF)kF

(4.9)

4(r, k&) = f(k&)e~~"" ', (4 2)
can be written as

K(r —r', t —t') = ) f*(k~)f(k~)(k~, r, t~k~, r', 0),
for some operators f (k~) and J(r, k~). The correct com-

mutation relations for the @(r,k~) can be obtained by
imposing the commutation relation [n~ (k), f (ky )] = 0

and [n~(k), J(r, k~)] = c number. This choice seems to
be the simplest possible.

Since the operators n~(k) generate the Hilbert space of
interest, the form of the fermion operator il)(r, k~) will be
defined by the commutation relation between the former
and the latter. It is easy to show, using the fermionic
algebra for the operators ck, that

kF, kF

(4.10)

where ~k~, r, t) is the coherent state (3.4) with the pre-
scription (4.8). The functions f(k) are written in terms
of the total number of fermions in the system. ' Their
role is to ensure that the fermion operators anticommute
with each other.

The one-particle Green's function can be obtained di-
rectly from the propagator in the case when the actual
ground state of the system is the filled Fermi sea:

~(~, ) -;(k) = -".~(~

From (4.2) we have

[0 (r, k+), n;(k~)) = e ""4 (r, k~) b„-'

(4.3)

(4 4)

G(r r', t —t') =—K(r r', t —t')O(t——t')

K(r r', t ——t')*e(—t' —t). (4.11)

As we will show in the next section this is the case of the
noninteracting electronic system and Fermi liquids.

Using the choices for the commutation relations be-
tween the operators f (k~) and J(r, k~) with n~(k), we
easily get

[@(r)k~), n~(kp)] = [n;(k~), J(r, kp)]4'(r, kp). (4.5)

V. THE GREEN'S FUNCTION
FOR THE FREE SYSTEM

The Hamiltonian for a noninteracting electronic sys-
tem is just the kinetic term,

Therefore the fermion operator will be well defined if we
ensure that

HP = g CkC Ck.

k

(5.1)

[n~(kp-), J(r, kp )] = e (4.6)

—iq. r
J(r, kp) = —)

Np(ky )Vq )7„-
n;(k~). (4.7)

Due to the commutation relations (2.2) it is easy to see
that the correct choice is

IIO, bq(kp) = —
~q v„- ~bq(k~), (5.2)

Since the operators (2.1) generate the Hilbert space of
interest, the form of the Hamiltonian (5.1) in this space
will depend on the commutation relations between the
Hamiltonian and these operators. It is easy to show
that"

Notice the similarity between the form (3.1) and (4.7).
This is not a mere coincidence. The fermion operator

therefore the noninteracting Hamiltonian can be written
as
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He = ). ). Iq &I-..I&,'-(kF)4(kF).
kF F

(5.3)

This result is only valid in the restricted Hilbert space of
states which lie close to the Fermi surface.

Therefore the &ee system, which is composed of only
the continuum of particle-hole pairs, is described by a
set of independent harmonic modes at each point of
the Fermi surface. These modes oscillate with arbitrary
phase difference between them. It is an incoherent oscil-
lation of the Fermi surface which vanishes on average. It

H[p(~)] = lq v„lp-*-(kF)p~(kF). (5.4)

The functional integral we obtain is the same as for
the harmonic oscillator and it is easily done,

means that, on average, the shape of the Fermi surface
is kept constant, as expected.

Given the Hamiltonian (5.3) we can use the methods of
the last section in order to calculate the noninteracting
Green's function. The rescaled Hamiltonian deGned in
(3.10) is written as

(kF, [y], tlkF, [(p], 0) = exp — )
(2NA(kF)V )

lvV(kF)l'+
q „

llew(k'F)l'

"""'P;(k )t,'-(& ) I.
kF

(5.5)

We have seen that the propagator is obtained in this language by using the following choice (4.8):
~lf ~-

(p~(kF) = e
' "~F' (5.6)

where n ( A ) is a cutoff in the normal direction to the Fermi surface which we introduce in order to regularize
the radial integrals (exactly as in one dimension). Making the substitution above we find

(kF, r, tlkF, 0, 0), = exp — )
(2'(kF) V )

~la ~-
l9)i ~F

'(q. r-—Iq up It) (5.7)

Notice that for different points of the Fermi surface the integral diverges logarithmically due to the factor 1/lq v&, lF
which diverges in the limit of q ~ 0. Thus we can write

(kF, r-, tlkF, 0, 0), = o, kF gkF ~ (5.8)

If k~ ——A:& we find the integral

(k F, r, t lkF, O, O) 0——bg g, exp ). 1

0 Ng(kF)V

~ le ~&Ic~

i(q v"—lq-vk lt)1 —e IF (5.9)

In order to evaluate this integral we observe that the component of q normal to the Fermi surface dominates the
Va

behavior of the integral. It is natural, therefore, to split q = qN + qT where q~ = (q n& )n& (with n& ——~„" ~)F kF
which is the normal component to the Fermi surface and the tangential component qT which is defined as qT n&

——0.
This choice can be viewed as a Fresnel construction of differential geometry. We have built a local reference frame on
the Fermi surface which follows its local geometry.

Observe that the integrals over the tangent component can be easily evaluated. They have the form

OO 1 t9„,[b(~r)], (5.1o)

which gives a negligible contribution except for xT ——0. We conclude, therefore, that the part tangent to the Fermi
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surface does not contribute to the long distance behavior of the Green's function and therefore can be neglected in
this limit. However, it does contribute to the counting of states at the Fermi surface. Indeed, from (2.10), we see that
the local density of states can be written as

1 dS
N~ (k~) = —

~
4p (kp. ) ~,

l&g-. I

(s.ii)

where dS is the area element on the Fermi surface. However, the area on the surface is written as an integral over
the tangential component of q alone. Therefore the tangential part of the integral contributes to the density of states
and not to the long distance behavior of the correlation functions. Thus we make the following substitution:

) ' -+ N~(k~)V~~vg
~ f dqm.

q, q v& )0
(s.i2)

The same type of substitution gives the correct thermodynamic properties for these systems, namely, a linear specific
heat proportional to the density of states.

Substituting (5.12) in (5.9) we finally get

(ky, r, teak~, 0, 0)p ——bg g, exp
i

— dqiv 1 —e'
kF, k~F

p 'qN
(5.13)

Now we use the integral,

(s.14)

U =
2~ ). &„-,„-(q)n-q(Rne(&'). (6.2)

and we finally conclude

ia.bk
(kF, r, tlkI", 0, 0) p =

kF kF
(s.is)

We can now parametrize the form of the Hamiltonian
in terms of processes involving particle-hole pairs close to
the Fermi surface. From (2.5) we get four kinds of terins
[these are the only types of terms (scattering processes)
which are present in the restricted Hilbert space],

which is the correct asymptotic form for the noninteract-
ing system in any number of dimensions. It represents
a fermion moving with velocity vk, as expected.kF~

VI. THE HAMILTONIAN

at (kp )aq(k~)

aq(kF)a (k~)

a;(k~)a;(kF )

at(kp)at(k~)

forq v"k )0, q. vk, )0,kF

for q vk &0, q v"k, &0,

for q vk &O, q vk, &0,

for q v"k ) 0, q vk, &0.kF

(6 3)

(6 4)

(6 5)

(6.6)

We now discuss the possible forms of the Hamiltonian
which can appear in the problem. We assume that the
Hamiltonian is composed of two terms, the kinetic energy
of the fermions, Eq. (5.1), and a two-particle interaction,

(6.1)

For a fixed direction of q the processes (6.3), (6.4) and
(6.5), (6.6) are shown in Fig. 2 and Fig. 3, respectively.

