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In order to investigate effects of the Coulomb correlation on the electron-phonon interaction
in a strongly correlated system, the electron-phonon coupling constant (Apn) and the electron-
spin-fluctuation coupling constant (As) are evaluated for the Hubbard Hamiltonian system. It is
found that the Coulomb correlation in the Hubbard model gives rise to a phonon hardening and
an enhancement of Aph. Further, both Apw and Ay are found to be reduced significantly in overall
magnitudes, if an effect of the finite bandwidth is taken into account. In particular, we have found
that Apn becomes larger than Ass for a system with a nearly filled band, which indicates that a
phonon-mediated BCS superconductivity may be possible in strongly correlated systems.

I. INTRODUCTION

It is a fundamental question whether the origin of
superconductivity in high-T,. superconductors or heavy
fermion systems is BCS-like or not. These systems
are believed to be strongly correlated electron sys-
tems which have strong spin-fluctuation effects, and
so the phonon-mediated BCS superconductivity is ex-
pected to be suppressed. Therefore a number of novel
or exotic nonphonon superconducting mechanisms have
been proposed.! However, there are several experiments
which give direct evidence for a strong coupling be-
tween phonons and superconducting electrons in these
systems.?

The BCS superconducting transition temperature for
a spin-fluctuating system is a function of the effective
coupling constant A, which is given by

PPV " S (1)

1+ Aph + /\sf
where Ay, and Ags are electron-phonon and electron-spin-
fluctuation coupling constant, respectively.® If Ap, <
Ast, the phonon-mediated BCS superconductivity is sup-
pressed. It is well understood that Ay becomes signifi-
cantly enhanced in a strongly correlated system [in the
region of IN(Er) — 1: I and N(EF) correspond to
the Coulomb correlation and the density of states at the
Fermi level, respectively]. On the contrary, the behavior
of Aph in correlated systems has not been exploited much.

For an electron gas system, Kim* has investigated ef-
fects of an exchange interaction on Ay, and found that a
phonon softening and an enhancement of A, occur due
to the exchange interaction. Based on these findings, he
suggested that superconductivity in heavy fermions or
high-T. superconductors may be caused by an exchange-
enhanced electron-phonon interaction.®

Kim et al.® have studied the effect of very strong corre-
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lation on electron-phonon interactions and the implica-
tions for transport properties in the high-T, supercon-
ductors. By viewing the copper oxide high-T. super-
conductors as moderately heavy Fermi liquids, they ar-
gued that Coulomb correlations tend to suppress charge
fluctuations within the copper oxides planes, and that
the electron-phonon interaction becomes progressively
weakened as the metal-insulator transition is approached.
They concluded that the strength of the electron-phonon
interaction appears to be too weak to be the primary
mechanism responsible for high-7. superconductivity.
More recently, Kim and Tesanovic’ have explored a
phonon mechanism for high-T. superconductors. Em-
ploying the slave boson formulation, they examined the
concentration dependence of the Eliashberg electron-pair
interaction function derived from the Hubbard model® in
the I — oo limit. They found that, at some critical
concentration z., attractive interactions due to phonons
completely cancel the repulsive interactions due to slave
bosons, and the effective pair interaction becomes attrac-
tive for ¢ > z., reflecting the possible phonon mecha-
nism for superconductivity. In these formulations, there
is no explicit dependence of the Coulomb correlation pa-
rameter I, because they considered the I = co Hubbard
model.

Motivated by the above suggestions, we have at-
tempted to examine the electron-phonon interaction for
the Hubbard model which is typical of strongly corre-
lated electron systems such as high-T, superconductors
or heavy fermions. Employing the diagrammatic method,
we have evaluated Apn and Ag on an equal footing, and
discussed in detail behaviors of them with respect to the
parameter IN(EF). We have found that a ladder-type

diagram in the electron-phonon vertex function leads to

the electron-phonon interaction matrix element strongly
enhanced as IN(Efr) — 1. We have also found that the
spin-fluctuation effect is suppressed very much when the
effect of a finite bandwidth is considered, yielding that
Aph becomes dominant over Aqf.
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II. ELECTRON-PHONON
COUPLING CONSTANT Ay

