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Linear approximation in the kinetic Ising model on fractals
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We propose a scheme to study exactly the kinetic Ising model on fractals under the linear approxima-
tion. This enables us to obtain the critical slowing-down behavior of the longest relaxation time of the
kinetic Ising model on a fractal exactly. As a result, we show that there are only two time scales in the
relaxation process of the kinetic Ising model on a fractal cluster under the linear approximation; the crit-
ical dynamic exponent is always a constant that is unrelated to the temperature of the system and is
equal to 2. The implication of our results to the linear approximation of the critical dynamics of the
kinetic Ising model on fractals as well as to the time-dependent renormalization-group method is dis-
cussed.

Henley's theory' predicted a singular dynamic scal-
ing in which

yacc

P as in standard dynamic scaling but
with Z —1/T instead of Z=const as predicted by the
tiine-dependent renormalization-group (TDRG) method.
Henley noticed that in an Ising spin system of nonuni-
form geometry, which has only a zero-temperature phase
transition, thermal activation over energy barriers be-
came very important to the critical slowing down near
the critical point. For a ferromagnetic ground state (the
ground state of the nearest-neighbor ferromagnetic Ham-
iltonian Ho= —Jgo. ;o . ), the energy to fiip a spin that
must overcome the energy barrier is just 2J. However,
the number of spins that must overcome the energy bar-
rier increases by 1 in each rescaling. So if we measure the
maximum barrier energy E,„ in units of 2J, there is a
simple relation

E,„(L)I2J =E,„(b 'L)/2J + 1

takes the form

N

P([o ],t)=P, 1+ gb;(t)cr;

q;(t)=(o;)= go, P([oj],t),

we obtain the equation of motion of the magnetization
from the Glauber master equation [see Eq. (1) in Ref. (7)]

dq, (t)
dt

= —2(cr;w;(cr;)) = —2g o;w;(o;)P([a J ],t) .

Here, P, =exp( HolrcT) —is its value at the equilibrium
state. In studies using the TDRG method, [b;(t) I is only
related to the number of nearest neighbors of the point i,
and takes several particular values. Here, we do not give
any constraint on [ b; ( t ) I . Defining

under a scaling change. It is easy to obtain the result that
the barrier energy E, grows logarithmically as
E,„(L)/2J=q ln(L)+const. Henley assumes that the
relaxation between two degenerate ferromagnetic ground
states of an Ising spin system satisfies the Arrhenius law,
that is the relaxation time is

r(L, T) =roexp(E, „/tcT) =roL

So the critical exponent Z is proportional to 1/T. Fur-
ther work ' gave strong support to Henley's theory.
Therefore the results of the TDRG method become
doubtful.

Because the basis of the TDRG method is linear
response, the aim of this paper is to make clear what can
be learned from the linear approximation about the criti-
cal slowing down of the kinetic Ising model on fractals.
Under the linear approximation of the kinetic Ising mod-
el, P( [o J ],t), the probability of the spin configurations,

(2)

In the fractal lattice that we will study, there are three
kinds of points with one, two, and three nearest neigh-
bors, respectively. Corresponding to the three kinds of
spin, the Qip probabilities take the forms

w'(cr ) = —,'y[1 —o cr'tanh(k)],

w (o )=—,'y[1 —
—,'cr(o'+o")tanh(2k)],

w'(cr )=—,'y[1 —o [(cr'+o "+o'")a,+cr'a "o'"a2]],
respectively, with a, =

—,
' [tanh( 3k) + tanh( k) ], a&=—'[tanh(3k) —3 tanh(k)]. cr', o.", and cr"' are the first,

second, and third nearest neighbors, of the spin o..
( cr; w; ( o; ) ) is related to the triplet spin correlation
( o'o "o"' ) of the nearest neighbors of the spin o; be-
cause the fiip probability w;(o,. ) is determined by the
nearest neighbors of the spin cr, . Each spin with three
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nearest neighbors produces a triplet spin correlation term
in Eq. (2). This makes Eq. (2) very difficult to solve.