Observe that the momentum q breaks the rotation
symmetry O(3) of the Fermi surface (for the isotropic
system, of course) and introduces an axis in the problem.
We can now divide the Fermi sea into south and north
hemispheres. While the interactions (6.3) and (6.4) oc-
cur within one of the hemispheres the interactions (6.5)

The scattering processes described by the operators in
(6.1) can be visualized by the pairing of the annihilation
and creation operators which are depicted in Fig. 1(a)
and Fig. 1(b). In Fig. 1(a), we have small momentum
transfer q (forward scattering) between the pairs. In
Fig. 1(b) the pairs exchange momentum p —p' can be
of order of 2k~ (backward scattering).

The form of the kinetic energy in terms of the bosonic
operators was discussed in the preceding section and it
is given by Eq. (5.3). In terms of the operators which
generate the Hilbert space of interest, it is easy to see
that the interaction can be written as

p- q/2 p'+ q/2 p'+ q/2 p- q/2

p+ q/2
(a)

p'-q/2 p+ q/2 p'- q/2

FIG. l. (a) Forward scattering; (b) backward scattering.
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notice here that this is the same kind of interaction which
produces anomalous dimensions in one dimension.

Indeed, suppose we have the interacting part of the
Hamiltonian written for a one-dimensional lattice as

(a) (b)
H = U) p„p„+i, (6.7)

FIG. 2. Processes described by Eqs. (6.3) and (6.4); (a)
forward scattering; (b) backward scattering. The dashed line
indicates the evolution of the state.

where p is the charge density at the site n. The inter-
acting term (6.7) gives rise to two different terms in the
bosonized Hamiltonian,

U [l i(q) pi( —q) + p. (q) p2( —q)] (6.8)

(a) (b)

FIG. 3. Processes described by Eqs. (6.5) and (6.6); (a)
forward scattering; (b) backward scattering. The dashed line
indicates the evolution of the state.

and (6.6) link different hemispheres of the Fermi sea.
In Fermi-liquid theory only the interactions (6.3) and

(6.4) have a physically relevant effect in the asymptotic
low-energy regime. The reason for that, in the absence
of nesting and singular interactions, is very easy to un-
derstand. The scattering of a particle-hole pair initially
located at vector k~ to a new position k+ requires an

amount of energy ~q U- —v-, ~. Thus, at low en-kF kF
ergy, the most important contribution for fixed momen-
tum transfer comes from regions of momentum space in
which vk vk, . Indeed, it is worth noticing that theky
corrections to the specific heat due to the interaction be-
tween particle-hole pairs is calculated in this limit '

and they agree very well with the experimental results.
The presence of this process will give rise to terms of the
form at a in the Hamiltonian, that is, the same form as
the noninteracting system (except for being nondiagonal
in the index k). Therefore these interactions never mix
the creation and annihilation operators for the bosons.
As a consequence, the only efFect that these interactions
can produce is a difFerent phase of oscillation for the fields
or, in other words, to renormalize the Fermi velocity.

However, the terms (6.5) and (6.6) which link the south
and north hemispheres are more interesting and their ef-
fects are potentially more devastating. They will appear
in the Hamiltonian as a combination of at at and a a. The
consequence of these terms is dramatic. Besides chang-
ing the phase of oscillation, they also mix creation and
annihilation operators. It means that they introduce a
renormalization of the amplitude of the fields by a kind
of Bogoliubov transformation. If this process survives in
the thermodynamic limit it can be shown to give rise to
anomalous dimensions in the correlation functions. We

~Upi(q) p2( —q) (6.9)

where pi(q) and pq(q) are the Fourier component of the
right and left movers, respectively (they are analogous to
the south and north movers).

The interaction term (6.8) is associated with the pro-
cesses described by (6.3) and (6.4) which are responsible
for forward scattering. The process (6.9) is related to the
terms (6.5) and (6.6). The same effect will occur in higher
dimensions, for analogous reasons, if we have a nested
Fermi surface. Observe that in the case of nesting the
vectors vk at one side of the Fermi surface are the same
and therefore processes which translate the particle-hole
pair within one side of the Fermi surface cost no energy
[~q (v& —t7&, ) ~

= 0]. The only other available processes
in the system transfer particle-hole pairs across the Fermi
sea. They are described by (6.5) or (6.6) [or (6.9) in the
one-dimensional case which is a special case of nesting].
This process will appear in the case of a nested Fermi sur-
face even in the absence of singular matrix elements. We
note here that the vanishing of the quasiparticle residue
due to nesting was already obtained in numerical calcu-
lations in the two-dimensional Hubbard model close to
half filling.

Notice also that the processes in different hemispheres
of the Fermi surface require an amount of energy [~q

.
(v- —v-, ) ~] which, for fixed momentum transfer, does

k~F

not vanish because v- —v-, . Therefore, the efFects ofkF k~
processes will be kinematically suppressed at low energy
and will not contribute to the physics of the states close
to the Fermi surface. In contrast, in one dimension, these
processes not only are not suppressed but are the origin
of the non-Fermi-liquid behavior.

In the next section we diagonalize completely the
Hamiltonian for the bosonized theory of this system.
This Hamiltonian contains all four processes represented
in Eqs. (6.3)—(6.6). It will become clear from our solution
that in the thermodynamic limit and in the asymptotic
low-energy regime, the anomalous dimensions generated
by the processes which link opposite hemispheres of the
Fermi surface efFectively vanish. At the same time, and
in the same limit, the eKect of the remaining interac-
tion turns out to become equivalent to a rotation of the
bosonic states. We interpret this rotation as Landau's
adiabatic principle.

Recently, by means of a perturbative renormalization
group approach to Fermi liquids, Shankar has shown
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explicitly that, apart from redundant interactions which
merely change the shape of the Fermi surface, all interac-
tions in the vicinity of a Fermi-liquid fixed point are ac-
tually marginally irrelevant (except for pairing processes
and nesting). In other words, in normal conditions these
processes will scale away in the thermodynamic limit in
the bosonic form of the Hamiltonian. We will show this
result explicitly in the next section with the exact diag-
onalization of the bosonic Hamiltonian. For these pro-
cesses to become part of the bosonic Hamiltonian special
physical interactions are needed. For instance, even in
perturbation theory, these processes will become impor-
tant if the matrix elements between the states is singular
at low energies and long wavelengths. ' It is clear that

I

in this case the perturbative expansion fails. More im-
portantly, it is possible to show that coupling a Fermi
liquid to dynamical gauge fields generically leads to in-
teractions of this type and, consequently, to a breakdown
of Fermi-liquid theory. We will study this problem us-
ing our methods in a forthcoming paper.

