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Periodic boundary conditions in ab initio calculations
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The convergence of the electrostatic energy in calculations using periodic boundary conditions is con-
sidered in the context of periodic solids and localized aperiodic systems in the gas and condensed phases.
Conditions for the absolute convergence of the total energy in periodic boundary conditions are ob-
tained, and their implications for calculations of the properties of polarized solids under the zero-field
assumption are discussed. For aperiodic systems the exact electrostatic energy functional in periodic
boundary conditions is obtained. The convergence in such systems is considered in the limit of large su-

percells, where, in the gas phase, the computational effort is proportional to the volume. It is shown that
for neutral localized aperiodic systems in either the gas or condensed phases, the energy can always be
made to converge as O(L ') where L is the linear dimension of the supercell. For charged systems, con-
vergence at this rate can be achieved after adding correction terms to the energy to account for spurious
interactions induced by the periodic boundary conditions. These terms are derived exactly for the gas
phase and heuristically for the condensed phase.

I. INTRODUCTION

Periodic boundary conditions (PBC's) have been ap-
plied extensively in theoretical modeling of crystalline
solids. Introduction of these boundary conditions is
equivalent to considering an infinite Bravais lattice. The
shape of the cell to which the PBC's are applied deter-
mines the type of lattice, and the contents of the cell
determine the lattice basis. In particular, quantum ab in-
itio calculations have combined periodic boundary condi-
tions with plane-wave expansions to create a powerful
calculational scheme, which has been applied extensively
in the study of properties of crystalline solids. ' There is
some interest in extending this method to aperiodic sys-
tems such as molecules, defects in solids, and disor-
dered or liquid-condensed matter. This interest arises
from the following considerations:

(i) PBC's are a simple way to impose the boundary con-
ditions in calculations of condensed matter. (ii) PBC are
compatible with plane-wave expansions, which in turn al-
low for relatively simple calculations of forces in
molecular-dynamics simulations. (iii) Unified numerical
schemes can be set up to consider both periodic and
aperiodic systems.

There is, however, a major difference between (static)
calculations on periodic and on aperiodic systems when
PBC's are used. For periodic systems, a calculation on
one unit cell can yield all the information that may be ob-
tained. In an aperiodic system, there is no periodic unit
cell. Instead the calculation is performed on a portion of
the system of interest contained in a supercell, which is
then periodically repeated in space for calculational con-
venience. Only in the limit of an infinitely large supercell
do the calculated results converge to the properties of the
aperiodic system. If the aperiodicity is local (e.g. , a local-
ized defect in a solid, a molecule in a gas), then the
difference between results obtained using any finite-sized
supercell and those obtained in an infinitely large super-

cell arises from the spurious interactions of the system
with its images in neighboring supercells. If the aperiodi-
city exists at all length scales, as in the case of a random
solid, then, in addition to the above, the energy will Auc-
tuate statistically about its expected value. In this paper
we consider only the first of these two possibilities.

Since the results required in a calculation of an
aperiodic system are obtained only in the limit L —+ ~,
where L is the linear dimension of the supercell, it is
necessary to consider their convergence. This can de-
pend on the quantity being calculated. In practice, it is
often sufricient to consider the convergence of the energy
as all the other properties are determined through the
variational principle. The convergence of the energy, as
the size of the supercell is increased, is determined by the
longest-ranged forces, which in general are the electro-
static forces. In solids, the elastic forces can also be long
ranged and in principle can be treated similar to the elec-
trostatic forces by the methods described below. The rate
of convergence can be very slow, as in the case of a
charged species for which the energy converges as L
The importance of the rate of convergence lies in the fact
that the computational effort is proportional to the
volume of the supercell. Typically, in a Kohn-Sham-type
calculation using a plane-wave expansion and PBC, the
computational effort increases as V, lnV, for an isolated
molecular species, where V, is the supercell volume (i.e.,

