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Electronic states and transport in quasicrystals investigated by perturbation theory
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The electronic properties of quasicrystals are exotic due to the unusual combination of long-range
structural order and nonperiodicity. This article complements previous work about the electronic
states of linear quasicrystals and their successive rational approximants using perturbation theory
instead of the common transfer-matrix method. The wave functions of large approximants can
frequently be decomposed into building blocks which essentially represent corresponding states of
lower approximants. This behavior is discussed using a simple approximate description of the en-
velopes of the wave functions. To describe electronic transport properties we present a perturbation
theory for the Landauer resistance. The Lyapunov exponents describing its growth with sample
length are interpreted in terms of the samples' Fourier spectra. We conclude with a discussion of
the increasingly complex energy dependence of the resistance as we grow larger samples.

I. INTRODUCTION

Since the experimental discovery of quasicrystals in the
mid 1980s, their structure and their electronic prop-
erties have attracted much interest. Bearing in mind the
metallic ingredients of quasicrystalline alloys, the follow-
ing experimental results are remarkable. Room tem-
perature resistivities exceed typical values for pure metals
by at least three orders of magnitude. They are partic-
ularly high for thermodynamically stable quasicrystals.
Reducing thermal or intrinsic disorder by cooling or an-
nealing the specimens increases the resistivity. Strong
magnetoresistances of both positive and negative sign
are observed. Frequently nonlinear temperature depen-
dences of the thermopower and strong variations of the
Hall coefFicient with temperature complete the puzzle.
Some of the data can be modeled using the concepts of
weak localization and electron-electron interaction, origi-
nally devised for disordered systems. Regarding the long-
range order of quasicrystals, however, the use of these
concepts is barely motivated here. Furthermore, a con-
sistent picture accounting for all the observed anomalies
is still missing. '

The correlation between resistance and structural or-
der (and stability) suggests a fundamental, possibly new
connection between the unusal quasiperiodic structure
and the electronic properties. Actually, research concern-
ing basic properties of quasiperiodic Hamiltonians al-
ready boomed before the discovery of quasicrystals
and was further stimulated by the experimental findings.
While some numerical work was done on two- and three-
dimensional Penrose clusters, all analytical approaches
hitherto are restricted to linear systems. Most analytical
results describe the singular continuous energy spectra,
whereas only few statements are given about the energy
dependence of the Landauer resistance and about the
structure of the wave functions. ' The latter are al-
ways calculated for "rational approximants" and we shall
follow this approach. Comparing related states for suc-
cessive approximants, we find a hierarchical structure of

the generic type of wave functions which is not evident in
a single approximant. This complements previous work
on selected, self-similar states and on multifractal analy-
ses of the generic, seemingly "chaotic" wave functions.

The outline is as follows. In Sec. II a Green-function-
like reformulation of perturbation theory for periodic
Schrodinger operators will be presented as a tool box
for the following investigations. This will allow us to cal-
culate wave functions and Landauer resistances without
resort to the usual transfer-matrix method. In Sec.
III we shall apply the new formalism to a Kronig-Penney
model for rational approximants. Using a new, approxi-
mate expression for the envelopes of the wave functions,
we shall discuss the above mentioned structural hierar-
chy. Section IV is devoted to an analysis of the Landauer
resistance RL, . Looking at the growth of Rl, with sam-
ple length we derive a rule of thumb which establishes a
simple one-to-one correspondence between the Lyapunov
exponents of RL, and the approximants' Fourier spectra.
Finally the extreme RL, fluctuations with varying energy
will be discussed. These investigations complement per-
turbation theorical analyses by Luck and Barache ' of
the electronic spectra and the integrated density of states
of deterministic aperiodic systems.