VII. DIAGONALIZATION
OF THE BOSONIC HAMILTONIAN

As it was explained in the preceding section, the Hamil-
tonian for interacting fermions close to the Fermi surface
can be rewritten in bosonic form as

q v„- q v„- NA(kp)NA(kF )U(q)H =Hp+ )
kF )kFI iq

x [b" (kp)b~(kp ) + 6 (—kp)b~( —kp ) + b~(kp)bq( —kgb) + 6 (—kp )6 (kp)],

where the sum is restricted to vectors such that q.v- ) 0kF
and q v& ) 0. We also have used the definition (2.12)
and (2.5) and changed the sums to be restricted to just
one hemisphere of the Fermi surface. The free term Ho
is already defined in (5.3) and we assume that the Fermi
surface is round and the interaction is isotropic (these as-
sumptions are made in order to simplify the calculations,
however, none of them are really important in what fol-
lows) .

In order to define the problem unambiguously, we

group the low-energy states in such a way that the Fermi
sphere is divided into % patches with area Sg «A"
such that the total area of the Fermi sphere is written
as Sgk+ ——Sg «A" ¹ This procedure constitutes
a regularization of the theory of the fluctuations of the
Fermi surface which, as such, contains a continuum of
degrees of freedom. This discretization is in fact the op-
erational definition of this problem, Inside each patch
the operators are smeared following the prescription of
Eq. (2.5). We will split the fluctuations into two subsets:
(a) normal and (b) tangent to the Fermi surface. Since
the operators are smeared inside each patch, we need to
give a prescription for how the contributions both from
inside one patch and from different patches are taken into
account. Except for the fact that, for each patch, there
is a narrow ray of directions out of the Fermi surface,
the contributions from inside one patch have the same
physics as one-dimensional systems, the only difference
being that we have a finite density of states. Thus, in-
side each patch, we will integrate over normal fluctua-
tions (which cost energy) whereas the effects of tangent
fluctuations inside each patch will be replaced by an av-
erage over the patch. The dynamical efFects associated
with tangential fluctuations are due in fact to processes
involving difFerent nearby patches. At the end of our
calculations we will take the limit in which the number
of patches goes to infinity in such a way that the Fermi

surface becomes smooth. This prescription gives us a
controllable way to deal, at the same time, with both the
physics of one-dimensional systems and with the extra
phase space of higher dimensions.

In passing, we notice that, as soon as any physical
dimension becomes finite, there is a natural discretiza-
tion of the Fermi surface. This definition of the Hilbert
space is, in fact, an alternative procedure to the method
of covering the Fermi surface with patches, which is the
one that we use in this work. Thus the limit of sending
the number of patches to infinity (at fixed Fermi mo-
mentum) is, in this alternative procedure, the same as
taking the thermodynamic limit in all directions. One
example of this situation is a system with a finite num-
ber of chains % which are thermodynamically long. The
results of this (and of the following) section imply that
all anomalous dimensions scale as 1/N unless the effec-
tive two-dimensional (or three-dimensional) system has
a nested Fermi surface. Thus, in the generic situation,
the non-Fermi-liquid features at finite K disappear as
N —+ oo and should be viewed as finite size effects. This
is an important issue in the analysis of numerical data of
dense Fermi systems.

From this definition the local density of states at the
Fermi points is simply Ng(k~) = N(0)/N where the

S k
overall density of states is N(0) =

iz l~ . In this case
the dimensionless coupling constant of the theory is given
by

N(0)U(q) Sg iA" 'U(q)
(2 )~N

(7 2)

which vanishes in the thermodynamic limit for dimen-
sions greater than one. This is the route for the sta-
bility of Fermi-liquid theory as already discussed by
Haldane «3 «5 24
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q v&
——qv~ cos 0~. (7.3)

Moreover, we define the following notation for the
bosonic operators:

b. (&')-= b~

b~( k, —)=. a, .

(7.4)

Using the previous definitions it is easy to see that the
Hamiltonian (7.1) can be rewritten in the form

II = ) qvF+(q),

where

From now on we consider the Fermi-liquid problem in
two dimensions, partly because of its relevance to the
cuprates and because of its general interest. ' To each
point j in the Fermi circle there is an angle 0~ = ~ j.
Since the sum in (7.1) is restricted to q v& ) 0, the
allowed values of j are —

4 + 1 & j & 4
—1. In the

direction of q we have j = 0. In this notation we can
rewrite

b;, b, = a, , a = h;, ~
= ) (M;iM, i —. A, iA,.i),

[b;, a j = 0 = ) (M, iA'i —JV;iM i),
l

(7.S)

where the new bosonic operators obey the usual algebra,

l3, n,' = -, -', =b,.- d [t3 l3.j=[-,-.l=o
It is assumed that these new operators diagonalize the

problem completely, that is, the Hamiltonian is now writ-
ten as

) gl (l l~l+alal) ' (7.9)

[b;gb] = s b; +, g) gs, s, (b, + at)

where S~ is the eigenfrequency.
To find the equation which defines the above matrices

we look at the commutation relation between the Hamil-
tonian and the operators. Using the Hamiltonian (7.6)
and the definition (7.7) with the Hamiltonian (7.9) we
find

= ) 8& (A4(Pt —N(a!) . (7.10)

gb=& .. (b!b.+.!..)
+g ) a's;s, (b!b, + ata, + a;b, + bSaS), [7.g)

Substituting (7.7) and taking the commutation relations
with the operators ni and Pi we And the equations

(Si —s;) M;i = g ) gs, s, (M~i + ~,i),
where 8, = cos 0, . In the last expression we have dropped
the index q since the original Hamiltonian is already di-
agonal in this index.

The Hamiltonian (7.6) describes a set of coupled har-
monic oscillators. For a Fermi system in d space dimen-
sions, the oscillators live on a (d —1)-dimensional mani-
fold (plus time). We are interested in diagonalizing this
Hamiltonian for finite N and to find the behavior of its
eigenstates in the limit N ~ oo. We will refer to this
limit as the thermodynamic limit of the system of oscil-
lators. We should keep in mind that this limit does not
necessarily coincide with the true thermodynamic limit
of the Fermi system in d-dimensional space.

In order to diagonalize this Hamiltonian we define a
generalized Bogoliubov transformation which mixes dif-
ferent points at the Fermi surface. We introduce two real
orthogonal matrices M;i and JV;i and two new bosonic
operators Pi and cbi such that

(Si + s;) ~i = —g ) gs, s~ (M~i + A~i) .