V, -L ). ' If the exact asymptotic dependence on the
linear dimension of the supercell is known, then the ener-

gy calculated at finite L can be corrected to provide a
better, and more rapidly converging, estimate of the ener-

gy in an infinitely large supercell. A step in this direction
was taken by Leslie and Gillan who considered the case
of a charged defect in a solid and showed heuristically
that the leading term in the convergence of the defect for-
mation energy was yL ', where y is a calculable con-
stant involving the dielectric constant, for which they
used an experimental value.
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To obtain the convergence properties of the electro-
static energy in the limit of infinitely large supercells, it is
necessary to have an expression for the electrostatic ener-

gy in PBC's. Such expressions were first considered, to
our knowledge, early this century in the context of the
cohesive energy of ionic solids. However, despite the
many years that have passed there is continuing contro-
versy over the exact properties of these expressions.
The source of much of this controversy is the fact that
electrostatic sums on an infinite lattice are not always ab-
solutely convergent, but for some lattice bases can be
only conditionally convergent or even divergent. This
can introduce a certain ambiguity into the results, com-
monly in the form of a constant and unknown potential,
but in some cases in the form of a constant and unknown
electric field (see Sec. II below). The problem is some-
times compounded by the use of mathematically ill-
defined operations involving divergent terms and limits of
vectors. An important exception to this, was the
work of de Leeuw, Perram, and Smith who considered in
detail the electrostatic energy of a neutral assembly of
classical point charges in a repeated cubic supercell.

In what follows, we present a systematic derivation of
the electrostatic energy of an assembly of point charges
together with a continuous charge distribution placed in
a periodically repeated cell of arbitrary geometry. This
derivation is a generalization of the work of de Leeuw,
Perram, and Smith. In the course of making this deriva-
tion, some conditions for modeling a crystal as an infinite
solid by the introduction of PBC s are obtained, in partic-
ular with respect to polarized crystals. Then, in Sec. III,
the asymptotic convergence of the electrostatic energy of
neutral and charged aperiodic systems in PBC is con-
sidered. First, we show that for isolated molecular
species the rate of convergence can always be reduced to
0 (L ). This is illustrated with several numerical exam-
ples. Then, for the case of aperiodic systems in con-
densed phases, we show that the same rate of conver-
gence can be achieved if the aperiodic system is neutral.
For a charged aperiodic system, the convergence can be
reduced to 0 (L ) by introduction of the dielectric con-
stant, which may be obtained separately or by fitting the
data. A short discussion and a summary conclude this
paper.

II. CALCULATION
OF THE ELECTROSTATIC ENERGY IN PBC

Consider a finite sample of N periodically repeated
cells, each of which contains a charge density p(r)
comprised of point charges and a continuous charge dis-
tribution n (r),

p(r)= gz, 5(r —r;)+n(r) .

This charge density is periodic with the periodicity of the
lattice vectors, I

p(r+1)=p(r) .

The electrostatic potential at an arbitrary point r in the
sample is

p(r)= f d r'
sample

~

1 r
~

=y f d'r'
een ~r

—r'+1~

X X X
I s 'dl Es

(3)

The convergence will be determined by the contributions
of distant shells (large ~l ) to the sum. In this limit, the
asymptotic form of the summand in Eq. (2) is well known
to be'

q„P„(cose}~l
~

'"+'I, (4)

where n is determined by q„, which is the lowest nonzero
multipole of the charge distribution p (defined as the nth
radial moment of the charge distribution). P„are the
Legendre functions with cosO=(r —r') I/~r —r'~~1~. For
odd values of n, the inversion symmetry of the Bravais
lattice ensures that the asymptotic contributions from
this multipole to the sum are identically zero. If the
lowest nonzero multipole is n =0, then there is a net
charge in the unit cell and the sum of the asymptotic
terms in Eq. (3) diverges. If it is n =3, or greater, then
the sum in Eq. (3) is seen to converge absolutely. If the
lowest nonzero multipole is n =2, then the sum in Eq. (3)
is conditionally convergent by Dirichlet's test. Note
that these conclusions require the lattice sum in Eq. (2) to
be three-dimensional.

The same approach can be applied to derivatives of the
potential: One finds that, e.g. , the equivalent sum for the
electric field is absolutely convergent if the lowest
nonzero multipole is n =2 or greater. This sum is condi-
tionally convergent if n =1 and diverges if n =0. What
is the extent of the indeterminacy introduced by the con-

where the sum is over all the N cells. The cell in which
the point r is located, is taken as the origin of the lattice.
To obtain result (2), it is necessary to assume the ex-
istence of zero-potential Dirichlet boundary conditions at
infinity. '

If the sample is macroscopic, then N is very large and
we would like to simplify the mathematics by extending
the finite sum over the lattice vectors in Eq. (2) to an
infinite sum. This extension is equivalent to introducing
periodic boundary conditions and may be performed only
if the sum does not diverge. There are two possible cases
to be considered.

(i) The sum is absolutely convergent, in which case the
potential will have converged for large N and extending
the sum to infinity will not affect the results, or in physi-
cal terminology the surface terms make a negligible con-
tribution to the potential. (ii) The sum is conditionally
convergent, in which case the result depends on the order
of summation, or in physical terminology on the contri-
bution of the surface terms.

