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We study electron counting statistics of a disordered conductor in the low-temperature limit.
We derive an expression for the distribution of charge transmitted over a finite time interval by
using a result from the random-matrix theory. In the metallic regime, the peak of the distribution

is Gaussian and shows negligible sample-to-sample variations.

On the contrary, the tails of the

distribution are neither Gaussian nor Poisson-like and exhibit strong sample-to-sample variations.

The physics of current fluctuations at low tempera-
ture presents an interesting quantum mechanical prob-
lem. The classical Johnson-Nyquist noise formula! gives
a good description of current fluctuations due to ther-
mal fluctuations. However, at low temperature thermal
fluctuations are small and another type of noise becomes
important. At low temperature, the quantum nature of
the current and the discreteness of electron charge is the
main source of current fluctuations and for these reasons
this noise is called quantum shot noise.

Many of the low-temperature current-fluctuation stud-
ies deal with a disordered conductor because it has a
simple and well established mathematical description
based on Landauer’s approach.? Lesovik® and Yurke and
Kochanski studied quantum shot noise in a two-terminal
conductor using this approach and found an expression
for noise power which is a factor 1—T off the classical
shot noise, where T is a transmission coefficient. This
analysis was generalized to a multiterminal conductor by
Biittiker®, and he also found a reduction of the noise.
Physically, the noise reduction is due to the Fermi statis-
tics which leads to correlation of transmission events.

In Landauer’s approach, details of current transport
are determined by transmission coefficients and there
have been many works on the distribution of the coef-
ficients. In the past decade, the random-matrix theory
of disordered conductors, pioneered by Dorokhov,® has
been developed,” motivated by theoretical discovery and
experimental observation of the universal conductance
fluctuations. The theory succeeded in providing a com-
plete characterization of the distribution and it also suc-
ceeded in providing insight into the origin of the uni-
versal conductance fluctuations. One of the fundamental
results in random-matrix theory is the universality of the
distribution in the metallic regime and the universality
provides a link between the microscopically calculated
transmission coefficients and the macroscopically mea-
surable conductance.

Application of the universal distribution to current
fluctuations also provides insights into the current fluc-
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tuations of a disordered conductor. Beenakker and
Biittiker® calculated the sample averaged noise power us-
ing the universal distribution and found that it depends
only on the conductance and that it is one-third of the
classical value.

Noise power is a good measure of noise magnitude and
its study revealed the reduction of noise due to Fermi cor-
relation. However, compared to Johnson-Nyquist noise,
our understanding of quantum shot noise is limited and
not many things are known besides the noise magnitude.
Our goal in this paper is to explore the physics of low-
temperature current fluctuations beyond the noise power.
For our purpose, it is useful to look at the behavior of
current fluctuations in the time domain, which brings one
to the notion of counting statistics of charge transmit-
ted in a conductor over fixed time. A previous study of
the counting statistics for a single-channel conductor re-
vealed that the attempts to transmit electrons are highly
correlated and almost periodic in time, which leads to
binomial statistics.®

In the time domain study of current fluctuations, the
charge Q(t) (measured in units of e) transmitted over a
time interval t is the quantity of interest and the prob-
ability distribution P(Q(t)) tells everything about the
current fluctations. Even at zero temperature, P(Q(t))
has finite peak width due to the quantum nature of the
To study P(Q(t)), it is useful to introduce the character-
istic function x(A),

x(A) = Z el?*P(Q) for —m <A<, (1)

integer Q

because in many cases, x(A) is easier to calculate than
P(Q(t)) itself. x(A) is a Fourier transform of P(Q(¢))
and so once x(A) is known we can either take an inverse
Fourier transform of it to get an explicit expression for
P(Q(t)), or expand its logarithm to get cumulants of the
distribution:

nx() = 3 B @), @)
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In the linear transport regime, we derive a general ex-
pression for x(A) in terms of transmission coefficients
and by combining it with the transmission coefficient dis-
tribution for quasi-one-dimensional conductors, we show
that

Vt -
arcsinh®y/ei* — 1 | 3)

where V is the dc voltage, G = g(e?/h) = (NI/L)(e?/h)
is the average conductance, and the bar on the left hand
side represents the sample average. Cumulant expan-
sion of Eq. (3) implies that, on average, for GVit/e > 1,
P(Q(t)) has a Gaussian peak at GV¢/e with ((Q%(¢))) =
GVt/3e. It also implies that even though the peak
is Gaussian, the tails show deviation from both Gaus-
sian and Poisson distributions. We estimate sample-to-
sample variations of P(Q(t)) by studying variances of
various quantities and find that for GVt/e > 1 sample-
to-sample variations of P(Q(t)) appear only in the tails
of P(Q(t)) and that around the peak P(Q(t)) is univer-
sal.