(7.11)

~s;CiM, ) ——g
(Si —s;) '

(S +")'
where

Ci = ) ~s~ (M~i+Aji)

and by direct substitution we find

These equations define the Bogoliubov transformation.
Observe that, if Si g s; for all l and i, then the solution

would be written as

b; =) (MaP&+Aga, ),
(7.7)

28-—g). S. i

a; = ) (Maa&+Ai(P!) .

The commutation relation between the operators en-
forces that

which is the equation for the eigenenergies. This equa-
tion can be seen graphically as in Fig. 4. Notice that
in principle we have two diferent kinds of solutions: the
first one is related to the particle-hole continuum and it is
defined for S~ & 1 and the second is related to the collec-
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The first term in the expression for M;~ represents the
solution for i = I where we introduced an unknown factor
Z~ which must be evaluated. The second term must be
understood as the principal value of the function, that
is, it vanishes for i = l. We must comment here that
we also need to avoid the term i = —l since s~ ——s
However, this only introduces simple modifications in the
algebra and does not a8'ect the content of the results.
It is easy to show that with the introduction of these
terms the final result will be given in terms of symmetric
and antisymmetric combinations of the matrices that we
obtain. We will come back to this point later in the
paper.

By substituting the expression (7.12) in (7.13) we end
up with an equation for Z~ which can be written as

FIG. 4. Solution of Eq. (7.16). The dashed lines represent
the eigenfrequencies of the modes for the noninteracting sys-
tem, the circles show the eigenfrequencies for the interacting
system. (a) Particle-hale continuum; (h) collective mode. B. Collective mode S7 ——So

(7.14)

tive modes and is obtained for S~ & 1. All the solutions
of the particle-hole continuum can be written in the form
S~ = cos(0~ + b~) where b~ is a correction of order ~ and
they correspond to an angular shift of the positions of
the points at the Fermi surface. In the thermodynamic
limit (which is the limit of interest) they fill densely the
Fermi surface and renormalize to the bare frequencies.
The collective modes cannot be written as a cosine of
some angle. They detach from the particle-hole contin-
uum. However, in principle, they are also present in the
solution of the bosonic Hamiltonian. In the case of the
Landau theory there is only one collective mode (the zero
sound for neutral systems or the plasmon for charged sys-
tems) which is born at the direction of the momentum
transfer q, or in our notation, at j = 0. In some sense the
Fermi-liquid problem resembles an impurity problem in
which the states of the particle-hole continuum get only
a phase shift and a bound state (the collective mode) ap-
pears in the spectrum. We therefore divide our solution
in two cases as follows.

A. Particle-hole continuum S7 ——s7

Observe that in this case Eq. (7.11) can only be in-
verted if we dispose of the singularity which appears for
i = l. This is done by writing (7.11) as

In the case of the collective mode there is no divergence
in Eq. (7.11) and the solution is just

g~s;Co
ip

Sp —s; '

(7.15)
g~s, Co
Sp+s;'

2s.'='~-s '.
p

(7.16)

which defines Sp. The solution of this equation can be
seen graphically in Fig. 4. For a finite number of points
the solutions for the particle-hole continuum have a Gnite
angular shift while the collective mode detaches from the
continuum. In the thermodynamic limit the particle-hole
continuum renormalizes to the bare frequencies while the
collective mode gets a finite renormalization in the fre-
quency.

The sum in (7.16) can be rewritten in a well-known
form if we go back to our original notation and take the
thermodynamic limit (N ~ oo). Using the definition of
the beginning of the section we And

where Co is defined as in (7.13). By substituting these
equations there we find

where

M, ( = Zig~s)Cib, (+ g sqCt

Si

g~s, Ci
I,
—

st+ s

(7.12)

g ) 2
= N(0)U(q)

2
'2 2

2" d0= N(0)U(q)

where

(7.17)
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II(s) = %(0) H(isi —1)

ls+. O(1 -
I I)

—1i/I —s' (7.19)

is the RPA polarization function. Therefore Eq. (7.16)
is nothing but the equation for the collective modes, as
expected. In two dimensions the form of the polarization
function is given by

where we have introd. uced a small imaginary part in the
denominator in (7.18). Notice that we can solve Eq.
(7.16) for S0 using (7.19) and (7.17). Using the real
part of (7.19) (the principal value) one finds S0(q)

i+w (p) U(q)
, which is always greater than 1.

gl+2N(0)U(q)
The normalization coefficients C~ in (7.12) are already

undefined. In order to calculate these coefficients we go
back to Eqs. (7.8). Using the results (7.12) the first of
those equations gives

2C02 S0+). ,s —s-
't 2 s —s- [8 —s ) S —s. (S —s) ~p g &So g)g

while the second gives

Z,.C2 —Z;C2
s2 —s2

2

2' s]2s2s2s2
2Cp2Sp+

(g2 s2) (g2 s2)
(7.21)

By substitution of (7.21) in (7.20) we find finally that

C;= 1

Z,g~s,
(7.22)

We can further simplify considerably our results in the
N ~ oo limit. The only sum which appears in the final
form of the matrices M;i and JV;~ is the one related to
the polarization function (7.19). It is easy to show that

2s. ~ (
s[~ s —s2 2qrl

27I do —2~
~

= —K,
si —cos 0 )

(7.23)

since the principal value of the integral in (7.23) vanishes
for ~s~~ ( 1 [see Eq. (7.19)]. If we substitute these results
in (7.12) we get

1 Ng gs, s~

N% 1+Ng si —s,.

1 Ng assi
1+Ng si+ s, '

(7.24)

which is the final form of the solution for the particle-hole
continuum. Observe that M;~ has a diagonal term of or-
der zero in N . If we take into account the fact that
s~

——s ~ it is easy to show that this term has the form
[8; ~ + sgn(i —l)8; ~]. This term corresponds

to a rotation of the id.entity matrix in the bosonic rep-
resentation. Any calculation of physical quantities with
this matrix would give the same result as for the non-
interacting system. In terms of the Landau theory the
rotation of the bosonic eigenfunctions is essentially Lan-
dau's adiabatic principle which states that the states of
the interacting system and the noninteracting system can
be linked adiabatically. ' The next term in M, ~ is order

N and represents the dressing of the particle by the in-
teraction, that is, the formation of the polarization cloud.
Although this is an efFect of order N in the matrix M, ~

it may be appreciable, since the number of points of the
Fermi surface is ¹We will show that this is the case for
the calculation of the quasiparticle residue. Furthermore,
observe that the matrix A;i has contributions of order
N only and therefore this matrix is null for the nonin-
teracting system in the thermodynamic limit. Moreover,
the matrix JV, ~ carries no resonant terms in the denomi-
nator of (7.24). This can be understood easily from the
discussion of the preceding section. From definition (7.7)
we observe that while M;~ links points on the same hemi-
sphere of the Fermi surface the matrix JV, ~ links points
in opposite hemispheres. What we are showing here is
that, since we choose a regular interaction, in the ther-
modynamic limit the contribution from opposite points
of the Fermi surface vanishes completely. All the physics
of the Fermi liquids is defined in just one hemisphere of
the Fermi surface. We will show in the last section of this
paper that in one dimension this is not the case because
the Fermi surface has a finite number of points.