What are the convergence properties of the sum in Eq.
(2) after it has been extended to infinity? These can be
obtained by transforming the sum over the lattice vectors
I to a sum over spherical shells s of lattice sites at dis-
tances ~l

~

from the lattice origin,
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ditional convergence? Consider first the potential: It is
conditionally convergent if and only if the lowest nonzero
multipole is n =2 (quadrupole). This is the lowest mul-
tipole if the unit cell is neutral and does not have a di-
pole. In this case, the sum for the electric field is abso-
lutely convergent, so the potential is undetermined to an
additive constant. This constant is determined by the
contributions of the charges at the surface of the sample
and can be identified as the electrostatic surface barrier.
Therefore, this constant cannot be determined by this cal-
culation. Not knowing the value of the constant poten-
tial in the lattice does not affect the calculation of the en-
ergy of the unit cell because it is charge neutral. It also
does not affect the forces on the ions and electrons in the
cell as it is independent of position. The exact summa-
tion of the potential in an infinite lattice has been ob-
tained in the Appendix and, in this case, it is equal to

P(r)= J d r'p(r') g(r, r') — r'
cell 3V,

ltj(r, r')= g erfc(g~r —r'+I )
I

(5)

—g /4g ig (r —r')e
c g+P g

where g are the reciprocal lattice vectors and V, is the
volume of the unit cell.

Now consider a unit cell with a nonvanishing dipole,
noting that the value of the dipole can be ill defined when
periodic boundary conditions are used. ' This is illus-
trated in Fig. 1 for a classical point-charge distribution.
As can be seen, the choice of supercell (a) or (b) yields
very different dipole moments, while the choice of super-
cell (c) yields the same dipole moment as (a) (a similar ar-
gument can be extended for higher multipoles). In an
infinite lattice of unit cells with nonvanishing dipoles, we
have shown above that the sum for the electric field is
conditionally convergent and that the sum for the poten-
tial is divergent. From similar arguments to those used
before for the potential, one sees that the derivatives of
the electric field with respect to space are absolutely con-

vergent, so the extent of the indeterminacy is an un-
known constant electric field. (See also the discussion in
Ref. 11.) This means that the energy per unit cell of the
infinite sample and the forces on the electrons and ions in
the unit cell are indeterminate until the surface contribu-
tions have been defined. In the Appendix, we have calcu-
lated the potential in a lattice with a dipolar basis under
the assumption of spherical boundary conditions and
found

P(r)= J d r'p(r') P(r, r') — r'
cell 3V,

+ r d r'r'p r'4~
3 V, cell

where g is defined in Eq. (5). Comparison with the poten-
tial in an infinite lattice without a dipole, (5), shows that
only the last term in (6) originates in the dipolar contribu-
tion. Indeed it has the form of a constant electric field,
the magnitude of which is determined by the shape of the
boundary conditions and the definition of the unit cell.
In a periodic solid, all choices of supercell geometry rela-
tive to the charge distribution should yield equivalent po-
tentials (and energies). This is not the case with Eq. (6);
however, this merely reAects the fact that the potential in
an infinite lattice with a dipolar basis is not uniquely
defined but depends on the contributions of the surface
terms, as discussed above.

Some calculations on polarized solids have used
periodic boundary conditions with an additional assump-
tion of zero electric field. ' This means that an external
process has caused the potential at different surfaces to be
equal. This is often the case in macroscopic samples of
polarizable solids where impurities tend to adsorb on the
surface and equilibrate the potential. Therefore, one may
apply the zero-field condition to calculate static proper-
ties of such a polarized crystal using an infinite lattice
model. (The results may not necessarily apply to a pure
crystalline sample. ) The electrostatic energy functional
that should be used is that of Eq. (5), which is obtained
from the dipolar case, (6), by removing the term linear in
the electric field. Calculations of dynamic processes are
likely to involve a change in the surface configuration
and, therefore, the creation of potential differences and
the associated electric fields (i.e., piezoelectric effects).
The zero-field approximation can still be applied in such
calculations, but this implies the existence of an external
process, which rapidly equalizes the potential on the
different surfaces of the crystal. The existence of such an
external process, and its relevance to the dynamics, must
be considered separately for each case.

III. APERIODIC SYSTEMS IN PBC

FICx. 1. A section of a periodic classical charge distribution,
denoted by the + and —signs, with three possible choices for
the supercell.