In the following, we try to find the forms of ( cr'cr "o"')
under the exact linear approximation of Eq. (1). Under
this approximation, the magnetization becomes
q;=g, ( cr; cr, )ob, (t). (o;o )o=g( )cr;cr P, i.s the spin

J
correlation at the equilibrium state. It is well known that

5
the two-body correlation of Ising spins on a fractal is

)x,, —x.J+ )y,.
—y. f

(cr;crj )o=g ' ' ' ' with g=tanh(k). x and y are
the position coordinates of the points i,j. Defining
q=(q], q~, . . . , q]v), b=(b„b2, . . . , b~), we have q=bA
or b=qA ' with 3 a known N XiV matrix of the func-
tion g. The triplet spin correlation (o'cr "o'") can be ex-
pressed in terms of q. We take (o,cr3cr4) as an example
to explain how this can be done. In the approximation of
Eq. (1), it can be written as

(cr]cr3]T4) Q (o ]cr3cr4crj )obj(t)=b D
J

with

( cr ]cr 3cr4(rj )o g cr ]cr3(r4crj Pe

and

D=(& ~]o3o4)o (~lo2o3o4&o . & o]o3~4ox &o)

=tanh (k)[q]+q3+q4 —2q2tanh(k)] . (3)

In fact, we can prove that Eq. (3) is a general result for
the spin 0. which has the three nearest neighbors
cr', o",0."', on the fractal that we will study, that is,

(cr'cr"cr"') =tanh (k)[& o. ' &+ &o"&+ (cr"'&

—2(o )tanh(k)] .

If we assume q,. =qoe ', then the solution for the
magnetization of Eq. (1) on the fractal cluster shown in
Fig. 1 now becomes a problem of the eigenvalues of the
equation q.H =0, or

(T means the transform). Because P, is a configuration
of Gaussian type, the four-body correlations can always
be decomposed as multiplications of two-body correla-
tions. For example,

. . ,&,=(, , &,&, ,&,=g'X

So 0 is a known vector. It is not dificult to show that

(o.,o,cr4 & =q. A 'D

in which p =
—,'tanh(2k), q =a, +g az, a =x —2g a2, and

x = 1/ry —1. It can be further simplified as

with

and

/H, /= o
0
0

g 0 0 0
a q q 0 x g 0

g x 0 0 —p X q a q

p 0 x p 0 g x
0 0 p x

x 0 p 0
0 x g 0

qqaq
0 0 g x

To obtain the above results, we utilize the Laplace
theorem and the invariant property of a determinant un-
der the rotation of its matrix by 180'. These procedures
are universal for fractal clusters of any size, that is, an
XXX determinant ~H~ can always be reduced to the
multiplication of two small determinants

~ H, ~

and
~ H2 ~

which have completely similar forms, as in Eq. (5). One
is of the order (%+1)/2 and the other of the order
(N —1)/2 if we follow these procedures. In Eq. (5), ~H2 ~

can be solved exactly. Except for the two trivial solutions
~=y, the other two solutions are

1
+ =1+g a2+Qg a2+q(2g+p) .

r~*
The solution v is interesting to us because ~ is diver-
gent as k~ ~ (T~O). It is a divergent relaxation time.
We must emphasize that these two solutions can also be
obtained analytically in any-order determinant of ~H~ on
a fractal cluster. In general, except for ~* and the trivial
solution ~=@, the eigenvalues of the matrix H cannot be
obtained analytically. But this cannot prevent us from
studying the behavior of the longest relaxation time
analytically. In the following, we will adopt other
methods to study the behavior of the longest relaxation
time instead of solving the H matrix exactly.

First, we find out how many solutions of the relaxation
time v. on a fractal cluster with % sites are divergent near
the critical point k = ~ under the linear approximation
of Eq. (1), that is, how many solutions of an N XX deter-

x g

q a
0 g
0 p

fH/= o o
0 0
0 0
0 0
0 0

0 0 0 0 0 0 0

q q 0 0 0 0 0
x 0 0 0 0 0 0
0 x p 0 0 0 0
Opxp000=0,
0 0 p x 0 p 0
0 0 0 0 x g 0
0 0 0 q q a q
0 0 0 0 0 g x

(4)
Rescaling

CF] G
8L

FIG. 1. First two stages of the fractal that has the fractal di-
mension Df =ln2/1n3.
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minant ~Hi are —1(x =1/yr —1) .At k'= ~, it is easy
to show that g =1, p =