II. PERTURBATION THEORY IN REAL SPACE

Let us consider the one-particle Schrodinger equation

d2with [
—&, ] as the unperturbed Hamiltonian and V(x)

as perturbation. The potential is assumed to be P peri-
odic, so that it takes the form

V(x) = ) V exp(i ~ x).
mFZ
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For spectral energies we can concentrate on Bloch func-
tions with the property

Q(z + P) = @(z) exp(i kp P).
For gap energies the solutions grow exponentially as
x m oo or x ~ —oo. Usually, these non-normalizable so-
lutions are ignored, but we shall need them for estimating
the electronic transmission properties of finite samples in
Sec. IV. Prom transfer-matrix considerations one can im-
mediately conclude that for each energy of the 8th gap
there exists a pair g~ of solutions with the property

@~(z+P) = g~(z) exp[(i kp + r) P],

kp ———, C R. (2)

As we approach the gap edges, v goes to zero.

B. Degenerate case (band edges and gaps)

For the sake of compactness we shall interpret the band
edges as gap edges by simply requiring K = 0 in (2). To
adequately describe the diverging states within the gaps,
we make the following ansatz:

g(z) =: exp(r. z)w(z), (10)

w(x + P) = w(z) exp(i kp P), kp ——~ .

Now perturbation series are derived for w and K (instead
of @) and for E. To keep the results simple, we shall
assume that V(x) has a center of symmetry x„which is
the case for any approximant of a quasilattice projected
from two dimensions to one dimension. Then the Fourier
coefBcients of the potential with respect to x, are real:

A. Nondegenerate case (inside the bands)

As usual, @ and E are expanded into series

q(o) + y(i) + y(2)

—E(o) + E(~) + E(2)

Vq' .——Vgexp (i ~ z, ) = + [Vi].

The suitable zero order solutions are of the form

w ) (x) = trig kp (x —z, ) —~

K(') =0 E(') = k'

(12)

where @( ) and E( ) are of the order O(V"). The unper-
turbed problem is solved by

g( )(x) = exp(ikp x), E( ) = kp.

For the sake of clarity we postpone the basic calculations
to the Appendix and simply quote the erst- and second-
order corrections w(i)(z)

P
v (') (*—*')d ', (14)

with trig:= cos (sin) for V&' ) 0 (( 0). The parameter
(b C (—vr, vr] labels the difFerent states within the 8th gap.
The special values (b = 0,7r correspond to the gap edges
where K will vanish identically in any order. The first
order reads

y(i) (z)
P

b(x') V@( ) (x —x') dz', sin P,
2kp

P
E(') = — V(z) dz = V„P (6) Vp + [ Vg [

cos P, (i6)

b(x') V —E( ) g( ) (z —x')dx', (7)

P
E( ) = — V(x) g(' (x) exp( —i kp x) dx,P (8)

with the "band kernel"

—1 . 2x —P
b(x) = exp(z kp x) 2 + i

+ exp] I ko ]P —2T) ]

)4kp sin(Pkp)

This formalism is similar to the Born series in scatter-
ing theory for spatially bounded potentials. Note that
instead of using a Green function for Axed energy, the
Bloch wave vector is held fixed here. This gives rise to the
energy correction term in @( ). Furthermore, rather than
integrating over the whole support of V(x), the integrals
(5) and (7) are restricted to one period (thus guarantee-
ing convergence).

with the "gap kernel"

—cos(kp z) P —2x
g(z) =, + sin(kp x)

2 p
(i7)

III. STRUCTURE OF THE WAVE FUNCTIONS

As a particularly simple model we shall discuss the
Kronig-Penney potential

The second order is slightly more complicated than (7)
and (8) due to terms with r( ). For the general nth order
expressions we refer to the Appendix.

Note that in (15) and (16) a pair of parameters
( P, —P ) corresponds to a single energy and a pair
j v. , r, ) in agreem—ent with (2). Moreover, plotting r
versus E results in ellipses of height ~vg~ / kp and width
2 ~Vg~. Such elliptic structures for the "inverse localiza-
tion length" have been reported (but not explained) by
Wurtz et al. We shall return to this observation in Sec.
IV.
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V(x) =V) a(x —*„),
where z runs through the vertices of the considered qua-
sicrystal or its approximants. Besides from reducing the
integrals of Sec. II to sums, this model is easily treated
numerically via transfer matrices (TM's). This facilitates
the comparison of perturbative versus exact results.