When calculating the energy of an aperiodic system us-
ing periodic boundary conditions, one is interested only
in the energy, Eo in the limit L~~, where L is the
linear dimension of the supercell. The energy calculated
for a finite supercell E (L) differs from Eo, because of the
spurious interactions of the aperiodic charge density with
its images in neighboring cells. Furthermore, these in-
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teractions induce changes in the aperiodic charge density
itself, which depend on L. To estimate Eo from the cal-
culated E(L), we need to know the asymptotic depen-
dence of the energy on L. For simplicity, we concentrate
first on the case of an isolated molecular species in a large
supercell, such that the entire molecular charge density is
contained in the supercell. In practice, the electron den-
sity decays exponentially away from the molecular and
the supercell need only be large enough for the density at
the surface of the cell to be in this regime. If there was
no induced charge density, then the multipole moments
would be exponentially convergent with L, while we wish
to study the convergence of the electrostatic energy,
which will have the form of a power law in L. The lead-
ing term in the induced charge density will be the in-
duced dipole, the magnitude of which is determined by
the electric field. If the molecule has a permanent dipole
then the induced dipole will be 0(L ) and its leading
contribution to the electrostatic energy 0 (L ),
reAecting the dipole-induced dipole interactions. If the
molecule has no dipole moment, then the induced density
is 0(L ) at least. [This result is also obtained for a
molecule with a permanent dipole moment, if the super-
cell is chosen to be cubic —see below Eq. (9).] As we
confine our discussion below to terms in the energy that
converge as 0 (L ), we can ignore the effects of induced
charge distributions on the convergence of the energy of
an isolated molecular species.

A. Neutral molecular species

Consider first the case of an isolated neutral molecule
that has no dipole moment. The energy is absolutely con-
vergent and is given by Eq. (A14) in the Appendix or
equivalent by direct summation of Eq. (2) and integra-
tion. The exact details need not concern us here as it is
sufficient to note that the asymptotic behavior is deter-
mined by the quadrupole-quadrupole interaction, which
has the functional dependence of ~l ~

. For large super-
cells, the quadrupoles will be independent of L and the
energy will be

E( L)=E 0+0(L ) .

Consider next an isolated neutral molecule that has a
dipole moment. In this case, we first have to define what
energy is being calculated, because the energy of an
infinite lattice with a basis that has a dipole moment is
not well defined, as discussed above in Sec. II. However,
in a calculation of an aperiodic system the infinite lattice
is merely a device and is not meant to correspond to any
physical reality. Therefore, the order of summation of
the electrostatic sum (i.e., the surface) can be chosen for
convenience. Choice of summation over spherical shells
is considered in the Appendix and the electrostatic ener-
gy functional is found to be

E =
—,
' f d r p(r) f d r' p(r')g(r, r')

cell cell

2+ f d rrp(r) (&)
cell

where if there are point charges in the charge distribu-

tion, the modified functional in Eq. (A14) of the Appen-
dix should be used. Two comments should be made
about Eq. (8).

(i) It differs from commonly used energy functional
(e.g. , that in Ref. 1) in having an additional dipole-
dependent term. In the case of an infinite periodic solid,
the same arguments apply as those used above in discuss-
ing the potential. For an aperiodic system, the absence of
this term will not change the value of the energy in the
limit L~oo, Eo, as the additional term is 0(L ).
However, if the dipole term in Eq. (8) is not included then
the energy will converge to Eo with an additional
0 (L ) term. Furthermore, since this additional term in
the energy functional contains the position coordinate ex-
plicitly, it will also mean that the forces will converge
more slowly to their limiting value.

(ii) It has been noted' that the dipole moment is ill
defined in PBC s. In a periodic solid, all choices of super-
cell geometry relative to the charge distribution should
yield equivalent energies. This is not the case with Eq. (8)
as different choices of supercell will yield different values
of the dipole moment and, therefore, different energies.
However, this is not really a problem as it merely reAects
the fact that an infinite periodic solid with a dipolar basis
does not have a well-defined energy. However, in a calcu-
lation of an aperiodic system, different choices of super-
cell need not be equivalent. The relevant choice of super-
cell geometry relative to the charge distribution is deter-
mined by the system to be considered in the limit L ~~.
The supercell chosen must include the entire aperiodic
system in the same configuration as it would be in the
bulk limit. If this condition is obeyed, then the dipole
moment is invariant to the choice of supercell as in
choices (a) and (c) in Fig. 1. Choosing supercell (b)
would imply choosing to study a different aperiodic sys-
tem in the limit L —+ ~.

