# High-pressure transitions to a postcotunnite phase in ionic $AX_2$ compounds

J. M. Léger, J. Haines, and A. Atouf

Centre National de la Recherche Scientifique, Laboratoire de Physico-Chimie des Matériaux,

1, Place Aristide Briand, 92190 Meudon, France

(Received 16 August 1994; revised manuscript received 14 October 1994)

The highest coordination known in ionic  $AX_2$  compounds is found in the orthorhombic cotunnite (PbCl<sub>2</sub>) structure, in which the metal ion is in ninefold coordination. Four cotunnite-structured compounds, PbCl<sub>2</sub>, BaCl<sub>2</sub>, BaBr<sub>2</sub>, and SnCl<sub>2</sub>, were investigated under high pressure by x-ray diffraction and were found to undergo phase transitions to the same postcotunnite phase at pressures between 7 and 16 GPa. The high-pressure phase is monoclinic, of space group  $P112_1/a$ , Z = 8, with a structure in which the metal coordination number is ten, a value which up to the present has only been observed for covalent and metallic  $AB_2$  compounds. This postcotunnite structure observed here is of considerable importance for the crystal chemistry of the  $AX_2$  compounds as under ambient conditions over 400 compounds are isostructural to PbCl<sub>2</sub> and many others transform to a cotunnite structure at high pressures, which up to the present was the final known step in the phase-transition sequence of these materials. This new phase is 4.5±0.5% denser than the cotunnite type in the csae of PbCl<sub>2</sub> at 16 GPa.

#### I. INTRODUCTION

Under ambient conditions the cotunnite  $(PbCl_2)$  structure is the example of the highest known coordination in ionic  $AX_2$  compounds, which include many important minerals, such as SiO<sub>2</sub>. This cotunnite structure represents the final known step in the phase-transition sequence of the  $AX_2$  compounds investigated to date.

The structures of the  $AX_2$  compounds can be divided in four main groups based upon the constituent cationcentered anion polyhedra: the quartz group, the rutile group, the fluorite group, and the cotunnite group, in which the metal coordination number (CN) is four (tetrahedron), six (octahedron), eight (cube), and nine (elongated tricapped trigonal prism), respectively. Many distorted variants of these basic structures exist as do many layer structures, which can be related to one of these main structure types. Under ambient conditions, over 400 compounds adopt the orthorhombic cotunnite structure,<sup>1</sup> space group *Pnam*, Z = 4, Fig. 1.

Under high pressure, numerous phase transitions occur in the  $AX_2$  compounds,<sup>2</sup> at which, in many cases, there is an increase in coordination number of the metal ion. These increases in coordination number result from an increase in the cation-anion radius ratio,  $r_c/r_a$ , due to the greater relative compressibility of anions. In SiO<sub>2</sub> at high pressure, coesite transforms to stishovite corresponding to an increase in the silicon coordination number from four to six.<sup>3</sup> Similarly, an increase in the Pb<sup>4+</sup> CN from 6 to 8 and subsequently to 9 occurs when rutile-structured



FIG. 1. Projections of the structures of cotunnite PbCl<sub>2</sub> at ambient pressure (A), postcotunnite PbCl<sub>2</sub> at 25.4 GPa (B) and a hypothetical Co<sub>2</sub>Si-type PbCl<sub>2</sub> (C) in the xy and xz planes. Small and large circles represent Pb<sup>2+</sup> and Cl<sup>-</sup>, respectively. The unit cells are outlined. Trigonal prisms with cations at z and  $z + \frac{1}{2}$  are represented by thick and thin solid lines, respectively; dashed lines indicate the remaining anions in the coordination sphere for two chosen polyhedra.