In the following we concentrate on p:q approximants,
i.e., on periodic structures with p (q) interatomic dis-
tances (x +q —x ) of length L (S) in the elementary cell.
We recall the concatenation rule for the construction of
successive approximants. Let p:q (m =0,1,2, . . . ) be a
series of continued fractions converging towards the L:S
stochiometry of the considered quasicrystal:

A(x) exp(i ~Ex) = —g(x) + (21)

Similarly, B(x) exp( —i ~E x) results from subtracting

and to compare visually than Igl itself, but the TM algo-
rithm hampers the discussion of their shape. This is why
we employ perturbation theory to get a more "transpar-
ent" approximate expression, which facilitates the dis-
cussion of the @ shapes.

A crucial observation is that from the knowledge of
g(x) and E we can deduce A(x) and B(x):

Pm = ap+
a2+

am

(n; e N) (18)

and let C be a suitably chosen elementary cell of the
mth approximant. Then the following holds:

Cp —L '0 S, C~ =Co' Lo, C =C -~aC 2, (19) A A

where C denotes the a-fold repetition of C and. o signifies
the concatenation. The special case a; = 1 Vi yields the
well-known Fibonacci approximants.

As mentioned in the Introduction, most of the Bloch
states of higher approximants lack a lucid structure.
The comparison of successive approximants, however, fre-
quently shows a "structural heredity" of the states with
similar kp. This point is illustrated in Fig. 1: Partial
structures of the 21:13 wave function reappear in the
34:21 and the 55:34 states, while a large 34:21 fragment
shows up in the 55:34 state. Quite generally the simi-
larity of corresponding states is maximal in the vicinity
of the symmetry centers of the approximants. The three
possible types of these symmetry points are indicated in
Fig. 1: A type A center bisects an S interval, type B bi-
sects an I, and C lies between two adjoining L's. It can
be shown that any pair of approximants has one center
of common type. Moreover, due to the concatenation
rule (19), the L Ssequences in-the vicinity of the com-
mon centers are identical over at least one period of the
shorter approximant (e.g. , & —to both sides of B if you
compare the 21:13 and the 55:34 approximant). This
fact turns out to cause the frequently observed transfer
of local @ patterns from one approximant to higher ones.

In order to get a simple model of this behavior we
now eliminate the rapid @ oscillations and restrict the
discussion to the envelopes of the wave functions. Let us
recall the ansatz always used in TM calculations:

g(x) = A(x) exp(i v Ex) + B(x) exp( —i ~Ex), (20)

with A(x) = const and B(x) = const between the peaks
of the potential. Obviously, Igl oscillates between

I I&l —IBI I
&

I & I

&
I I&l+ IBI I.

These lower and upper envelopes are readily calculated
using TM's. The steplike curves are much easier to grasp

0
0

I

34
l

68

0
0

A

I

55

A

0
0 89

FIG. 1. Normalized states for the Fibonacci approximants
21:13, 34:21, and 55:34 from the 107th, the 173rd, and the
280th band, respectively. The respective periods are indicated
on the x axis. The letters A, B, and C label the different
centers of symmetry; see the text. The structure of the 21:13
wave function within the interval ABA can be identi6ed with
the corresponding B surroundings in the 55:34 approximant.
Similarly, the ACA part from 34:21 reappears around C in
55:34. The A-centered g structure is common to the 21:13
and the 34:21 approximant. (For comparison Fig. 2 shows
the second-order approximation of the 55:34 wave function. )
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the second term. Now, since we know the series for v/r and
E we can derive perturbation series for A and B. Here we
restrict our discussion to band states (excluding the band
edges). From (5) and (6) we get the following expressions
for their absolute values (without normalization):

I
A(*)

I

erst

order

I B(*)
I

order

Vo
1 —

2
= const)

4&o

I f + V(x') exp(2i ko x') dx'I

I
4ko sin(Pko)

I

(22)

(23)

Note that IBI depends on x via the integral's limits. The
second-order expressions look much more complicated,
but the basic message is the following: (i) The shape of
IAI is brought into line with the form of IBI given in (23).
The absolute fluctuations of IAI, however, are smaller
than those of IBI. (ii) Generally, the overall form of
I
B(x)

I
does not change very much, although the sec-

ond order may introduce some minor local adjustments.
Summarizing, the first-ord. er expression (23) governs the
structure of both IAI and IBI. This behavior is illustrated
in Fig. 3 for the 55:34 state of Fig. 1.