Another interesting feature of the solution (7.24) is its
dependence on the interaction. Observe that in terms of
our original variables the coefEcient of the correction N
in the matrices can be written as y+~(p)U' Thus, if we1+N p U(q)
have a long-range interaction, a Coulomb interaction for
instance, this term is always finite and we can replace it
for an efI'ective interaction which is local at long wave-
lengths. In the next section we show that this term is
closely related to the quasiparticle residue. Moreover, as
we will show in Sec. IX, this term represents the screen-
ing of long-range interactions which arises naturally in
the bosonic formalism.

VIII. THE FERMION PROPAGATOR
FOR A FERMI LIQUID IN TWO DIMENSIONS

The fermion propagator can be evaluated by using Eq.
(3.3) and the Bogoliubov transformation (7.7). It is a te-
dious, but trivial algebra to show that the fermion prop-
agator for two points, i and j, at the same hemisphere of
the Fermi surface can be written as
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+~~ ~'~' +~i ii, r, t j, 0 = exp
2N(0)Vqv~ ( s, s,.

il i(qv~S(t qv) —+ + ~ i(qvp S(t+q r) )
isj

(8.1)

while for two points in opposite sides of the Fermi surface we find

t ~il ~il + ~il~il ~jl~ j l. + ~.jl~.jl'+1""'~j" ='"' &-2N(0)V...
q, l

l ale
!il

jl e*(q qq —q & +~ ~. (q qqqq ")'(

ISis
(s.2)

Therefore our task is to calculate the sums in these two expressions. If we use the result (7.7) we find

ie~qSI t b i~~q8; t n ./Si8. ~qt y qtMilM~le = b, ~e e ' —e1+Ng si —sz

( g q) ivpqs(t2

+I(1+Ng) ' ~ - (sl —s, ) (sl —s, )
s, s~ (s.3)

Notice that the last term in the above expression has a double singularity at sl ——si and sl ——s~. We can extract this
singularity using Poincare's theorem,

1

sl 8i 8l —sj si sj sl —si ~

+ vr h (sl —s, ) b (sl —s,.) . (8 4)

The double () function can be rewritten in terms of the angles at the Fermi surface due to the definitions in (7.6).
Indeed, it is trivial to show that

N b, l N
b (sl —si ) = 0 (cos 8l —cos (gi)

2vr ~sinful~ 2qr gl —s2
(8.5)

where we have used el = ~'. If we substitute (8.4) in (8.3) we finally find

4 gl+Ngp 1 —s,'. " qN)
' (8.6)

where we have included only the terms of order zero in N, that is, the only terms that survive in the N —+ oo limit.

By the same token we can show that

)~~ ~ ivvqS(t 15
EN)

(8.7)

As we have explained before, this result shows that processes which involve particle-hole pairs at opposite sides of the
Fermi surface disappear in the N ~ oo limit.

If we substitute (8.6) and (8.7) in the expression for the Green s function (8.1) we end up with the expression

2

4N(0) V (1+N(0)U( )
'q

(8.8)

where (i, r, t~ j, 0)o is the propagator for the noninteract-
ing system calculated in (5.15). Observe again the form
of the interaction coefBcient which appears in the screen-
ing form as we have pointed out in previous sections.

That is, long-range potentials will not change the quasi-
particle residue because at long wavelengths the potential
acting on the fermions is purely local.

Equation (8.8) gives the behavior of the fermion prop-
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agator in the asymptotic low-energy limit. We have only
kept efFects which survive the limit N —+ oo. In Fermi liq-
uids, there are a variety of quantities of physical interest,
such as quasiparticle lifetimes, which vanish faster than
1/N as required by Fermi-liquid theory. Such effects can
be calculated with the method of bosonization but do
not appear at this order in 1/N. Recently, Houghton and
Marston, have used bosonization methods to compute
the quasiparticle lifetime.

In what follows, and in order to simplify the calcu-
lation, we consider the case of local interactions from
the beginning, U(q) = U. Nevertheless, we must keep in
mind that screening is a natural consequence of bosoniza-
tion in dimensions higher than one. Applying the same
methods we have used in Secs. V and VII, we make the
replacement

dqz N(0)vF
g~

2 p2 (8.9)

and we are left with the integral

dgx gN e ~ 1 —exq~(vI" t—n&-r)

0

(i, r, t ~q, o) = ZF (i, r, t~q, o) „
(8.11)

A2
= A, (8.10)

[1 —iA (vFt —n, r)]
where we have disregarded the last term in (8.10) since
we are looking at the asymptotic state of the system.

Substituting (8.10) and (8.9) in (8.8) we find

IX. SCREENING OF A SCALAR POTENTIAL

In the preceding section we have shown that screen-
ing appears naturally in the exact solution of the Lan-
dau Axed point if we use bosonization. In this sec-
tion we reconsider the problem of screening of exter-
nal probes by the interacting Fermi system in terms of
the bosonized theory. This is a well-understood problem
in the framework of Fermi-liquid theory and the results
of our bosonized theory naturally agree with the Fermi-
liquid theory results.

In this section we examine the behavior of the system
under a scalar external G.eld whose external Hamiltonian
is written as

H.„,= —) V.„,(q, t)p(q), (9 1)

where p(q) is the Fourier component of the charge density
of the system which is written in terms of the operators
(2.1) as

p(qg = ) n~(k). (9.2)

the Fermi surface is locally Bat. If we use another difer-
ent construction, such as in Ref. 14, we would get a difer-
ent numerical factor. This factor is irrelevant and leads
to a small renormalization of the quasiparticle residue.
But this is not the important point here, the most strik-
ing result is the survivor of the Fermi-liquid state for
any strength of the interaction potential in the case of
isotropic, local, interactions.

where

1 ( N(0)U
4 1+N OU

(8.12)

Therefore we consider external Hamiltonians of the
form

is the quasiparticle residue. Observe that this form of the
quasiparticle residue has clear nonperturbative character.
In the limit of weak coupling, that is, N(0)U ~ 0, we
find

[N(0) U]2

4

which is the expected form of the RPA solution for local
interactions. In the strong coupling limit, N(0)U ~
oo, it is easy to show that

H.„,= —) V,„,(q, t)n;(k),
q, k

which, in terms of bosons, is written as

i/2
A(kF) Iq

. v„-

V

x V.„,(q, t) [bt(kF) + b;(kF)].

