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The electronic energy spectrum and localization of the wave functions for a class of one-dimensional
generalized Fibonacci quasilattices, whose substitution rules are A —+ ABB and B~A, have been stud-
ied. It has been found that the spectrum has a peculiar trifurcating structure and there are three kinds of
wave functions in the spectrum: extended, localized, and intermediate states. The middle part of the cen-
tral subband in every hierarchy of the spectra is always continuous and the corresponding wave func-
tions are all extended while the rest of the wave functions are intermediate or localized, i.e., there exist
mobility edges in the subband. For the whole spectra the mobility edges possess a type of hierarchical
structure.

As a one-dimensional version of quasicrystals, the Fi-
bonacci chain has been extensively studied since the ex-
perimental discovery by Schechtman et al. ' Its main
feature is the Cantor set character of the energy spec-
trum. For recent years the theoretical interest has
been shifting towards other one-dimensional quasiperiod-
ic systems, such as the generalized Fibonacci quasilat-
tices, Thue-Morse and generalized Thue-Morse mod-
els, ' '" and the three-tile SML model. ' The so-called
generalized Fibonacci sequence is best described by suc-
cessive application of the substitution rules A —+A 8"
and 8~A, with m, n being positive integers, which is
denoted as GF(m, n ) here. In this paper we concentrate
on the study of GF(1,2) quasilattices, which is also re-
ferred to as the twins model or the copper mean lat-
tice.

Most studied physical properties of the one-
dimensional generalized Fibonacci quasilattices are con-
centrated on the spectral structure. On the other hand,
the localization of the electronic states has not been
much investigated. But, following the discovery of the
quasisemiconductor, ' the localization problem is likely
to attract more and more interest. It is well known that
for one- and two-dimensional disordered systems the elec-
tronic states are all localized, but for three-dimensional
ones there are mobility edges, which separate the con-
ducting region (extended state region) from the noncon-
ducting one (localized state region). In a one-dimensional
system, no matter whether quasiperiodic or aperiodic,
whether there exist mobility edges is a very attractive
problem. For the one-dimensional quasilattices, the ex-
tended states have been found at individual energies. Re-
cently, Sil et al. have analytically shown that there is an
infinite number of extended states in the GF(1,2) chain.
For the GF(1,2) model studied in this article, we found
that the spectrum has a trifurcating structure. For the

central subband of every hierarchy of the spectrum, the
middle part is always continuous. Because the continu-
ous spectrum corresponds to the extended state band, we
can expect that not only are there mobility edges, but
that furthermore the mobility edges would have a
hierarchical structure. This conjecture has been
confirmed by the numerical calculations. To the best of
the authors' knowledge this is the first time that a
hierarchical structure of mobility edges is discovered.

In order to study the spectral properties of quasi-
periodic systems, many approaches have been developed.
The analytical methods based on the trace maps and
real-space renormalization-group technique have played
a central role in the understanding of the problem.
Liu and Sritrakool have developed a decomposition-
decimation (DD) method to study the Fibonacci chain
and have given a simple and clear physical picture of the
electronic spectral behavior. Because the geometric self-
similarity also exists in the present model, we can use the
DD method to analyze the spectral behavior of the
GF(1,2) quasilattices.

Let us consider the transfer model of the GF(1,2)
chain shown in Fig. 1(a), where the site energies are set to
be zero and the transfer-matrix elements take one of the
two values t~ and t'ai according to the GF(1,2) sequence.
Assume t~ &&t~, first, in the absence of the weak bonds,
i.e., let t~ =0, the chain is broken into two kinds of iso-
lated clusters: the isolated atoms (IA's) and triatomic
molecules (TM's) as shown in Fig. 1(b). The eigenenergy
of the isolated atom is simply E=0 and those of triatom-

ic molecule are E =0, +v'2ttt Consequently. , in the first
approximation the spectrum consists of three levels E =0
and E=+&2tti, which determines that the energy spec-
trum should have a three-main-subband structure. The
numerical results shown in Fig. 2 confirm this conclusion.