So we end up with the following rule of thumb to esti-
mate the shape of a band state of a P-periodic approx-
imant. First, the "truncated Fourier transform" of the
potential

1.2

o.s r

o4 r f
1 I

the vicinity of the common symmetry centers discussed
in Fig. 1. We have thus made plausible the observed Q
transfer from one approximant to the higher ones.

As a consequence, as we proceed to larger and larger
approximants we arrive at increasingly complex patterns,
each containing fragments of the wave functions of the
next lower approximants, which in turn are composed of
building blocks from even lower approximants and so on.
This scenario is illustrated. in Fig. 4.

We point out that our conclusions apply to any se-
querice of approximants described by (18) and (19) and
are not restricted. to the slowly growing Fibonacci series
used in the illustrations. Similar results can also be de-
rived for the band edge states, but the involved formulas
are slightly more complicated. , so that we refrain from a
deeper discussion here.

z+P
X(x, kp):= V(x') exp( 2 i ko x') dx'

00 89

gives
I
B(x)

I
to first order, except for a constant factor.

Second, since the shape of IAI resembles that of IBI, the
upper envelope IAI+IBI is essentially characterized by X.

This function is much easier to discuss than the TM
recipe for g, A, and B. It can be shown that the con-
catenation rule (19) results in a correlation of the func-
tions P(x) for successive approximants. Furthermore,
the similarity of corresponding T curves is maximal in

0.8

0.4 -r

0
0 89

1.2

0.8

0
0 89

0
0 89

FIG. 2. The last state of Fig. 1 is approximated to second
order using (5)—(7) (and normalized) using the same param-
eters ko = ' and V = 5 as in Fig. 1. Although
appears to be a little more fuzzy than the exact state, the
general agreement is quite satisfactory. [The first order does
not yield an acceptable approximation. This is due to the
lack of any spatial structure of the coefficient IAI in Eq. (22);
see also the first plot of Fig. 3.j

FIG. 3. The curves [A(x)I and [B(x)[ are plotted for the
last state of Fig. 1; see also Fig. 2. The upper and lower
envelopes of I@I are given as the sum and the diff'erence of IAI
and IBI. The top and middle plots illustrate the first and the
second order of perturbation theory, respectively. The bottom
plots were calculated using the TM method. Note that the
first order for [BI almost perfectly matches the correct shape,
while the second order is needed to approximate the exact

I
A[

curve.
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FIG. 4. Comparison of the T curves for the approximants of Fig. 1, supplemented by the 89:55 approximant. As in Fig. 1,
the wave vectors ko equal ', ™,', and (new) ' . The structural heredity of the growing A, the B, and
the C surroundings from lower to higher approximants is clearly visible. fThe scahng of the first three plots includes a factor

I
sin(Pko)I; cf. Eq. (23). The ordinate of the last plot is slightly compressed. ]

IV. I ANDAUER RESISTANCE

trans
(24)

Many groups have investigated the dependence of ISI
on the energy and on the sample length. For approxi-
mants of growing length the Rl, (E) curves show increas-
ingly rapid oscillation by many orders of magnitude.
For nearly all energies BL, grows exponentially with sam-
ple length, whereas for the very few energies belong-
ing to the spectrum (of the infinite quasilattice) the Rr,
growth is bounded by a power of the length. ' ' Goda

To characterize the electronic transport of linear sam-
ples in the absence of thermal disorder it has become cus-
tomary to investigate the scattering of monochromatic
electrons by the sample. The ratio of reflection to trans-
mission defines the Landauer resistance BI, (up to a con-
stant factor). Sutherland and Kohmoto pointed out
that the interpretation as a resistance is questionable in
the case of quasicrystals (due to the Cantor-set spectra
with gaps all over). Nevertheless, Rr, as a function of
the energy of the incident electrons shows interesting fea-
tures. Characteristic difI'erences exist between samples
taken from either periodic or quasiperiodic structures.