(9.3)

2N 0 U
(8.14)

It wiB be useful later to observe that the electronic
density is given in terms of the bosons as

which, once more, has a nonperturbative character. Ob-
serve that the quasiparticle residue never vanishes and
it actually saturates. That is, the Fermi-liquid state
survives for any strength of the interaction. Also ob-
serve that the propagator for opposite hemispheres of
the Fermi surface, (8.2), vanishes in the N -+ oo limit.

We want to emphasize that the result (8.14) is not
completely universal. The numerical factor in front of
Eq. (8.14) can change due to geometric factors. We have
used Haldane's construction of a sphere with radius A
at each point of the Fermi surface. In this construction

[Np(kF)V(q v„- (]'1

k~, eq q~ 0

x[bt( —kF) + b~(kF)]. (9.5)

Here we consider the effect of the potential (9.4) in a
Fermi liquid in order to see what kind of eEect it can
cause. The Hamiltonian of the system in this case is
given by H = HFI. + H,„iwhere HFI. is given in (7.1).

The equation of motion for the fields is given by the
saddle point equation for the action in (3.8),
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= —q. ~& 4&(k~) —U(q)) [lq ~& llq U& l)NA(k~)N~(k~)1 ' [4V(k~)+4;-( k—~)]
W'q(k~)

k'F
1/2

)'Iq ~~ IN~(kF)1
V,„,(q, t), (9.6)

which, after a Fourier transform, gives

[Iq g- INA(k )v]'~'y;(kF, ~)

))t (4) )'..(~, ~) + &(v) ) I)q ';.l~ (r'' )V)' 'I4.-()",~) + 4;-(—r'', ~))) (9 7)
q v&

klF

Summing over k~ on both sides of (9.7) and using (9.5)
we find II( ) = dA

Sg —cos t9 + 'L7/
(9.14)

where

II(q, (u) = ) Nz(kF)
A:F

4J g V~
(9 9)

(P(q ~)) = 11(q ~)[V-t(q ~) + U(q)(P(q ~))] (9.8) where we have included a small imaginary part for the
frequency, 0 is the solid angle, and 61 is the angle between
the Fermi velocity and q. Observe that the polarization
function is only a function of . We can also rewrite

VFQ

(9.14) as

U.~(q, ~) = V. t(q, ~) + U(q) (P(q ~)). (9.10)

is the polarization function we have found in (7.18).
The interpretation for (9.8) is very simple: the exter-

nal potential produces a polarization of the fermionic gas
which shields the interaction at long distances. There-
fore, instead of the bare external potential V,„i(q,ur), a
new polarization potential appears, U(q)(p(q, ur)), and
the effective potential which is felt by the fermions is
given by

rr)g, ~)=x)o) ) f " ."'
VFq

dQ (—Z7r cos8b
i

E vFq

where P means principal value.
In the limit of (( 1 we obtain

(9.15)

The e6'ective potential can be obtained from the bare
potential using (9.8) and (9.10). Solving (9.8) for the
density one gets

II(q, ~)V,„,(q, u) )
1 —U(q) II(q, (u)

Substituting (9.11) in (9.10) we finally find

(9.11)

V,„t(q,(u) (9.12)

where e(q, u) is the dielectric function of the fermionic
system which is given by

e(q, ~) = 1 —U(q)II(q, ~). (9.13)

The expressions (9.12) and (9.13) are the RPA results for
the electronic gas. Since we are dealing with the ex-
act diagonalization of the fermionic system at long wave-
lengths, it is natural to recover the RPA approximation
as the exact result in this limit since, as is well known,
its long wavelength limit saturates the sum rules.

In the limit of interest, namely, low frequency and
small momenta, the polarization function can be easily
obtained. From (7.18) we have

11(q ~) = —N(0)11+~~p~ I+&
I 2, I

(916)
f cu'

l v~q) 4 F

where pg is a numerical factor which depends on the
spatial dimensionality d of the system (pi —— O, p2
1/vr, 7s ——1/2). The second term in the right-hand side
of (9.16) is the Landau damping term due to the decay of
the bosonic modes into the particle-hole continuum. Ob-
serve that in one-dimensional systems the bosonic modes
never decay due to the fact that pq

——0. It means that the
true excitations of the one-dimensional system are collec-
tive modes. In higher dimensions this is not true because
there is always a particle-hole continuum. In Sec. XI we
will see that this result has important consequences for
the calculation of the Green's function.

At this point it is tempting to follow the conventional
approximation of Fermi-liquid theory and to argue that
the fermion-fermion interaction should also get screened
just as much as an external probe is. However, this is a
delicate argument which is only justified by its success in
explaining experiments. One should keep in mind that
this is essentially a perturbative argument, motivated by
a partial resummation of the perturbation theory series
(namely, the sum of all the bubble diagrams or RPA). In
earlier sections of this paper, we showed that since the
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tangential fluctuations do not change the energy, they
mainly give rise to a density of states. In the conven-
tional screening first argument of Fermi-liquid theory (in
the RPA approximation ) one finds an eff'ective electron-
electron interaction of the form H = Hp + H~ ~. (io.i)

actly as in the preceding section, that we couple the
fermionic system via minimal coupling with an external
vector field. The Hamiltonian can be written as

Hp is the noninteracting Hamiltonian and

If we substitute the asymptotic form of the polarization
II the RPA expression for the effective potential becomes

U(q)
1 + U(q)N(0)

Hp ~ = g) v„-; A gnat(k)

q, k

2 ) Aq A-, n -, (k) + H~
qiq «k

(10.2)

This expression shows that, within RPA, screening is an
efFect caused by the density of states of the Fermi system.
Notice, however, that this is exactly the same expression
that appears in Eq. (8.8) when we diagonalized exactly
the bosonic problem. Thus bosonization in dimensions
higher than one produces screening naturally and we do
not have to put it in by hand as in the usual approach in
condensed matter physics. Furthermore, notice that our
arguments in this section do not depend on the dimen-
sionality of the system, therefore, we conclude that in any
number of dimensions the screening of an external poten-
tial has RPA character. However, as we will show in the
last section of this paper, in one dimension the fermion-
fermion interaction is not screened. In particular, this
result leads to the vanishing of the Green's function for
the Coulomb potential in one dimension. Once more, if
we have screened the potential by hand we would get a
wrong result.

X. COUPLING TO GAUGE FIELDS

HF-Q ~ g [Iq -„IN (k )Vj"
q, kF, v„- q~pkF

x vk, - . [A q
bt (kp) + Aq bq(kp)j

is the fermion-gauge part of the Hamiltonian where m*
is the mass of the fermions. The first and the second
terms on the right-hand side of (10.2) give the coupling
between the gauge fields and the fermionic system (g is
the coupling constant of the theory). The last term on
the right-hand side of (10.2) is a pure gauge field term
usually describing the energy of the gauge field or possible
external current terms which generate the field in the
system.