Now we consider the side subband with E=&2tti re-
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FIG. 1. (a) The GF(1,2) chain of the fifth
generation. All of the sites are the same, but
there are two kinds of hopping integrals t&
and t&. (b) If the weak bonds t& are cut, the
GE(1,2) chain is broken into two kinds of clus-
ters: isolated atoms and triatomic molecules.
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FIG. 2. The electronic spectrum of the GF(1,2) quasilattice
with t& = —0.3, t&= —1, and %=5462 sites. The trifurcating
self-similar structure and the continuous behavior around E =0
are clearly seen. (a) and (b) are the enlarged plots of the central
subbands A and B, respectively, of which the same spectral
properties as that of the global spectrum are clearly shown.

suiting from the TM's, for which there are two coupling
cases (see Fig. 1). The effective coupling strengths can be
obtained as t~ =t~ /Styli for two TM's connected by three
t„bonds, and tiI =t~ /4 for two TM's connected by one
t& bond.

If we take the TM with energy E =&2tii as a "supera-
tom" and two effective coupling bonds t~ and t~ are
denoted by A ' and B', respectively, then the superatoms
construct a new chain A 'B 'B ' A ' 3 ' 3 'B 'B ' 3 'B 'B '. . .,
which is again a GF(1,2) sequence with renormalized
coupling strengths t„'=i„/Styli and tii=t~/4. Conse-
quently, if we break off the new weak bond t~ to perform
the second approximation, the level E =&2tii will split to
three new levels, E =V'2tii and E=&2tii+v'2tii
=V2t~+&2tz /Styli. From the first renormalization pro-
cedure we know that the further splitting pattern of these
three subsubbands should be the same as their corre-
sponding main subbands, individually. The numerical re-
sults shown in Fig. 2 are coincident with the above
analysis.

Because of the symmetry of the spectrum, the structure
of another side subband related with eigenenergy
E= &2tii in—the first approximation is exactly the same
as that of E=&2tii Now we. turn to investigate the cen-
tral subband with eigenenergy E=O resulting from IA's
and TM's in the first approximation. %'hen tz is taken
into account, the coupling interactions among these
states have three cases (see Fig. 1). They are all connect-
ed by a weak bond tz, and their resonant coupling

strengths are as follows:

(a) between two IA's: t', =tz
(b) between an IA and a TM: tz =V2t„/2, (1)

(c ) between two TM's: t 3
= —t„/2 .

Even though the sequence constructed by t'„ tz, and t3 is
still quasiperiodic, ~ti ~, ~tz ~, and ~t'3 are same order of
significance, i.e., there is no weak bond. Consequently,
the spectral structure around E=0 should be much more
like that of a periodic system than that of a quasiperiodic
one. It suggests that the middle part of the central sub-
band should be a continuous spectrum. This conjecture
is strongly supported by the numerical calculations
shown in Fig. 2. From the analysis on the triatomic mol-
ecule with eigenenergy E =+2tii we know that the rela-
tions (1) should always hold for every central subband of
any hierarchy of the spectrum. Therefore, the continu-
ous spectrum behavior also exists in the middle part of all
the subbands in the following hierarchies. Figures 2(a)
and 2(b) give the enlarged plots of two central subbands
labeled by A and B, respectively, where we can clearly
see that the middle part of each central subband is con-
tinuous.

Summarizing the above results, we can finally figure
out the whole spectral structure of the GF(1,2) quasilat-
tice. The spectrum is grossly trifurcating and self-similar
and the side subbands in every hierarchy will further tri-
furcate, but the middle part of the central subband stays
continuous.

To describe the splitting pattern of the spectrum, we
can code a subband in the nth hierarchy by a symbolic
string (pi,pz, . . . ,p„), where the p s (i =1,2, . . . , n) take
values of 1, 0, and —1, corresponding to the top, central,
and bottom branch, respectively. For instance, if the sub-
band successively belongs to the central main subband,
the top subsubband of the central main subband, . . . , the
bottom branch of the (n —1)th-stage subband, then we
associate with it a string (0, 1, . . . , —1). By the numeri-
cal simulation we find that if more than three symbols on
the tail are all 0, the corresponding subband is completely
continuous. But if a subband has 1 or —1 as its last sym-
bol it will further trifurcate.