RI. is usually calculated using transfer matrices: Let
A;n, B, g, and At, „,be the amplitudes of the incident,
the reflected, and the transmitted electronic waves [cf.

(20)] and let (s &,) be the transfer matrix mediating
between the vectors (&'" ) and ( 'o"'). Then we have

and Kubo analyzed the generally exponential growth
in more detail by numerically approximating the energy-
dependent Lyapunov exponents

y:=
ength~~ lengthlim, ' ln ISI'

Their p(E) curve consists of elliptic bumps of widely
varying heights and widths. This plot strongly resem-
bles the curve given by Wurtz et a/. for the inverse
localization lengths r(E) of the gap states.

Our main goal in the remaining discussion is to eluci-
date the relation between v and p and to give a simple
estimate of the Bl, (E) dependence for growing samples.
To bring out the characteristic effects of quasiperiodic-
ity on the "resistances, " let us once again consider the
successive approximants. We define the samples as one
period of length P of each approximant. Note that a
cyclic permutation of the sample geometry (e.g. , from
LSLLS to SLLSL) generally distorts the Rl. (E) curve
To avoid misleading conclusions we shall always average
over all the permutations, i..e. , over difFerent beginnings
of the sampling period, instead of selecting one specific
section by some arbitrary rule. This approach is in accord
with Goda and Kubo's calculations, whose Lyapunov ex-
ponents were also calculated as mean values from many
difFerent quasicrystal sections.

Since the TM's (& &,) are complicated products of
increasingly many single-interval matrices, their energy
dependence can hardly be discussed analytically. There-
fore we again switch to perturbation theory using the
following two observations. First, the transfer matrix
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le and itsdescri es a e'b t th same time the finite samp
nl'.e. the whole approximant. On yperiodic extension, i.e. , e

h
'

osed boundary conditions distinguis e ween
the scattering scenario considered ere an e

~ ~ )

s of its s ectral decompo-

[(i k + K) P] (for gap energies) simply charac-
terize the Bloch functions or the exponentia, y gr g

f the energy under consideration.or decreasing states or e e
Since we can deduce A(z) and B(z) from the wave func-
tions [cf. (21)], it is possible to derive a pertur ation

f the sought-after transfer matrices.series or e so
'al B rowth,As we intend to explore the exponentia L, g

d since the spectral energies etend to a set of zero mea-
sure we restrict ourselves to the gap energie . '

g8. Usin t e
~ ~

we etspectral decompositioIl of ~& + ~ g

!

(K) ( 2& sin

i E) (ko + VQ +
~
Vs

~

cos y)
(27)

0.10-

Now the above observations are re uuced to the known
some iven approximantfact that for any Vp peak of some gi pp

there is a ways a o1

tude and wave vector for any higher approximant, whence
27 predicts a practically stationary v. e p

'mants smaller and smaller new gaps
the "old" ones, adding tiny new e ipses,

but hardly afFecting the preexisting ones. is scena '

u Fi . 5. In the limit of an infinite quasi-is illustrate in ig. . n

was suggeste y ed b the plots of Wurtz et al. an o o a

sinh (PK).
A+B —A B+ (25)

Since the argument of the yph erbolic sine can become

not be wise o w
'b t write down a perturbation series for t e

onential character of the hyperbolic sine we shall ra er

f Sec. II B.The difFerent states
treat its argument an

Let us recall the results o ec.
h the 8th gap were parametrized by ~&

and corre-Isoenergetic states are described by ~ +, —~~—e ~&. After some lengthy calculations
based an (13) and (21) we get a very simple estima e ar
the prefactor of the hyperbolic sine:

0.05-

0.00-] i

0.10-

0.05-

p pp a ill

0.10-

34: 21

„, ~„n.„"I,, ll „~,
~E

55: 34

2 B+B
&+B —& B+

+ O(V).
sin

(26)
0.05- 89:55

Note that this expression is in ependde endent of the sam-

of the energy within tlj.e gap.
h her orders, but we shall nottially remains valia in ig er or

confuse the rea er wi ed 'th the detailed formulas. ) Conse-
1 the rowth of Bl. is determined by the hyper-

e I a unov expo-
nent p should be identified with 2 ~K~ (the factor 2 arises
from the squared sinh).