What is the asymptotic convergence of the energy with
increasing supercell size in this case? From the same
considerations as above, the energy is dominated by the
dipole-dipole interactions, which have the functional
dependence ~1~ and, therefore, in general, would lead
to an 0(L ) convergence. However, by choosing the
supercell to be a cube we can make use of the special
symmetry of the Legendre functions on a cube, first
pointed out in this context by Nijboer and deWette. "
The contribution of the dipoles on a spherical shell of ra-
dius ~1 ~

to the electric field at the origin is

3 I I2

IP- lll l J =X,J,Z 1E I~l I

where l is the cartesian component of I in direction j.
This result implies that dipoles on a cubic lattice do not
interact and, therefore, the energy in such a calculation
will converge 0(L ). If it is necessary to use a super-
cell with a shape other than a cube, then the contribution
to the energy arising from the dipole interactions may be
calculated by performing the relevant lattice sum, which
depends on the specific lattice geometry.

As an example, we have calculated the potential energy
of stretching a NaC1 molecule by 0.3 A from equilibrium.
The calculations were based on the Kohn-Sham
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FIG. 2. The potential energy of stretching a NaCl molecule
by 0.3 A from equilibrium calculated for cubic supercells of side
L. The triangles refer to the electrostatic energy functional in
Eq. {8), while the filled circles refer to the same functional
without the dipole term.

B. Nonneutral molecular species.

Calculation of the energy of a charged system is of in-
terest for ions or charged impurities in crystalline solids.
However, the energy of a periodically repeated electrical-
ly charged system diverges. For an aperiodic system,
practical interest is restricted to the limit of an infinitely
large supercell, which contains the charged system. This
limit is identical to that obtained from a similar system,
which consists of the original charged system immersed
in a jellium background which fills the supercell and neu-
tralizes the charge, so that the net charge is zero. For
this new system, the calculation can proceed as discussed
in the previous section. The energy of the unit cell in this
calculation will converge slowly, reAecting the decreasing
interaction between the charge species and the jellium
background as the supercell is taken to be larger and
larger. This convergence will have the form of a power
law in L, and in this section we obtain the asymptotic

method, ' using pseudopotentials to represent the core
electrons and the nuclei, periodic boundary conditions,
and a plane-wave representation of the electron wave
functions. ' The supercell was chosen to have a cubic
geometry and the molecule was located at the center of
the cube. The calculations were performed using the pro-
gram cASTEP, the principles of which have been de-
scribed elsewhere. ' The calculation was performed both
with the dipolar term in the electrostatic energy function-
al and without. Therefore, we expect the results to con-
verge as 0(L ) and 0(L ), respectively. The results
are shown in Fig. 2, where one can clearly see that the en-
ergy calculated without the dipole term in Eq. (8) con-
verges more slowly than the energy calculated with this
term. Also, note that both calculations converge to the
same result within numerical accuracy. (The numerical
error increases with cell size due to an instability associ-
ated with the representation of the electrostatic potential
in reciprocal space. )

'

dependence on supercell size of the electrostatic energy of
a charge species to 0 (L ).

The charge density of the immersed system consists of
the density of the charged species, p, (r) and the jellium
density, n0;

E
2L

(12)

where n is the lattice-dependent Madelung constant. E22
is the interaction energy of a neutral charge density on a
lattice. Since the p2 has no dipole moment (due to the
choice of ro), E22 will converge as 0(L ) as discussed
above.

Last, consider E12. This is the interaction energy be-
tween two di6'erent neutral charge densities, which at
first might be expected to also have an 0 (L ) asymptot-
ic form. However, this result was obtained under the as-
sumption that the charge densities are localized and in-
dependent of supercell size. While for p2 this assumption
holds, it does not hold for p„where n0 is obviously
dependent on the supercell volume. The explicit form of
E12, by simple generalization of the results of the Appen-
dix, is

E,&=lim f d r p, (r)
s ~0 cell

X f d r'p2(r')lt(r —r', s),
cell

(13)

where g is defined in Eq. (A9), and pj refers to density j
of Eq. (11). p2 does not have a dipole moment, because of
the choice of ro, which implies that the lattice sum in g is
absolutely convergent up to an irrelevant constant poten-
tial. This allows us to separate the energy in Eq. (13) into
two parts; that arising from the interaction between p2
and the point charge in pl, and that arising from the in-
teraction of p2 and no. The interaction of the point
charge with p2 can be considered in the limit of the con-

p(r)=p, (r)+no .