Before we present the derivation of the above result, let
us stress that there are two kinds of averages involved.
To avoid confusion, we will use an overbar () for an
ensemble average, or an average over samples, and an
angular bracket ({---)) for a quantum average, or a quan-
tum expectation value. Also we reserve a double bracket
(({---)}) for a cumulant of a quantum expectation value
and “var” [var(---)] for --.2 — 732,

Now, let us derive Eq. (3). Following Landauer’s
approach,? we consider a conductor sandwiched between
two perfect leads. In the linear transport regime, the
scattering properties of a conductor are described by a
unitary scattering matrix S that relates incoming and
outgoing amplitudes, Ir(r) and Op(gr):

d(B)-(%) e

where the subscripts L and R stand for the left and the
right leads. )

The unitarity of S is due to the current conservation,
and it allows a system to be decomposed into indepen-
dent channels.’® Then the decomposition motivates one
to study single-channel transport first, where a transmis-
sion coefficient T' determines the transport. Recently,
the counting statistics of single-channel transport was
studied.® In the low-temperature limit (kg7 < eV), the
characteristic function x;(A) of a single-channel system
becomes

Inx(A) = ¢

x1(A) = (pe™* + q)™, (5)

where p =T, q=1-T, M = eVt/ht and M > 1 is
assumed. The inverse Fourier transform of Eq. (5) gives
the binomial distribution, which implies that the inter-
vals between subsequent attempts to transmit electrons
are quite regular. This regularity is due to the Pauli
exclusion principle.

Having the characteristic function of a single channel,
we write the total characteristic function x() as a prod-
uct,
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x(A) = [[(@e> +1-17)™, (6)

b

where T} is a transmission coefficient of channel j. The
product form Eq. (6) follows from the mutual indepen-
dence of channels. By taking the logarithm of Eq. (6),
we get

Inx(A) = M Y In(Tje +1-Ty), (7)

7

and by expanding Eq. (7) in terms of A we find

(8)

k-1
@y =my (ta-ng) T

T=T;

We note that both In x(A) and ((Q*(t))) are linear statis-
tics of the T7’s.

Current fluctuations are determined by the distribu-
tion of transmission coefficients and the distribution
varies from sample to sample even though the samples
have the same macroscopic parameters. Therefore, in
principle, each sample exhibits distinctive current fluctu-
ations. However, according to the random-matrix the-
ory of disordered conductors, in the metallic regime
(1 €« g < N) where N is the number of channels, the
distribution approaches a universal one.” This result pro-
vides a motivation to approximate the sample-dependent
distribution by the universal one. To exploit the univer-
sal distribution, we introduce new variables v; and the
density function D(v) defined by T; = 1/cosh®v; and
D(v)dv = D(T)dT, where D(T) is the density function
of T;. According to Ref. 7, D(v) is uniform over a wide
range of v,

D) =g forv < v.. 9)

We combine Eq. (7) with the universal distribution to
obtain

1nx(,\)=Qo/0°°du1n(eM"21 +1), (10)

cosh®v

where Qo = gM. In Eq. (10) the upper limit v, is re-
placed by infinity, which is valid in the metallic regime
because for large v the integrand is exponentially small.
The evaluation of the integral then leads to Eq. (3). We
note that because Inx(]) is a linear statistic, the univer-
sal distribution approximation is equivalent to taking an
average over samples.

Cumulants are useful in understanding features of the
probability distribution. By using the formula Eq. (2),
we obtain the sample averaged cumulants
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{@®)) = Qo {(Q2(®)) = 3Qo,
{(@®) = Qo Q%)) = —155Qo,
(@) = —1:Q0,  (Q°®)) = 55 Qo,
@) = #5Q, (@) = —%Qo,

(@) = —s8265 Q05 ((Q™°()))

6823
969969 Qo,
(11)