resu oses that, for a givenHowever, this conclusion presupp
Thisenergy, K is in epen end d nt of the sample length . T is

oint needs further discussion. Since the electronic spec-
f approximants differ, the gap regionstra of successive approx

K ~~0 actually depend on the periods P. n ewhere K ~~ac ua y
e a roximant,other hand, gaps which are open in some app

remain open in a o owing are '
ll f ll in approximants with a most

unchange posi ionsh d 't'ons and widths. Furthermore, the K, va-
ues inside ese co
explain this fact let us recall the elliptic re a ion
and 16 of K and E (which remains almost unchanged
in higher orders and is con6rme y c

n

a I „j„a.a. , A. , a. . a. .a l. .a. .l. ...l. .a. .. a. .a, .. .... , .. . ... .. .. ..t .. ( . . &..~ . .., .3I" , ia.

, , I. . . . . . . . . . . . . . . . . , , . . .. .I. .y. a. . . . ~ . ~ . . I.. . I , , . . . , i. . . . . . . . , ,. . . , . . . , . . . . . . . I. . l. , ~. . . . . . . i. .i. . .. l. . . . , I. .. .i. .i. .. . . . . . . .I. , l. a ~ . . ~ . I I. I a . . a, . . . a ~ . a. . . . . . , i. a. . . a. . ~ . a ~ ~

in l dense succession of KFIG. 5. Evolution of the increasing y
a s for a sequence of Fibonacci approx-ellipses within the gaps or a seq

' a rox-
t ~The curves were calculated using T s oriman s. e

to be observed3.1 ( ~E ( 5.4.) The important point toand 3.1 &
e into existence it remainsis that once a K ellipse has come in o e

th (E) curves of the following approx-almoost unchanged in t e a cur
lot resents the corresponding sectionimants. The bottom p ot presen s e c

ectrum of the 89:55 approximan . eof the Fourier spectrum o
e elli ses and the Fourierresp on ence ed between the sizes of the ellipses an e o

coefficients lVa la as expressed in (27), is evi en .
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sinh ~&'~ sin

sin
(28)

1 p12

and Kubo. Here, apart from explaining the origin of
this type of e(E) or p(E) dependence, we have come to
the handy interpretation of the heights and widths of the
ellipses as a "fingerprint" of the samples' Fourier spectra.

Since the Lyapunov exponents only partially describe
the resistances, let us conclude with a brief discussion of
their absolute values; see Fig. 6. Combining (25)—(27) we

get the following lowest-order estimate for the 1th gap:

Traversing the gap, ~S~ approximately takes on values

between P k, (at the band edges) and sinh
0 0

(at the gap's center). Note that this estimate does not
allow any arbitrary scaling, i.e. , the values given by (28)
directly yield the correct orders of magnitude of the re-
sistances. (This is contrary to the wave functions, which
are suitably normalized after the approximation. ) The
success of our estimates is demonstrated in Fig. 7.

It might be noteworthy that many dips of the Rl,
curves are due to tiny gaps, for which (Pr) is not yet
big enough to expose the exponential character of the
hyperbolic sine. That this will always happen for the
smallest gaps without restrictions to the sample length is
suggested by the explicit formula for the Fourier trans-
form of an approximant, which we state without proof:

108-
34: 21 sin(PIC )

P sin(E4)

104 where 4 can be calculated from the continued fractions
expansion of p: q. The smallest gaps correspond to those
indices E for which sin(EC') is of the order of kl, whence

104
PVg ( V
2kp 2kp

1 Q12

108

104

55: 34
This behavior has a counterpart in "periodic" samples.