Assuming a total charge q on the charged species, then
n0= —q/V, to ensure charge neutrality. The density
may be split into two contributions by adding and sub-
tracting a point charge q at r0,

p(r) = [q5(r —ro)+ [p, (r) —q5(r —ro) j .

The density in the first brackets on the right-hand side of
Eq. (11) will be denoted as p& and the density in the
second brackets as p2. r0 can be chosen to be any point in
the supercell. A useful choice, which we make use of
below, is to choose r& so that p2 has no dipole, and the
origin of the coordinates is chosen to be at the center of
the unit cell.

We wish to obtain the asymptotic contributions to the
energy in the limit of large supercells. The electrostatic
energy can now be considered to be the sum of three en-
ergies: pl on a lattice interacting with itself, E11,pz on a
lattice interacting with itself, E22, and p, and p2 on a lat-
tice interacting only with each other, E12. E11 is well
known to be the Madelung energy of a lattice of point
charges immersed in neutralizing jellium
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EI2= d rp2rr +0 I
3 V, cell

(14)

where V, =L for a cube. The asymptotic result for the
total electrostatic energy of a charged species on a cubic
lattice is

vergence parameter g —+0, i.e., in the limit of a lattice
sum over the lattice vectors I. The leading term in this
interaction is between the point charge q and the quadru-
pole (second radial) moment of p2, Q. If the lattice is
chosen to be simple cubic, then this interaction vanishes
for the same symmetry reasons as discussed for the
dipole-dipole interaction at Eq. (10) above. The interac-
tion of the jellium with pz can be considered in the oppo-
site limit of q~ ~, which means a lattice sum over the
reciprocal vectors g. The jellium has no spatial structure
and, therefore, only the g=O contribution to the poten-
tial (see Appendix) need be considered. This leads to the
L dependent contribution

2

E =E — — +O(L ),2L
(15)

where Q is the quadrupole moment given by the integral
in Eq. (14) and Eo is the desired electrostatic energy of
the isolated species.

An example illustrating the size dependence of the en-
ergy on cell size in Eq. (15) is shown in Fig. 3. The ion-
ization energy of an Mg atom has been calculated by the
methods described above using the electrostatic energy of
Eq. (8). Also shown are the convergence after the appli-
cation of the Madelung correction of Eq. (12) and after
the more extended correction of Eq. (15). It is clear that
as the corrections are applied, convergence increases rap-
idly.

C. Aperiodic system in condensed matter

Consider first a localized (point) defect in a crystalline
solid. In this case, the charge density can be considered
to be the sum of two contributions —the periodic charge
density of the underlying crystalline solid p (r), and the
charge density of the aperiodic defect p,z(r);

7.5

p(r) =p~(r)+ p,p(r),

p (r+l)=p~(r) .
(16)
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FIG. 3. (a) The ionization potential of a Mg atom calculated
in cubic supercells of side L (filled triangles). The same after ap-
plication of the Madelung correction Eq. (12) (filled squares).
The same after application of the present correction Eq. (15)
(filled circles). (b) Expanded section of (a).

The aperiodic density p, (r) will be a localized charge
density similar to a molecular density. The electrostatic
energy can then be considered to be the sum of the in-
teractions between (i) the periodic charge density and it-
self, which is independent of L; (ii) the periodic and
aperiodic charge densities, which is also independent of L
(and equal to the interaction of a single isolated aperiodic
density with an infinite periodic density); and (iii) the
aperiodic densities located in different supercells, which
is L dependent. Note that the periodic part of the density
must fulfil the conditions of Sec. II, namely, it should not
contribute a net charge in the unit cell or a net dipole. It
is reasonable to assume that this model will be valid for
modeling any species in a condensed phase that is homo-
geneous beyond some length scale (e.g. , an ion in a solu-
tion).

What is the asymptotic dependence of the aperiodic
density and its multipoles on the supercell dimensions?
The aperiodic density depends on L through two mecha-
nisms. One mechanism, as in the case of the isolated
molecule, is changes in the charge distribution induced
by interactions of the aperiodic charge with its images.
The convergence with L of this case has been discussed
above, and was found to converge faster than O(L ).
The other source of L dependence in p, is the dielectric
response of the periodic medium to the aperiodic density.
The asymptotic term arising from this response cannot be
obtained by the methods used above for the isolated mol-
ecule as it involves the induced charge density, which im-
plies nonelectrostatic contributions to the energy. In-
stead, the phenomenological approach of Leslie and Cxil-

lan in which the potential is reduced by the dielectric
constant c can be applied. This correction is exact in the
1imit of large L, and we apply it to the results of Sec.
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III B to obtain, for the case of a charged aperiodic system
in a cubic supercell,

E =Eo- q e
2I.c

+0(L ) .
3L, c.