0163-1829/95/51(6)/3902(4)/\$06.00

<u>51</u> 3902

TABLE I. Cell constants (Å) for cotunnite-structured compounds at ambient pressure, space group *Pnam*, Z = 4.

|                   | а         | b         | с         | Ref.                   |
|-------------------|-----------|-----------|-----------|------------------------|
| PbCl <sub>2</sub> | 7.6286(3) | 9.0505(3) | 4.5396(2) | This work <sup>a</sup> |
| BaCl <sub>2</sub> | 7.871     | 9.430     | 4.730     | 11                     |
| $BaBr_2$          | 8.252     | 9.915     | 4.935     | 11                     |
| SnCl <sub>2</sub> | 7.793     | 9.207     | 4.43      | 12                     |

<sup>a</sup>Ambient cell data for PbCl<sub>2</sub> were obtained on a diffractometer using Cu  $K\beta$  radiation. All figures in parentheses refer to standard deviations.

PbO<sub>2</sub> transforms in a series of transitions to the fluorite structure<sup>4</sup> and then to the cotunnite structure.<sup>5</sup> A significant number of other oxides and fluorides transform to this structure under pressure.<sup>6-8</sup> The structure of the postcotunnite phase that we have obtained at high pressure for PbCl<sub>2</sub>, BaCl<sub>2</sub>, BaBr<sub>2</sub>, and SnCl<sub>2</sub> is hence of great significance as the probable high-pressure structure type for a large and varied selection of compounds.

### **II. EXPERIMENTAL SECTION**

Powdered PbCl<sub>2</sub>, BaCl<sub>2</sub>, BaBr<sub>2</sub>, and SnCl<sub>2</sub> (Alfa Products) along with a ruby pressure calibrant were placed in 200-µm-diam holes in inconel or stainless-steel gaskets preindented to a thickness of 100  $\mu$ m between the anvils of a diamond-anvil cell. The rear diamond was mounted over a wide slit permitting access to an angular range of  $4\theta = 80^{\circ}$ . Vacuum grease was used as a pressuretransmitting medium for the PbCl<sub>2</sub> experiment, whereas the other halides were loaded directly to prevent hydration. Pressures were measured based on the shift of the ruby  $R_1$  fluorescence line.<sup>9</sup> X-ray-diffraction patterns were obtained on films placed at a distance of 59.87 or 71.96 mm using zirconium-filtered molybdenum radiation from a fine-focus tube. Exposure times were of the order of 48 h. For some intermediate points on the compression curves, films were placed at 25.27 mm allowing a reduction in exposure time to 24 h. All experiments were performed at room temperature. Films were analyzed using a molecular-dynamics personal densitometer. Observed intensities were integrated as a function of  $2\theta$ , according to the method of Meade and Jeanloz.<sup>10</sup>

#### **III. RESULTS AND DISCUSSION**

Cotunnite-structured PbCl<sub>2</sub>, BaCl<sub>2</sub>, BaBr<sub>2</sub>, and SnCl<sub>2</sub>, Table I, were found to undergo phase transitions at 16, 9, 7.5, and 16 GPa, respectively, on compression. Previous work<sup>13</sup> on BaCl<sub>2</sub> indicated the presence of a transition from the cotunnite phase; however, the structure of the



FIG. 2. X-ray-diffraction patterns of cotunnite  $PbCl_2$  (above) and postcotunnite  $PbCl_2$ ,  $BaCl_2$ ,  $BaBr_2$ , and  $SnCl_2$  (below). Reflections due to the gasket, stainless steel for  $BaCl_2$  and inconel for the other compounds, are labeled g.

new phase was not determined. The high pressure transitions in these halides were reversible and exhibited a degree of hysteresis; in the case of PbCl<sub>2</sub>, the reverse transition was found to begin at 7.3 GPa. At the transitions, new diffraction patterns were observed, Fig. 2; however, the peak intensities bore a resemblance to those in the parent cotunnite phase, indicating a possible relationship between the structures of the two phases. The diffraction patterns of the high-pressure phases were indexed based on a monoclinic cell with Z = 8, and refined cell constants are listed in Table II. Relationships between the cell constants of the low- and high-pressure phases are evident with a 2% and 4% increase in b and c, respective-