Considering a succession of P identical elementary cells
of unit length, Vezzetti and Cahay showed that per-
fect "resonant" transmission occurs for all energies cor-
responding to Bloch wave vectors ko ——&, & g Z. This

10

1 012

108
89:55

1 Q12

1p8

104-

89:55

104-
R

1 P-4

10-4

FIG. 6. Evolution of the resistances for the same approxi-
mants as in Fig. 5. ~S~ was averaged over all possible samples
of length 55, 89, or 144, respectively; see the text. Note the
logarithmic ordinate scale. Two things should be observed.
First, inside the larger gaps ~S~ grows exponentially with in-
creasing sample length in full accord with the K plots of Fig. 5.
Second, we always find energies with "almost resonant trans-
mission, " i.e. , ~S~ (( 1. These Ri, minima correspond to the
"youngest" gaps with smallest ~Vg~; compare also the caption
of Fig. 7.

FlG. 7. The results of perturbation theory for ~S~ within
the gaps. In order to correctly shift the energetic gap positions
in the vicinity of large gaps, the depicted curve was calculated
to second order. A thorough comparison with Fig. 6 reveals
convincing agreement. Omitting the interpolating curve seg-
ments for the band energies brings out the large resistance
Buctuations as we run through the successive gaps. Note the
coexistence of large gaps with the typical ~S~ maxima and
tiny gaps where the full ~S~ curve has dips; see the text.
(The omitted ~S~ maxima from the band regions between
the smallest gaps can also be accounted for by perturbation
theory. For details see Ref. 34.)
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result nicely confirms (28) since for a sample consisting
of P identical unit cells we have Vt = 0 for & g Z.ss

We can thus interpret the smallest Fourier coefIicients in
(29) as remnants of the vanishing Vt's as we gradually
shift the equidistant potential peaks towards the vertices
of our approximants.

Summarizing, we always find gaps (which have opened
up some generations ago) where the resistances grow ex-
ponentially with Lyapunov exponents as discussed at the
beginning, and other "young" gaps where the BI, curves
show local minima. These, however, yield to an expo-
nential BL, growth as we grow larger samples, while at
the same time even smaller new gaps open up, where the
transmission is again quite good.

APPENDIX: REFORMULATION
OF PERTURBATION THEORY

d2
@(P)(x) —E(o) @(P)(x)dx2 (A1)

@(n)( ) + V( ) q(n —i)( ) ) E(k) @(n—k)( )

(n ) 0). (A2)

Let us discuss the nondegenerate case first. In order to
calculate the successive orders of @ and E we substitute
(3) into (1) and collect all terms of order O(V"):

V. SUMMARY

The first part of our work complements the known,
rigorously proven facts about quasiperiodic Hamiltoni-
ans by an analysis of the typically non-self-similar wave
functions. A comparison for successive rational approxi-
mants showed that local shapes of the Bloch functions of
lower approximants reappear as constituents of the more
complicated states of higher approximants. Using per-
turbation theory we were able to derive an approximate
description for the envelopes of the wave functions which
allowed a simplified discussion of the observed structural
hierarchy. Moreover, our model accounts for the fact that
the corresponding states are always most similar around
the common symmetry centers of the compared approxi-
mants. These findings may help to think about the seem-
ingly chaotic states of huge approximants (or even qua-
sicrystals) as a result of an iterative building process, in
which the assembly of increasingly complex states of the
growing approximants refIects the geometric concatena-
tion rule (19).

In the second part we discussed the complicated depen-
dence of the Landauer resistance on energy and sample
length. First, we presented an argument that intimately
links the inverse localization lengths K of the gap states
and the Lyapunov exponents p of the RL, growth with
sample length. Using our pertubation theory for the gap
states we then interpreted the distribution of the r(E)
values as a fingerprint of the samples' Fourier spectra.
Guided by the simple formula (28) for Rl, we were able
to extract the distinct contributions from the successive
gaps within the complicated RL, (E) curves. These rellect
in a very elementary way the broad distribution of the
approximants' Fourier coefFicients. Thus we got some
fundamental insights into the evolution of the increas-
ingly complex BL, curves as we go to larger samples.

It is not yet clear to what extent the now known prop-
erties of linear quasiperiodic Hamiltonians remain valid
for higher dimensional systems. Besides lacking simple
analytic tools such as the TM method or the concept
of the Landauer resistance as expressed in (24), some
studies of tight-binding models indicate possible qual-
itative differences, e.g. , for the localization of the wave
functions. ' We are still far from a realistic understand-
ing of the physical consequences of quasiperiodicity.