(l7)

In this case, Q is the second radial moment only of that
part of the aperiodic density that does not arise from
dielectric response or from the jellium, i.e., is asymptoti-
cally independent of L. The two parameters e and Q are
properties of the periodic density and the aperiodic densi-
ty, respectively. They may either be calculated explicitly
(e can be obtained separated by considering the response
of the periodic density to a point test charge, q «e,
where e is the unit charge and for which Q =0), or by
fitting the data to expression (17). For neutral aperiodic
systems, the size dependence will be unaffected by the in-
troduction of the dielectric constant and will remain
0(L ), assuming a square supercell for dipolar aperiod-
ic densities.

IV. SUMMARY AND DISCUSSION

In this paper, we have derived exactly the electrostatic
energy functional for an infinite periodic lattice with a
basis, by generalizing and extending the work of de
Leeuw, Perram, and Smith. In doing so we obtained
conditions for using an infinite solid as a model for a real
solid. These conditions are that the unit cell should be
neutral and have no dipole moment. If these conditions
are not fulfilled, then the energy per unit cell of the solid
diverges or is indeterminate unless further boundary con-
ditions at the surface are imposed. However, static prop-
erties of a polarized solid can still be calculated under the
assumption of zero electric field. This reAects the ex-
istence of external processes that can cause the potential
at all the surfaces to be equal. Calculations of dynamical
processes under the zero-field assumption, imply the ex-
istence of a faster external mechanism, which equilibrates
the potential over the crystal surfaces.

The convergence of the energy of a localized aperiodic
system with respect to supercell size was also considered
in detail. The convergence is dominated by the electro-
static interactions of the species under consideration and
its images. We have shown that by suitable choice of su-
percell geometry, as well as the employment of the exact
electrostatic energy functionals, the energy can be calcu-
lated so that it will converge to its limiting value as
0(L ). For neutral systems without a dipole, this is al-
ways the case. For systems with a dipole moment, this is
the case only if a cubic supercell is used and if the electro-
static energy functional is derived correctly. In particu-
lar, the commonly used electrostatic energy functional
was found to be missing a dipolar term, the addition of
which increases the rate of convergence from 0 (L ) to
0(L ). For nonneutral isolated molecular systems, we
found the explicit asymptotic dependence on L to order
0 (L ) for a cubic supercell. Correcting the calculated
energy by adding these terms we found it converged rap-
idly, as expected. For an aperiodic system in condensed
matter, we argued that the gas-phase terms may be gen-
eralized by introducing an empirical dielectric constant.

These results for calculations on aperiodic systems
make the use of PBC highly competitive compared to the
isolated system on a grid approach. ' The main benefit
of this approach was that spurious interactions with the
lattice images were avoided. We have shown that these
interactions can be converged rapidly with supercell size.
This allows e%cient use of PBC in the study of aperiodic
systems in the condensed phase. It is also our belief that
considerations similar to those employed in this work can
be applied to the convergence of long-ranged elastic
forces in microscopically deformed solids, which are
similar in their form to electrostatic forces.

ACKNOWLEDGMENTS

The authors acknowledge useful discussions with Pro-
fessor D. Vanderbilt and with Dr. S. Crampin, Dr. A. de
Vita, and Dr. G. Rajagopal. One of us (G.M. ) acknowl-
edges the FCO-Clore Foundation for financial support.

APPENDIX

In this appendix the electrostatic energy per cell of a
charge distribution in a periodically repeated supercell, is
calculated by the method of de Leeuw, Perram, and
Smith who studied the related problem of point charges
in a cubic lattice. The expression for the electrostatic en-
ergy is

E=—' d rpr r
cell

1=
—,
' f d r p(r) g f d r'p(r'), , (Al)

cd& I cell ~1 1 + I
~

and the cell is charge neutral

f d r p(r)= f d r n(r)+ gz;=0,
cell cell

(AZ)

where n (r) is the continuous part of the density and there
are also point charges, with the ith point charge having a
charge z; and located at r;.