The first cumulant is trivial. It is just a definition of
G and it shows where the peak of P(Q(t)) is. The sec-
ond cumulant measures the square width of the peak.
It is also directly related to the noise power P =
Jdt ({I(0)I(t))), a widely used measure of noise magni-
tude, by ((Q?(t))) = tP for large ¢, and its ensemble av-
erage is one-third of the classical value Qg, as pointed out
by Beenakker and Biittiker.® The third and the fourth cu-
mulants are measures of skewness and sharpness of the
peak, respectively, and they are related to three- and
four-point current-current correlation functions by sim-
ilar relations. We note that all cumulants are propor-

tional to Qo and that for Qo > 1, ((Q(t))) > ((Q%(t))).
Therefore the peak of the distribution P(Q(t)) is
Gaussian for the large conductance limit or the long
time limit. This result is quite expected from the cen-
tral limit theorem. Now to see the tails of P(Q(t)) we
study higher-order cumulants. From Eq. (10), we obtain
a general formula for the ensemble averaged kth-order
cumulants

——ikg—o - m———-—l
(@ =% [ e

oo X qk—l
dge*® ——————— 12
x Lw 1€ sinh(rg — i0+)’ (12)

and by using the steepest descent method twice (see Ap-
pendix A), we obtain the asymptotics for large k,

Qo (k-1)!
(k1)) ~ GO Tk

(—1)k2ﬁ for even k,
1 13
x { (=1)*5* for odd . (13)

The high-order cumulants diverge as factorials, which
suggests that at the tails P(Q(t)) is different from both
the Gaussian distribution and the Poisson distribution
which describes the classical current fluctuations. In
comparison, ({(Q*(t))) = 0 for k > 2 for a Gaussian dis-
tribution and ((Q*(¢))) = Qo for k > 1 for a Poisson
distribution.

It is known that in the presence of time reversal sym-
metry there are order-M corrections to ((Q(t))) and
((Q%(t))) due to weak localization,'? and it is natural
to expect the same kind of corrections to higher-order
cumulants. However, because we are interested in the
metallic regime, these corrections are small by a factor g
and we will ignore them.

A proper next step is to estimate the magnitude of
sample-to-sample variations of P(Q(t)). Here instead of
Inx()), we examine the variance of ({Q¥*(t))) to see the
variations of P(Q(¢)). ({Q*(t))) is a linear statistic and
the general formula for the variance of a linear statistic
A=Y ; a(T;) was obtained recently by Beenakker and

Rejaeil® and Chalker and Macédo'4 as

1> ka? (k)
A=~ | dk—" 21—
var (4) B2 /0 1+ coth(3mk)’

a(k) = 2/ dva (—1—2—) cos kv, (15)
0 cosh” v

where (3 is a symmetry constant, 1,2, or 4 depending on
the symmetry. We use this formula to obtain

(14)

var [((Q(t)))] = Ig-BMz,
var [((Q*(1)))] = %Mz,
var [((Q*(1)))] = 74?7_?;%%5sz (16)

We note that for low-order cumulants ((Q’“(t)))2 is larger
than var [((Q*(2)))] by at least a factor of g*, which is
large in the metallic regime. Low-order cumulants decide
the shape of P(Q(t)) around the peak and therefore the
small variance of low-order cumulants implies that the
peak shape shows little sample-to-sample variation, that
is, it is almost universal.

To see the behavior of higher-order cumulants, we ob-
tain an asymptotic form of the variance (see Appendix
B) from an approximate variance formula in Ref. 15,

42k — 1),
(273 M=, (17)
According to Eq. (17), for high-order cumulants,

var [((Q*(t)))] becomes larger than ((Q’“(t)))2 due to
its rapidly growing factorial factor, which suggests that
the tails of P(Q(t)) show large sample-to-sample varia-
tions. We argue that this rapid growth of var [((Qk(t)))]
is not an artifact of the approximate variance formula
used above because it assumes stronger spectral rigidity
than the formula Egs. (14), and (15) and it has a ten-
dency to slightly underestimate variances. Therefore the
large sample-to-sample variation at the tails of P(Q(¢))
obtained above is not an artifact of the approximation.
In the above, we derived the shape of P(Q(¢)) by ex-
amining Inx(A) and its cumulant expansion instead of
Inx(A), which might be an intuitively more appropri-
ate ensemble average because it is directly related to
P(Q(t)). However, we argue that in contrast to intu-
ition, In x () is an appropriate ensemble average for the
study of current fluctuations. One reason is that, as we
remarked earlier, a k-point current-current correlation
function is linearly related to {({(Q*(t))), whose ensemble
average can be obtained from In x(A) by a simple expan-
sion. Another reason is that, as we show later, Inxx(A)
either becomes identical to In x () at the short time limit,

var [((Q*(t)))] ~
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or is dominated by the conductance fluctuations instead
of the current fluctuations.