TABLE II. Cell constants (Å) for postcotunnite-structured compounds, space group  $P112_1/a$ , Z = 8.

|                   | P (GPa) | а          | b         | С        | γ (°)   |  |
|-------------------|---------|------------|-----------|----------|---------|--|
| PbCl <sub>2</sub> | 25.4    | 11.995(10) | 8.589(7)  | 4.491(3) | 89.2(2) |  |
| $BaCl_2$          | 18.1    | 12.511(13) | 9.026(11) | 4.704(3) | 87.2(1) |  |
| $BaBr_2$          | 25.4    | 12.773(14) | 9.302(13) | 4.896(4) | 88.0(2) |  |
| SnCl <sub>2</sub> | 27.7    | 11.856(30) | 8.360(29) | 4.331(9) | 89.0(5) |  |

ly, at the phase transition in the case of PbCl<sub>2</sub>. Superlattice peaks indicate a doubling of the unit cell relative to cotunnite along **a**. At 16 GPa, the cell constant a/2 of the high pressure phase is 11% shorter than the cotunnite *a*. The compression data for PbCl<sub>2</sub>, for which a volume decrease of  $4.5\pm0.5\%$  was observed at the transition, are shown in Fig. 3.

Simulations of the powder diagrams performed with the program FULLPROF (Ref. 15) yielded the best results using the space group  $P112_1/a$ , which corresponds to the doubling of the cell with the *Pnam* subgroup symmetry  $P112_1/m$  along **a**. The scale factor, cell constants, overall thermal parameter, and linewidth parameters were refined using FULLPROF. Atomic positions beginning with those of cotunnite<sup>16</sup> were adjusted in order to obtain the best agreement with the experimental profiles of the four halides investigated. In particular, the Pb-ion positions were first adjusted based on the PbCl<sub>2</sub> data, fol-



FIG. 3. Pressure-volume dependence of PbCl<sub>2</sub>. Open symbols refer to points obtained on compression and solid symbols to those obtained on decompression for the cotunnite ( $\Box$ ) and postcotunnite ( $\odot$ ) phases. The solid line represents a Birch-Murnaghan equation of state (Ref. 14) fit of the cotunnite data with a bulk modulus at ambient pressure ( $B_0$ ) of 34(1) GPa and  $(\partial B / \partial p)_0 = 7.4(6)$ . Horizontal and vertical error bars represent the uncertainty in pressure and the standard deviation in the relative volume, respectively. Additional points were obtained close to the transition; however, it was not possible to obtain reliable cell volumes due to peak overlap raising from the mixture of phases present.

TABLE III. Diffraction data for  $PbCl_2$  at 25.4 GPa (only intense reflections are listed).

| d (Å) | $I_{\rm obs}$ | $I_{\rm cal}{}^{\rm a}$ | hkl             |
|-------|---------------|-------------------------|-----------------|
| 3.980 | 96            | 76                      | 011             |
| 3.770 | 4             | 2                       | 111             |
| 3.513 | 68            | 54                      | 220             |
| 3.465 | 66            | 64                      | 220             |
| 3.326 | 22            | 18                      | 211             |
| 3.306 | 99            | 86                      | 211             |
| 2.494 | 8             | 10                      | 401             |
| 2.474 | 6             | 6                       | 420             |
| 2.441 | 30            | 36                      | 420             |
| 2.413 | 78            | 82                      | 031             |
| 2.402 | 100           | 100                     | 411             |
| 2.248 | 46            | 46                      | 231             |
| 2.246 | 54            | 54                      | 002             |
| 2.229 | 16            | 16                      | 231             |
| 2.145 | 22            | 20                      | 040             |
| 1.893 | 30            | 26                      | 222             |
| 1.885 | 36            | 30                      | 222             |
| 1.868 | 28            | 28                      | <del>4</del> 31 |
| 1.781 | 18            | 24                      | 611             |
| 1.653 | 18            | 24                      | 422             |
| 1.551 | 20            | 18                      | 042             |
| 1.548 | 20            | 16                      | 631             |
| 1.543 | 30            | 24                      | 251             |