—,', g =0, and a =x+1. The
Ã XN H matrix becomes soluble. It only has four kinds
of solutions, which have the values —1, 0, +1/&2, re-
spectively, and the last two are not degenerate. These re-
sults are very important to our discussion in the follow-
ing. The solutio:~s with the value —1 are interesting to
us here. Obviously a spin with three nearest neighbors,
which is represented by a row of the form
(0, . . . ,0, q, q, a, q, 0, . . .0) or (0, . . . , 0, q, a, q, q, 0, . . .0) in
the H matrix [see Eq. (4)], produces a solution x = —l.
As a result, the number of divergent relaxation times is
equal to the number of spins with three nearest neigh-
bors. For a fractal cluster with N sites, there are
(N/3 1) sit—es that have three nearest neighbors. This
means that the number of divergent relaxation times of
the Ising spin system on that fractal cluster is (N/3 1). —
Moreover, our reduction procedure to an H matrix distri-
butes the spins with three neighbors homogeneously be-
tween the two subdeterminants iH|i and iH2i. So each
subdeterminant has —,

' (N/3 —1) solutions —1. Further-
more, we must emphasize that the solutions +1/~2 are
always in the determinant iH| i.

Secondly, we study the behavior of the longest relaxa-
tion time under the rescaling. Because all the quantities
like p, q, a „and a& can be expressed in a variant g, the re-
laxation time r is a function of g. However, g=tanh(k)
can be rewritten as

k k

k+ k

—e ~k 1 —y
1+e k 1+y

with y=e " (k=J/aT). g =1 is equivalent to y =0.
So ~ is a function of the single variant y. You will under-
stand immediately in the following why we express ~ in
terms of y. If we denote the inverse of the longest relaxa-
tion time r,„as r';„(r';„=1/yr, „) and expand it at
the critical point y =0, since r',„(y =0)=0, r';„has the
form r';„=y (c, +c2y+ ). According to Henley's
theory, ' the energy to Hip a spin is just 2J. So e is a
natured unit of the relaxation time from the Arrhenius
law. Obviously, the inverse of the relaxation time is
characterized by y. The above expression makes the
physical meaning of the divergent relaxation time very
clear. The value of S is a measure of the long-time
behavior of the divergent relaxation time. The bigger S
is, the longer is the relaxation time. It also provides us a
direct and exact method to study the behavior of the
1ongest relaxation time under the rescaling of a fractal.
The reason is that the value of S for the 1ongest relaxa-
tion time must increase under a recurrence of the fractal
cluster because Henley's theory predicted an increase of
2J in the barrier energy under a rescaling of the fractal.
If the value of S for the 1ongest relaxation time is un-
changed under the rescaling of the fractal cluster, this
shows that the critical dynamic exponent of the system
on the fractal is a constant as in the TDRG prediction.
So our task in the following is to calculate the value of S
analytically.

If 70 denotes the multiplication of all eigenvalues of
the H matrix, it is easy to show that ~0 is equal to

bl ( 1)!1 1 2. . . m
1 p 1 1 1

b2 ( 1)IC C C
(7)

where l and I are the number of solutions in the deter-
minants iH, ~

and
~ H2 ~, respectively. So we can infer the

S value as well as the c value of the longest relaxation
time from 70 and ro. By use of the analytical language of
the computer, the value of a determinant can be calculat-
ed analytically. This avoids the difficulties of solving the
eigenvalue equation. We have calculated the ~Hi deter-
minants on fractal clusters with sizes 9, 27, and 81, which
are the three stages of the fractal.

(1) For the cluster with nine sites, the ro and ro that we
obtain analytically are

ro(k)=y (3+y —5y —2y + ),
(8)

ro(k)=y( ——', ——,'y+y + —,'y + . ) .

It is very clear that the longest relaxation time is charac-
terized by ~0 and has the S value 2 and the c value co =6.
ro describes the relaxation behavior of the solution r; it
has the S value 1 and the c value c1=—,'. A11 these show
that there are two time scales under the linear approxi-
mation. To obtain the critical dynamic exponent, we
must calculate Eq. (8) under the transformation of
finite-size scaling. Under the rescaling from 27 sites of
nine sites, the effective parameter of the interaction be-
comes k'=tanh '[tanh (k)], that is, g =tanh (k) instead
of tanh(k), and Eqs. (8) are changed to

ro(k')=y (12+8y —104y —88y + . ),
ro(k')=y( —3 —2y+lly +12y + ) .

From them, we know that the longest relaxation time has
the form with S =2 and the c value co =24, and the other
divergent relaxation time has the form with S = 1 and the
c value c1 =3 under the change of scaling.