Calculation of x()) is not simple because x(A) is not
a linear statistic. Muttalib and Chen® did this calcula-
tion recently for a linear confining potential by the large
N limit continuum approximation and showed that at
the long time limit In x(\) becomes quite different from

In x(A). Here we present a calculation by a perturbation
method for an exact confining potential and we believe
that our calculation clarifies the reason why the two av-
erages become so different at the long time limit.

Because x(A) is not a linear statistic, we need a joint
probability distribution of transmission coefficients to av-
erage it over ensembles. After the standard variable
change T = 1/(1 + z), the joint probability distribution
P({z}) is

P({z}) = exp ( ZV(ma,:L'b) +,BZU Zq ) . (18)

a<b

We choose
V(z,y) = (1/2)In(z — y) + (1/2) In(arcsinh®/z

—arcsinh? V), (19)

U(z) = g arcsinh?(y/z)

based on the exact calculation of the joint probability dis-
tribution function for 3 = 2 by Beenakker and Rejaei.'3
Then,

W = ZM' ’
AV / Hdwa exp (ﬂzv Za, :Eb) + ,BZU xa)
a<b

+ZM In zw:_-f; ?

Zo = /Hd:ca exp (ﬁZV(ma,-’Eb) + ﬁZU(ma))

a<b

— (20)
By expanding Inx(\) in terms of M, we find

Inx(A) = Inx(X) + var [ln x(A)] + O(M?), (21)
and from the formula Egs. (14), and (15), we obtain

In X—()‘j =gM arcsinh? \/:)‘—_1

M? arcsinhve!* —
——(83In—————= /\
B8 et — 1
+0(M?3). (22)

Note that for M <« g (short time limit), In x(A) reduces
to In x(A). We expand In x () in terms of A to see features
of P(QD)):

lnx(X) = gM(iX) + ( M + -—M2) (20)*

153 2!
+ (l‘qu +-2 M2y O(M")) (”\) +-

3150
(23)
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The first expansion coefficient shows that (Q(t)) = Qo =
gM, which is trivial. The second expansion coefficient,

2

(@%(t)) — (Q(1)) = {(Q%(1))) + var[(Q())] = Qo/3 +
(2/158) M2, indicates that the peak width of P(Q(t)) has
two contributions. The first contribution is related to the
noise power, and the second one to the universal conduc-
tance fluctuations because var[(Q(t))] is proportional to
the variance of the conductance. (The factor 2/158 is
precisely the variance of the dimensionless conductance.)
Note that as ¢ — oo the second contribution becomes
dominant over the first one. It can be shown that the
kth-order expansion coefficient contains k different con-
tributions and at the long time limit the most dominant
contribution, which is proportional to M*, is related to
the kth cumulant of the conductance fluctuations. From
this analysis we see that the behavior of x(\) for large
t is governed by the conductance fluctuations instead of
the current fluctuations.

In summary, we examine the counting statistics of
charge to study the current fluctuations at low temper-
ature. By calculating the characteristic function of the
probability distribution P(Q(t)), we find that P(Q(t))
has a Gaussian peak at Qo with ((Q(t))) = Qo/3 and
we also find that the tails of P(Q(t)) are different from
the tails of Gaussian and classical Poisson distributions.
By studying the variances of the cumulants, we establish
that, even though the peak location of P(Q(t)) varies
from sample to sample due to universal conductance fluc-
tuations, the peak shape of P(Q(t)) is universal in the
metallic regime, and that the sample-to-sample varia-
tions show up only at the tails of P(Q(t)).

APPENDIX A: ASYMPTOTIC EXPRESSION
FOR (Q¥)

For the evaluation of q integration, we note that due to
its symmetric (or antisymmetry), it is enough to integrate
over ¢ from 0 to co. For example, for odd k,

oo k-1
—i q
dge "9® ———————— = 2Rel , Al
/_oo ae sinh(mwgq — i0+) € (A1)
where
2e7 ™

— —igqz k 1

I= / dge™*? T o—2ma (A2)

Similar relation holds for even k with Re replaced by
iIm. Then we change the variable from ¢ to p = sq with
s=k-1

—ispx 2e”"P
I=s [) dp 7" (sp)* o0 (A3)
= 9ot / dpexplsf.(p)] , (A4)
0
. p—28T
fs(p)E—lnp—ipz——wp—l——n—(—l——f——p) . (A5)