<sup>a</sup>As calculated by FULLPROF.

lowing which these positions were taken as a starting point for the Ba ions for the BaCl<sub>2</sub> diagram, which was used for the adjustment of the chloride-ion positions. Final minor adjustments were made for each compound individually. Those positions that produced the best simulation for PbCl<sub>2</sub>, giving  $\Sigma |I_{obs} - I_{calc}| / \Sigma I_{obs} = 11.8\%$ , Fig. 4 and Table III, are listed in Table IV. The diagrams of the high-pressure phases of the other three halides can be simulated with similar agreement factors based on the same structure type with only minor modifications to these atomic positions. The diffraction patterns of these four  $AX_2$  compounds, in which the ions have very different scattering factors, exhibit important variations in the relative intensities of the observed diffraction peaks; they can, nevertheless, be successfully simulated by the same structure type. In addition, comparison between the experimental and calculated diagrams over a large pressure range indicates that no significant changes in atomic positions occur as a function of pressure.

The resulting structural model for the postcotunnite phase, Fig. 1, consists of tetracapped trigonal prisms of

TABLE IV. Atomic positions used to simulate the diffraction pattern of PbCl<sub>2</sub> at 25.4 GPa.

|               | x     | У     | Z     |
|---------------|-------|-------|-------|
| <b>Pb</b> (1) | 0.167 | 0.124 | 0.266 |
| Pb(2)         | 0.140 | 0.617 | 0.766 |
| <b>Cl</b> (1) | 0.110 | 0.458 | 0.280 |
| C1(2)         | 0.050 | 0.930 | 0.720 |
| Cl(3)         | 0.007 | 0.270 | 0.720 |
| <b>Cl(4</b> ) | 0.731 | 0.772 | 0.280 |



20 (°)

FIG. 4. Simulated (solid) and experimental (+) x-ray-diffraction patterns of postcotunnite PbCl<sub>2</sub> at 25 GPa. Reflections due to the gasket are labeled g. The background was fitted by interpolation between 17 points. The linewidths of the pseudo-Voigt functions used to fit the diffraction lines are defined as follows: FWHM<sup>2</sup>=14.2 tan<sup>2</sup> $\theta$ -2.6 tan $\theta$ +0.25 (where FWHM means full width at half maximum).

anions giving the cation a coordination number of 10. The 10 polyhedral cation-anion distances for PbCl<sub>2</sub> at 15 GPa range from 2.57 to 3.49 Å for Pb(1) and from 2.63 to 3.74 Å for Pb(2), as opposed to the nine that range from 2.66 to 3.41 Å in cotunnite at the same pressure assuming ambient atomic positions. The corresponding average Pb-Cl distances are 3.07 and 3.05 Å, respectively, for the two polyhedra in the postcotunnite phase and 2.92 Å in the cotunnite phase at 15 GPa. This increase in average Pb-Cl distance is what is expected to occur for an increase in CN from 9 to 10. The increase in the dispersion in the cation-anion distances is also not unusual as cations with different coordination numbers have been observed to exhibit significant differences in the range of distances to their coordinated anions, as in the case of the rare-earth disilicates.<sup>17</sup>