Since we are dealing with small momentum transfer
only, we notice that the dominant contribution from the
second term comes from q = —q' (the terms with q = 0
or q' = 0 are not present in order to preserve charge
neutrality in the system). Using P& no(k) = Ny where
Nf is the number of fermions we can rewrite (10.2) in
terms of the boson operators approximately as

In the previous two sections we showed how screen-
ing arises in bosonization of fermionic systems with long-
range scalar interactions. The reason for that is that
the fermionic system resembles a liquid which can sus-
tain longitudinal oscillations. However, if transverse os-
cillations are present the physics of the system changes
completely.

I et us consider a system of fermions in D ) 1 space
dimensions. In one space dimension, all gauge fields are
purely longitudinal and, hence, the interactions they me-
diate are equivalent to Coulomb-like interactions of the
form discussed in the preceding section. Suppose, ex-

(10.3)

The generating functional is obtained exactly as before
and the equations of motion for the bosonic fields are
simply

. Ogq(kF)
F

—g[~q vq ~Np(kg)Vj ~ vq,- A.q (10.4)

and for the gauge fields we find

2 )2

Pq(ky, t)

(10.5)

where Do (&, q) is the bare propagator for the gauge field (which in general is a tensor with spatial components
i, j = 1, 2, . . . , d where d is the number of spatial dimensions) and J,„i(r,t) is some external current. Equations (10.4)
and (10.5) are coupled. They can be solved by a Fourier transform. Solving for (10.4) we find
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[iq P7g iN~(kF) V]'i
Pq(kJ;, (u) = g v„-;A~(&u).

q v&

Substituting this result in (10.5) one finds

(10.6)

) Do ' (~ q) A.-(~)
2 A:~,l

ky

2

A~((u) + J,„g(q,ur) (10.7)

where nf = Ny/V is the density of fermions. Equation (10.7) can be rewritten in a more appealing form as

) D '(~, qq . . A;(~) = J.„,(q, ~)
2

(10.8)

where

(~ q)„;, D, '(~, qg . . —g' N(0)v~~b; ~ + ) NA(k~)
A:~

QJ g VA
kF —& (1o.9)

is the effective propagator for the gauge fields. We have
used m' = n~/[v&N(0)]. In general it is very diKcult to
calculate the correction to the bare propagator. However,
for an isotropic system, due to the symmetry, only the
diagonal terms survive. For long wavelengths (q « k~)
and small frequencies (w « v~kp) one finds

[D i
(ur, qg] . . = ~Do i (~, q)] . .

—v g [N(0) + II(q, (u)] b, , (10.10)

where II(q, cu) is defined in (7.18).
In the limit of interest, namely, && 1, we can use

the result (10.16) and rewrite the renormalized propaga-
tor as

[Do(~, R], = [Do(~ q)], (10.14)

where VG is the velocity of propagation of the gauge fields.
[Do (ur, q)]; ~ is a tensor whose form depends on the choice
of gauge and it has an analytic dependence in ~ and q.
The renormalized propagator has the form (up to ana-
lytic structure tensors)

(10.15)

is what happens in a superconducting state.
Let us assume, for the sake of the argument, that the

bare propagator has the form

D (w, qQ . . = Do (ur, q) . . +i~ ~ b, , , (10.11)

where

Kg Ay Q
2

= 7rpgg N(0)vF (10.12)

(10.13)[D (0 8], , = [Do (0 R], ,
The cancellation of the density of states term in
Eq. (10.11) implies that the only effect of electron cor-
relations at low frequencies and small wave vectors is a
damping (not screening) of the transverse gauge fields.
This is the well-known phenomenon of Landau damp-
ing of transverse gauge fields in metals. A noncanceling
density of states would imply a gap in the spectrum of
fIuctuations of the transverse gauge fields and the expul-
sion of static gauge fields, namely, a Meissner effect. This

is the plasma frequency associated with the oscillations of
the electronic system due to the coupling to gauge field.

Observe that, contrary to the scalar case of Sec. IX,
the zero frequency gauge fields are not affected by fluc-
tuations of the Fermi system, that is,

g i/3

~) (1O.16)

which defines a new scale in the problem. In the strong
coupling limit, that is, g —+ oo, the plasma frequency is
much larger than the characteristic frequencies of the sys-
tem (u„~)) tu). In this limit the characteristic momen-
tum of the system will be cut off by the plasma frequency,) q, and the asymptotic form of the propagator+2v~ v~
is dominated by the Landau term, namely,

—1
D(u)) q) =

V~ Q
—Zbd

(10.17)

In real space and time this form of the propagator implies
that the gauge fields behave diffusively. The same type
of propagator is found in the RPA approach. '

The Landau damping introduces a new physical scale in
the problem. Observe that the interaction is screened
with a frequency dependent screening length of order
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XI. THE ONE-DIMENSIONAL CASE

In the previous sections we have shown that in terms of
response functions bosonization gives the same result as
the RPA approximation. This is due to the fact that RPA
fulfills all the sum rules at long wavelengths and low en-
ergies, which is exactly the limit where bosonization can
be applied. Moreover, RPA is valid for high densities
which in our language means that A:~ is large compared
with the fluctuations in the system. This would lead us
to conclude, erroneously, that RPA and bosonization are
one and the same thing. Actually, the RPA results are
expected from the bosonization point of view. We have
already shown that bosonization gives rise to screening
naturally, something that you have to do by hand in the
RPA approach. Moreover, RPA is only valid in the weak
coupling limit, N(0)U « 1, and, as we have shown be-
fore, this is not the case of bosonization. It is indeed
well known that in one dimension RPA works fi.ne for
correlation functions while it cannot explain the absence
of isolated singularities in the Green's function. In this
section we try to explain the reason for this behavior by
comparison with our results in higher dimensions.

In one dimension all the calculations simplify enor-
mously. The matrices M;~ and JV;~ reduce to numbers.
The condition (7.8) can be rewritten in terms of a vari-
able ((q) such that

M(q) = cosh((q),

Af(q) = sinhg(q).

The other condition in (7.8) is automatically fulfilled. In
the one-dimensional case there is no particle-hole contin-
uum since the Fermi surface reduces to two points, that

I

is, si ——1. The collective mode equation (7.16) defines
the eigenvalue for the collective mode,

2
( )S (11.2)

which is easily solved as

Sp(q) = Ql + 2g(q) = Ql + N(0) U(q),

E~ = vpqgl+ N(0)U(q), (11.4)

which is the well-known result for one-dimensional
systems. The variable ((q) is defined by the solution
(7.15), that is,

N(q) Sp —1 Ql + 2g(q) —1
tanh q

M(q) S, +1
(11.5)

which can be rewritten in a more standard form,

tanh[2((q)] = q(q)
1+g(q)

'

which is the expected result.
Observe that A' is finite, contrary to higher dimen-

sions. This is a result of the finite number of Fermi
points. We will now see that this has deep consequences
for the one-particle propagator. Indeed, using Eq. (11.1)
we find

where we used (7.2) with N = 2. The last expression can
be put in a more standard form if we use the notation of
Sec. VII and rewrite the frequency of oscillation of the
collective mode as

( , j[je, c)=0(e, c, c,[j, O)c exp () (1 —cce(qe)
. sinh ((q)

VN(0)qv p
(11.7)

(2, *,t~~, o) = 0 (11.8)

at the same Fermi point (right movers, for instance) and 1+N(0)U —1.
Ql + N(0)U

(11.10)

for opposite Fermi points. This is the well-known result
for the one-dimensional I.uttinger model.