S

The above expression is the standard form for which the
steepest descent method gives asymptotic expression for
large s, except that f,(p) depends on s. However, its
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dependence is exponentially weak and therefore it is safe
to ignore the dependence just by dropping the last term

of fo(p). Then following the standard procedure of the
steepest descent method, we find
2(k — 1)!
I~ .
r T i)k for large k (A6)

To perform the next 1ntegratxon in Eq. (12) over z, we
introduce a variable v by e® = sinh? v,

e 1 1
et (A7
—2 /0 dv explkg(v)] , (A8)
g(v) = —In(w + ilnsinh®v) . (A9)

Even though it requires many branch cuts, the above ex-
pression is still the standard form of the steepest descent
methods. Then following the standard procedure of the
steepest descent method, we obtain

1-—

)
J ~ f @ )k ; for large k , (A10)
and putting everything together, we finally get
TERTRT Qo (k-1
k ~—_— N
(@@ ~ v
(-1) ** for even k

All
{ (—1)% for odd & . (A1)

APPENDIX B: VARIANCE OF {(QX))

Beenakker derived a general formula for the variance
of linear statistic A = 3~ a(7}) assuming the interaction

between eigenvalues is exactly logarithmic,®
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var(4) = 5z [ daa(@a(-gataheg . (BY)
a(q) = / dz i (1+e=)‘ (B2)

Instead of Fourier transforming each (Q*(t))), we first
take Fourier transform of In x (),

a(g) = / " dzethern (£ 4 B3
=) 1+e*  1+4e® (B3)
=m(1—e—k*) for —m<A<m, (B4)

and expand it in A to get Fourier tranform & (g) of the
kth order cumulant,

Z 2)‘) ar(k) »

(B5)

ar(q) = —~M ———(ig)" . (BS6)

qsmh Tq
Then we use Eqgs. (B1) and (B2) to obtain

M?2q2

sinh? 7q
2M2 oo 2k—1

= / dg-2

B Jo sinh 27q

_ M?2%% —1|By|
- 8 22k k

¢** 'tanhwq (B7)

var((Q*(£))) = m? / dq

(B8)

(B9)

where By is the 2kth Bernoulli number. And by using
an asymptotic expression for Bernoulli number, we finally
get

4(2k —1)!

k
var((Q*ON) ~ “ e

(B10)

! J. B. Johnson, Phys. Rev. 29, 367 (1927); H. Nyquist, ibid.
32, 110 (1928).

2R. Landauer, in Localization, Interaction and Transport
Phenomena, edited by B. Kramer, G. Bergmann, and Y.
Bruynsraede (Springer, Heidelberg, 1985), Vol 61.

% G. B. Lesovik, Pis'ma Zh. Eksp. Teor. Fiz. 49, 513 (1989)
[JETP Lett. 49, 592 (1989)].

*B. Yurke and G. P. Kochanski, Phys. Rev. B 41, 8184
(1990).

5 M. Biittiker, Phys. Rev. Lett. 85, 2901 (1990).

6 0. N. Dorokhov, Zh. Eksp. Teor. Fiz. 85, 1040 (1983) [Sov.
Phys. JETP 58, 606 (1983)].

" For a review, see A. D. Stone, P. A. Mello, K. A. Muttalib,
and J.-L. Pichard, in Mesoscopic Phenomena in Solids,
edited by B. L. Al’tshuler, P. A. Lee, and R. A. Webb
(North-Holland, Amsterdam, 1991).

8 C. W. J. Beenakker and M. Biittiker, Phys. Rev. B 46,

1889 (1992).
9L. S. Levitov and G. B. Lesovik, Pis’'ma Zh. Eksp. Teor.
Fiz. 58, 225 (1993) [JETP Lett. 58, 230 (1993)].

10p A. Mello, P. Pereyra, and N. Kumar, Ann. Phys. (N.Y.)
181, 290 (1988).

! The spin degeneracy is ignored. To include the degeneracy,
M has to be multiplied by 2. Also the positivity of M
is assumed. If M is negative, Eq. (5) has to be complex
conjugated with M replaced by its absolute value.

12 M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. B
46, 13 400 (1992).

13 C. W. J. Beenakker and B. Rejaei, Phys. Rev. Lett. 71,
3689 (1993).

14 J. T. Chalker and A. M. S. Macédo, Phys. Rev. Lett. 71,
3693 (1993).

15 C. W. J. Beenakker, Phys. Rev. Lett. 70, 1155 (1993).

16 K. A. Muttalib and Y. Chen (unpublished).