This new high-pressure structure is related to the  $Co_2Si$ -type structure, space group *Pnam*, adopted by many covalent and intermetallic  $AB_2$  compounds, in which the *A* atom is also in tenfold coordination. In fact, the cell constant ratios for the subcell of high pressure PbCl<sub>2</sub>, a/c = 1.34, and b/c = 1.91 are very close to those of  $Co_2Si$ ,<sup>18</sup> a/c = 1.32, and b/c = 1.90. In contrast, the corresponding values for cotunnite under ambient conditions are 1.68 and 1.99, respectively. The main differences between the postcotunnite PbCl<sub>2</sub> structure and that of  $Co_2Si$  are that the unit cell of the former is monoclinic and doubled along the **a** direction as required

by the observed superlattice peaks. In addition, two distinct Pb centered polyhedra exist, one in which the Pb<sup>2+</sup> ion lines on the same face and another in which it lies on a different face of the trigonal prism relative to that of a hypothetical Co<sub>2</sub>Si-type PbCl<sub>2</sub>, Fig. 1. The cotunnite  $\rightarrow$  postcotunnite transition is first order and in symmetry terms can be envisaged as being comprised of two steps: a monoclinic distortion corresponding to the group-subgroup descent  $Pnam \rightarrow P112_1/m$  and a cell doubling step  $P112_1/m \rightarrow P112_1/a$ .

## **IV. CONCLUSION**

The cotunnite  $\rightarrow$  postcotunnite phase transition corresponds to an increase in metal-ion coordination from 9 to 10 at the phase transition, which has not previously been observed in these ionic compounds. These halides are the first examples of ionic  $AX_2$  compounds adopting a structure related to one up to the present only encountered among covalent and intermetallic compounds, which could indicate a tendency towards covalent or metallic bonding in these salts under high pressure. This new postcotunnite phase is of considerable importance for the crystal chemistry of the  $AX_2$  compounds, as it is the probable high-pressure phase for many of the more than 400 compounds, which are known to adopt the cotunnite structure, and hence represents a new step in the phase transition sequence in these materials.

- <sup>1</sup>B. G. Hyde, M. O'Keeffe, W. M. Lyttle, and N. E. Brese, Acta Chem. Scand. **46**, 216 (1992).
- <sup>2</sup>K. F. Seifert, Fortschr. Miner. 45, 214 (1968).
- <sup>3</sup>S. M. Stishov, Dokl. Akad. Nauk. SSSR 148, 1186 (1963).
- <sup>4</sup>Y. Syono and S. Akimoto, Mater. Res Bull. 3, 153 (1968).
- <sup>5</sup>J. Haines, J. M. Léger, and A. Atouf (unpublished).
- <sup>6</sup>L. Liu, High Temp. High Pressure 13, 387 (1981).
- <sup>7</sup>L. Merrill, J. Phys. Chem. Ref. Data 11, 1005 (1982).
- <sup>8</sup>S. J. Duclos, Y. K. Vohra, A. L. Ruoff, A. Jayaraman, and G. P. Espinosa, Phys. Rev. B 38, 7755 (1988).
- <sup>9</sup>H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, J. Appl. Phys. **49**, 3276 (1978).

- <sup>10</sup>C. Meade and R. Jeanloz, Rev. Sci. Instrum. 61, 2571 (1990).
- <sup>11</sup>S. A. Hodorowicz, E. K. Hodorowicz, and H. A. Eick, J. Solid State Chem. **48**, 351 (1983).
- <sup>12</sup>J. M. Van den Berg, Acta Crystallogr. 14, 1002 (1961).
- <sup>13</sup>J. M. Léger and A. Atouf, J. Phys. Condens. Matter 4, 357 (1992).
- <sup>14</sup>F. Birch, Phys. Rev. **71**, 809 (1947).
- <sup>15</sup>J. Rodriguez-Carvajal (unpublished).
- <sup>16</sup>K. Sahl and J. Zeeman, Naturwissensch. 20, 641 (1961).
- <sup>17</sup>J. Felsche, in *Structure and Bonding*, edited by J. D. Dunitz et al. (Springer-Verlag, Berlin, 1973), Vol. 13, pp. 99–197.
- <sup>18</sup>S. Geller, Acta Crystallogr. 8, 83 (1955).