The first consequence of the finite value of A' is the
presence of an anomalous dimension. Indeed, suppose
the potential is local. Then the only effect of the inter-
action on the spectrum is a renormalization of the Fermi
velocity from v~ to v~ ——v~/1 + N(0)U. In this case
the integral (11.7) is easily done [see (5.14)] and the result
ls

n 6 o.'
Z —V~t + 2C2 (Z —(VFt —2O) )

Observe that the above Green's function has an anoma-
lous dimension given by p and a branch cut in the spec-
trum instead of an isolated singularity. As we discussed
before, this is a result of the process (a forward scatter-
ing) that links opposite sides of the Fermi surface, a pra-
cess which is suppressed by the presence of the particle-
hole continuum in higher dimensions (in the absence of
nesting, singular interactions, or gauge fields)

But this is not the only difference between one and
higher dimensions. In the form of the fermion propa-
gator (11.7) the interactions are not screened. Suppase,
for instance, that we have a Coulomb interaction, that
is, U(q) = e /q . This is the case of the Schwinger
model ' which was studied via bosonization by Kogut
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and Susskind. In real space the Fourier transform of the
Coulomb potential gives rise to a linear potential and
therefore to confinement. If we calculate the spectrum
from (11.4) we get a massive relativist bosonic theory
(the system has a gap at q = 0). It is easy to verify that
the propagator in (11.7) has an infrared divergence at
t g 0 and it vanishes in this limit, that is, the fermions
decay and disappear completely from the spectrum, only
the collective mode is left. However, as we have shown
in Sec. IX the one-dimensional fermion gas screens ex-
ternal probes as expected, that is, in the RPA form. Of
course, if we have screened the potential first, as in the
RPA approach, we would never get this result.

Therefore the existence of the Luttinger fixed point in
one dimension and the presence of anomalous dimensions
is just a result of the lack of phase space (or due to a finite
number of points in the Fermi surface).

XII. CONCLUDING REMARKS

In our previous papers we studied the transport and
thermodynamic properties of Fermi liquids. In this pa-
per we have studied the Landau fixed point of a Fermi
liquid and the associated one-particle propagator using
the method of bosonization in arbitrary dimensions.

We have shown that it is possible to bosonize a the-
ory of interacting fermions in the restricted Hilbert space
of states close to the Fermi surface. The bosonization is
based on the algebra of the particle-hole operators in this
Hilbert space and in the introduction of bosonic coherent
states which generate deformation of the Fermi surface.
From the coherent states it is possible to define a generat-
ing functional which is a path integral over the histories
of the Fermi surface. The fields which propagate on the
Fermi surface are sound waves which can be viewed as
coherent superposition of particle-hole pairs.

We have shown that from the construction of the
fermion operator via coherent states we obtain the cor-
rect one-particle propagator which represents a fermion
moving with the Fermi velocity. We also discuss the
terms which appear in the interacting Hamiltonian and
their relevance for the fixed point. It is obtained that
at the fixed point, and for systems with nonsingular pair
interactions, the only remnant effect of the interaction is
an effective rotation of the bosonic eigenstates. Processes
which in one-dimensional systems give rise to anomalous
dimensions, such as those that couple points on oppo-
site hemispheres of the Fermi surface, are found to have
an effect which vanishes in the low-energy limit. Thus
bosonization recovers in a natural way Landau's adia-
batic principle. It is important to stress here that we are
including forward scattering only and therefore our re-
sults are valid for Gaussian fixed points. This simple be-
havior at the fixed point is a consequence of the kinemat-
ics of d-dimensional systems. In contrast, in one dimen-
sion as well as for the cases of nested Fermi surfaces, sin-
gular interactions, and whenever dynamical gauge fields
are present, the system may be controlled by infrared
stable fixed points which have richer behavior. We will

discuss these issues elsewhere.
We show that for the simple case of isotropic interac-

tions the bosonic Hamiltonian can be diagonalized by a
generalized Bogoliubov transformation which mixes dif-
ferent points of the Fermi surface. We obtain two differ-
ent types of solutions which represent the particle-hole
continuum and collective mode. We obtain the fermion
propagator in the thermodynamic limit and in the low-
energy regime, for local interactions. We show that
in dimensions higher than one the fermion propagator
has isolated singularities and the only difference between
the noninteracting system and the interacting one is the
presence of the quasiparticle residue. We evaluate the
quasiparticle residue for any strength of the interaction
(and thus showing the nonperturbative character of the
bosonization approach and its difference from the per-
turbative approaches based on resummation of diagrams,
such as RPA) and we show that the quasiparticle residue
is always finite, that is, there is no possibility of break-
down of Fermi-liquid theory for local interactions, exactly
as expected. Furthermore, our results agree with the per-
turbative ones in the limit of weak coupling. Moreover,
dynamical screening is a natural result of the bosoniza-
tion method in dimensions higher than one. That is, we
obtain that long-range interactions are screened and we
do not have to assume it as is usual in perturbative the-
ories in condensed matter physics.

We also study the problem of the response of the
fermionic gas to scalar external probes and obtain the
RPA result for screening. This confirms that the
bosonization is getting the correct physics at long wave-
lengths and low energies since the RPA fulfills the sum
rules in this limit. And we stress once more that it
does not mean that RPA and bosonization are the same
thing because bosonization is a nonperturbative method
which is valid for any strength of the interaction. We also
show that when fermions are coupled to gauge fields the
RPA result is also valid, the interactions are not screened
but there is Landau damping (except in one dimension).
We calculate the form of the effective propagator for the
gauge fields and find the expected form for RPA.

Finally we compare the one-dimensional problem, re-
lated to a Luttinger fixed point, with the Landau fixed
point. We show that due to the finite number of Fermi
points in one dimension the mixing of points across
the Fermi surface exists and leads to the appearance
of anomalous dimensions in the Green's function. In
one dimension there is only a collective excitation while
in higher dimensions there is a particle-hole continuum
which shares spectral weight with the collective mode.
We also show that the perturbative approach of screen-
ing the fermion-fermion interaction by hand would lead
to wrong results in one dimension. While the one-
dimensional fermionic system screens external probes in
the usual RPA form it does not screen the fermion-
fermion interaction. The bosonization method leads to
the vanishing of the Green's function in the case of
Coulomb interactions in one dimension. In higher dimen-
sions, due to screening, the Coulomb interaction leads to
an effective local interaction which does no harm to the
Fermi-liquid behavior.
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