(2) For the fractal cluster with 27 sites, we obtain

r'(kl=y ( ——", ——",y+18y + —",y + . ),
72(k) —

y 3( 27 + 27y 45y 2 31y 3+. . . )8 8 8 4

From Eq. (7), we know

b' =( —1) —'c', c,c, = —"=( —1) —'c (c, )

b =(—1) c'c c =—"=(—1) (c, )

iH(x = —1)i, the value of the determinant iHi at
x = —1. Expanding zo iny aty =0, we have

S +S +. S 1 liro=iH, (x = —1)i=y ' ' (b,'+b g' '+ . . ),
S +S +.. . S

so= iH2(x = —1)~ =y ' ' (b, +b2y '+ . ),
(6)

where m is the number of divergent relaxation times in
the determinant iH, i

or iH2 ~. Because of the inverses of
the nondivergent relaxation time, at y =0 two are equal
to (1+1/&2) and the others are equal to 1, the
coefficients b& and b1 are just multiplications of the
coefficients c of each divergent relaxation time, that is,
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ro(k')=y ( —108—216y+1584y +3928y + ),
7O(k')=y (27+54y —26ly —712y + ) (12)

As above, we obtain the form of the longest relaxation
time under the rescaling as

1 =coy +O(y ),yr', „(k')

and the other divergent relaxation times have the same S
value 1 as well as the c value c1 =3.

(3) For the fractal cluster with 81 sites, we have

rl(k) — 13( 531441 531441»+ 885735 2+ 3877551 3+. . . )p

r2( k)» 12( 531441 + 531441y 177147y 2 1673055y
3 + )4096 1024 2048 512

(14)

The results are

b1 ( 1)331'le 2. . . c12 531441
( 1)331c (c )112C1C1 ' ' C1 2048 2CP C1

b2 ( 1)32clc2. . . c12 531441 —
( 1)32(c )12

1 2 2 2 4096 1

S1 +S2+ ' ' ' +S12= 13, and S1 +S2+ ' ' ' +S12= 12.
The only possibility is that the longest relaxation time
takes the form of Eq. (11), and the other divergent relaxa-
tion times have the same S value 1 as well as the c value
C 1

According to the finite-size scaling theory of critical
dynamics, 7(k)/7'(k')=b (b is the scaling factor and
equal to 2 here), we can calculate the critical dynamic ex-

S1+S2+S3=4, and S, +Sz+S3 =3. So the only possi-
bility is that the longest relaxation time has the form

1 =coy +O(y ),
'Y +max

and the other divergent relaxation times have the same S
value 1 as wel) as the c value c, =—,'. Under the transfor-
mation of the scaling from 81 to 27 sites, Eq. (10) takes
the form

ponent exactly from Eqs. (11) and (13) by co /co =b . So
in the linear approximation the critical dynamic ex-
ponent of the kinetic Ising model on a fractal is a con-
stant, 2.

We propose a method to study the critical dynamics of
the kinetic Ising model on fractals. The advantage of our
method is that we are able to obtain all the information
of the longest relaxation time of the kinetic Ising model
on a fractal under the linear approximation exactly
without solving the master equation or equation of
motion. Using this method, we study exactly the critical
dynamics of the kinetic Ising model on a typical fractal
shown in Fig. 1. We obtain the critical slowing-down
behavior of the longest relaxation time of the kinetic Is-
ing model exactly on fractal clusters with 9, 27, and 81
sites under the linear approximation. Our results show
that there are only two time scales in the relaxation pro-
cess of the kinetic Ising model on a fractal cluster under
the linear approximation, instead of Henley's hierarchical
time scales. So the critical dynamic exponent of the
kinetic Ising model on the fractal under the linear ap-
proximation is always a constant that does not have a re-
lation with the temperature of the system. This means
that the linear approximation of the kinetic Ising model
on a fractal cannot predict Henley's results. Moreover,
we calculate the critical dynamic exponent of the kinetic
Ising model on the fractal under the linear approximation
exactly by the finite-size scaling theory. We show that it
is different from the value ' Df+ —,

' predicted by the
TDRG method and equal to 2. This exact result is a
great challenge for the application of the TDRG method
to the critical dynamics of the kinetic Ising model on
fractals. It shows that the TDRG method cannot even
produce correctly the results of the linear approximation
of the kinetic Ising model on the fractal.

In summary, our results show that any methods that
are based on the linear approximation are not suitable to
be used to study the critical dynamics of the kinetic Ising
model on fractals, and the RG method to study the criti-
cal dynamics of spin systems on a fractal must be revised
in the future.
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