(Al) is solved by

@( ) (x) = exp(i kp x), E( ) = kp.

vP(x) = ) @ exp(ik x).
mqZ

The successive corrections of @ are calculated from the
Fourier transform of (A2). Keeping the Fourier coeffi-

A

cient @p fixed and using (A3) we arrive at

q(n) f h(n) (A4)

with

1fp.= o f
k0 —k2 (mgO), (A5)

h(") (x) = ) h( ) exp(i k x)
mgZ

(A6)

V( ) @(n—i)( ) ) E(k) @(n—k)( )

:=0 for n=1

Note that the f are independent of the order n.
The essential point is that we can backtransform the

urhote infinite set (A4) into real space using the convolu-
tion theorem as soon as the Fourier transform of ( f
is calculated:

—1 .2x —Pf (x) = exp(ikpx) 2 + i

P exp [ikp (P —2x)]
4kp sin(Pkp)

P
:- tjf ")(x) = — f(x') h(") (x —x') dx' .P 0

To calculate the energy corrections we make use of the
fact that g(p) and @(") (n ) 0) have disjoint Fourier
support and are thus orthogonal over the interval [0,P].

Since Bloch functions are exclusively composed of plain
waves with wave vectors k:= A:0+ P, it is common
to treat the problem in Fourier space by writing
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Multiplying (A2) by g( )* and integrating yields

P
E " = — U(x) y (x) exp( —i k x) dx. (A7)P p

Note that no infinite sums are to be evaluated here. The
results (5)—(9) follow from (A6)—(A7).

Now we turn to the gap states. First, substituting the
ansatz (10) into (1), we get

K,
' ——2K d

—„,+ V(x) m(x) = Em(z). (A8)

1

P (A12)

with new functions f and hi

with 0.'= 2 for V&' ) 0 and 0' = 2' for V&' ( 0. For
P = 0, vr we retrieve the well-known expressions for the
band edges, i.e. , E( ) = Vo j ~vt~ . Splitting (Alo) into
its real and imaginary parts we get (15) and (16).

To derive the higher-order corrections we proceed as
before. The general result for m is

Since io(x) is of the Bloch type (11) we can write

—cos(ko x) . „ I' —2x (0&z&p),

u)(x) = ) ur exp(ik x).

Now, since kp ———k g
——P, the unperturbed problem

(k2 Elo) ) ~(o) (l Eio)

is solved by

duo, io t
—— (undetermined), io( ) = 0 (m g 0, E)—

To determine the ratio mp . m
&

we have to look at
the first-order terms of (A8). The Fourier coefficients for
exp( +i ko x) yield

n —1k—1
h(n) 'V~(n 1) K(j ) K(k j) ~(n k)

k=1 j=1
:=p for n(2

n —1 ( —k)
E{k) (n —k) 2 (k)

dx
k=1

:=P for n=1

The new form of f arises from fixing not only zvo, but
also tv t, i.e. , from redefining f t .= 0 in (A5). Note,
however, that for nonsymmetric potentials the ratio mp'.

m g may change as we go to higher orders so that we
have to modify (A12); cf. Ref. 34. For completeness we

give the K and E corrections for n ) 2:
t'[v, —ot v, &

~' ~. ~ . t'01
v,* tv, —o*j) 4 t) 40) ' (A9)

@(n)
P

P
(olv (~—il

( )d )-„itl„i~-~)
where we have defined 0:=E( ) + 2i kp v( ). Assuming
a symmetric potential as in (12), the solutions of (A9)
can be parametrized as follows: ( )

Pkp2

du (')
V~("—'l (x) dx,

dx

E( i+ 2ik Ki ) = V + exp(iy)iV ~,

- (p) - (p)*
Q)p = to g

= 0! exp —z kpx +

(Alo)

(All)
where io( i (z)=trig ko (x —x, ) —

2

(sin) for V&' ) 0 (& 0) due to (All).

with trig:=cos
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