Now we turn to study the localization of the electronic
states for the GF(1,2) model. If we take the atom spac-
ing as the unit of length, then the inverse participation
ratio (IPR) for the ith eigenstate is defined as

N
a'z (i ) = y ~ a,, ~',

j=l
where B, is the jth component of the wave function. The
IPR is a measure of the reciprocal (inverse) of the number
of sites occupied by the wave function. Generally, the
smaller the IPR is, the more extended the state is. For a
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FIG. 3. The inverse participation ratio (IPR) vs energy E for
the N= 5462 site system with t& = —0.3, and t& = —1. (a) is for
the whole spectrum; (b) and (c) are the enlarged plots of sub-
band ( —1,0) and (0, —1,0), respectively.

system with 1V sites, the IPR of an extended state would
be the order of 1/X, but for a localized state the IPR is of
order 0.1 —0.01. The IPR values of the intermediate
states are between both of them, which responds to the
unusual behavior of its wave function, decaying practical-
ly to zero and recovering to a large amplitude then decay-
ing again alternately.

Figure 3(a) shows the numerical results of IPR versus
eigenenergy E. We find that for the states located in the
continuous band around E=0 the points form a straight
line, and the corresponding IPR values are of order 10

which suggests that the eigenstates are extended. Two
enlarged plots corresponding to subbands ( —1,0) and
(0, —1,0) are given in Figs. 3(b) and 3(c), and the IPR in
the middle part of the two subbands have the same values
as that listed above. The points also form a straight line
in the picture, which shows that these states are also ex-
tended. Furthermore, the localization parameters of IPR
in the next hierarchy of the spectrum also exhibit the
same features as those in Fig. 3. The facts stated above
reveal that the localization of electronic states has a
hierarchical structure: the side subbands of the spectrum
in every hierarchy are trifurcating, but the rniddle part of
the central subband is always continuous, and the corre-
sponding wave functions are extended. The existence of
such a hierarchical structure of mobility edges, i.e., the
extended-state subbands, is a very interesting result.

More solid evidence of the localization is the behavior
of the wave functions themselves. We have investigated
the spatial distribution for a large number of wave func-
tions; the results are also in very good agreement with the
above analysis. We find that the wave functions with
eigenenergy from —0. 118 to 0.118 are all extended, ex-
amples of which are presented in Figs. 4(a) and 4(b). The
intermediate and localized states exist in the edges of
each subband in every hierarchy; the examples are shown
in Figs. 4(c) and 4(d), respectively. It should be noted
that the extended state shown in Fig. 4(a) is even period-
ic. In fact, we have found many such states with a
variety of periods in our calculation.

In brief summary, we have studied the spectral struc-
ture and localization of the electronic states for the
GF(1,2) quasilattices. The spectrum has a very special
hierarchical and self-similar structure: in every hierar-
chy, the side subbands are trifurcating, but the middle
part of the central subband is a continuous spectrum.
The existence of the energy region with continuous spec-
trum suggests to us that its corresponding eigenstates
should be extended. This conjecture is strongly support-
ed by the numerical calculations. In the edges of every
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FIG. 4. Examples of three
kinds of states in the central
main subband. (a) An extended
state in the middle part with
E = —0.006 921 502. (b) Extend-
ed state in the edge of the con-
tinuous region with
E = —0.094022 177. (c) Inter-
mediate state in the side subsub-
band with E= —0.245 420 319.
(d) Localized state in the side
subsubb and with
E= —0.337 636 907.
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subband the spectrum is of pure point or singular con-
tinuous, so the corresponding eigenstates are either local-
ized or intermediate. For whole spectra the mobility
edges possess a hierarchical structure.
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