As discussed in the main body of this work, the lattice
sum for the potential in (A 1) can be conditionally conver-
gent. To make the sum absolutely convergent, we intro-

—s1duce the convergence factor e ' I . In the absolutely
convergent sum we are allowed to exchange the sum and
the integrals; therefore, we consider the sum

g(x, s) = g e
—s

I
I

I

1

I x+I (A3)

This sum can be transformed into a double sum as in Eq.
(3) in the main body of the paper. Then the sum over ~1

~

is a one-dimensional conditionally convergent series, for
which the introduction of a convergence factor induces
convergence to a definite limit. The choice of how to
transform the lattice sum to a one-dimensional sum is ar-
bitrary and rejects the surface geometry. The present
choice corresponds to a sum over spherical shells.

Introducing the integral expression for the Gamma
function I (n), which after simple rearrangement is
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y
2a 1 te ' t'

1 (a) o
(A4)

we obtain

tI(x, s) can be rewritten as

g( )
—)/2 y f I

—(/2 —t(x+ I) —s I

0
(A5)

erfc(rI lx+I l ),I)

IX+I
I

(A6)

Erfc(z) is the complementary error function, which for
—1/2 —1 —zlarge z has the asymptotic form, ~ ' z 'e ' . This en-

sures that the second lattice sum in (A6) is absolutely
convergent for all values of s, or in other words, that the
singularity at s =0 is in the first lattice sum as expected.
Applying the 0 transformation, valid for all Bravais lat-
tices

3/2—t)x+ I ~ —g /4t ig x

I C g

(A7)

to the first lattice sum, we obtain a new lattice sum over
the reciprocal lattice vectors g and the first term on the
right-hand side of (A6) becomes

a2

y f ' dt(t+ ) '"t
V, o

[g /4(s+t) j ig xt/(t+s) —[st/(t+s) jx (AS)

For large g, the sum in (AS) is absolutely convergent in-
dependent of s. However, the g=O term is singular for
s =0; therefore, we separate it from the sum and change
variables from t to u =tl(s+t) Then w. e take the limit
s ~0 for the remaining, absolutely convergent sum over
g&0 and the absolutely convergent sum in (A6) over l, to
obtain

The integral in (A5) is singular when s =0, and this
singularity is at the t =0 limit of the integral. If the in-
tegration range is split arbitrary into two ranges [0,2I ]
and [2I, oc ], then the second integral is immediate and
g(x, s) becomes equal to

,I,( )
—I/2 y f )

I
—(/2 —t(x+I) —s I

0

—g /4g ig (r —r')
e e

c g~o g
(A12)

For the special case of a neutral charge distribution, we
obtain for the energy

E =
—,
' f d r p(r) f r'p(r')g(r, r')

cell cell

2+ d rrpr (A13)
cell

where use of the charge neutrality condition (A2) was
also made. This result for the energy depends on the fact
that we chose a spherical surface for the performance of
the sum. This choice was implicit in our choice of con-
vergence factor as mentioned above. It should be noted

—s~r+I
~that the choice of the convergence factor e ''+ leads

to the same result only without the unusual dipole term
in (A13). However, in this case the convergence factor
does not apply to a one-dimensional sum and is not
known to have a definite limit as s~0. Thus, the result
should be considered as a coincidence rather than one of
mathematical significance.

If the charge distribution contains discrete point
charges, additional care needs to be taken in applying
equation (A12) as it contains unphysical, and diverging
self-interaction terms when 1=0. For this case the ener-
gy is found to be

E= ,
' f d r—n(r)f d r' n(r')+2+z, 5(r' —r,. )

cell cell
I

X P(r, r')

2' 2

+ d rrpr
3 V, cell

P(r)= f d r'p(r) P(r, r') — (r —2r r'), (All)
cell 3V,

erfc( 2I l
r —r'+ l

l )
r, r' =

lr —r'+l
l

erfc(21
l
x+ I

l ) 4' 1 g2/4„2lI)(x, s
IX+II 1'

g~o g2 + —,
' g g z;z p(r, , r )+ gz,2,

I JWI

(A14)

—sux —1/2due u
V,s 0

(A9) with g defined as

erfc(glr —r'+ l
l )=lim .

r r'
I lr —r'+I

l

+ 4~ y 1 g /4s) ig (r —r')

Note that the entire singularity in s is contained in the
third term on the right-hand side of (A9). Expanding the
third term for the case of small s, we obtain

V, g 3V,
x +O(s) . (A10)

Using (A10) and (A9) in (Al) and taking the limit s —+0, + erfc(2Ill l) + 4~ + 1 g2/4„2 2g

Iwo ill ~ geo g
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