The model Hamiltonian in consideration is

H = Z Ekclgckﬂ + Z qu;bq + Hel-el + Hel-ph- (2)
ko q

The first two terms are noninteracting electron and
phonon Hamiltonians, respectively. Hei-e1 and Hej-pn rep-
resent the Hubbard-type electron-electron Coulomb cor-
relation interaction and the electron-phonon interaction
Hamiltonian, respectively, given by

I
Hgye = 5 Z ch+qackac]tl_q’_gck’,—07 (3)
kk'q o
Hel-ph = Z Z g(Q)CLack—qd(bq + bf—q)’ (4)
kq o

where g(q) in Eq. (4) is an electron-phonon interaction
matrix element.

Let us first evaluate the phonon Green’s function to
determine the renormalized phonon frequency. We con-
sider diagrams shown in Fig. 1 which represent Dyson’s
equation for the phonon Green’s function. The single
wavy line in Fig. 1(a) represents a noninteracting phonon
Green’s function, D3(ivm,) = 2Q./(vZ + Q2), while
the double wavy line represents an interacting phonon
Green’s function, Dg(ivy,), i.e., the Green’s function
in the presence of both electron-phonon and electron-
electron interactions. Besides a usual bubble diagram
[Fig. 1(b)] of a renormalized Coulomb correlation, we
have also considered for the phonon self-energy the lad-
der diagram of Fig. 1(c) to account for a transverse
spin-fluctuation effect. In fact, we have found that
the contribution from Fig. 1(c) becomes dominant when
IN(EF) — 1, as will be shown below.

A double-dotted line in Fig. 1(b) represents the renor-
malized Coulomb correlation

I

I=———
1+ IF(q,ivm)’

()

where F(q,iv,,) is the Lindhard function. The ladder di-
agram contribution to the phonon self-energy of Fig. 1(c),
I (g, ivm), is given by

L (g, ivm) = —%Iz Z Z G (iwn) G _ o (iwn—m)

kk' nn'
XGgl(iwn’)Ggl+q(iUJn’+m)
% F(k, —k+ g, iVn'—n+m)
1—IF(K —k+ ¢ il —nim)’

(6)

J

Dq(ivm) = Dg(i”m) + 2|g(q)|2D2(iVm)F(q, im)Dq(ivm)

I
f— 2—.———_._—._._
2|g(q)| 1+IF(Q7iVm)

Dg(ivm)F (g, im)?Dq(ivm) — 2l9(q)[*

FIG. 1. Diagrams for the phonon Green’s function. In ad-
dition to the renormalized Coulomb correlation of (b), the
contribution from a ladder diagram of (c) is considered in
calculating the phonon self-energy.

where G (iwy,) [= 1/(iwn —€x)] is the noninteracting elec-
tron Green’s function. It is too complicated to evaluate
Ty, (g, ivm) exactly, and so we use here an approximation
to get essential features of the diagram. That is, utiliz-
ing an idea of the mean value theorem,* we take the final
term in Eq. (6) out of the summation,

) B 1 2 . F(q5il/m)
Wz (g ivm) = = g3 I ela m) 775 5

X D" G (iwn) GR_ g (wn—m) G (iwn)

kk' nn'

XG4 q(iWni ym), (7)

with a parameter a(q,ivy,). Then, IIL(g, ) becomes

. . I2F(g,ivm)®
la(aivm) = ~alaivm) {70 S @)

At the present step, we have no way to get a(q,iv,,)
exactly. However, a(q,iv,,) is expected to be a quantity
of O(1), and so we take a(q, iv,,) to be unity as a simplest
approximation.

As a result, the phonon Green’s function Dg(ivy,) in
Fig. 1(a) satisfies the following Dyson’s equation:

IZ 0(4 N3y (s
m——)Dq(ZVm)F(q,le) Dq(lljm),

(9)
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From this, we obtain

. 2Q
Dq(ll/m) = m, (10)
with
2F(q)
wi=02-20 2 11
q q ‘1|g(q)| 6(q) ( )
where
1 1 "I?F(q)?

@ " 1+  1-IF@) (2)
In the derivation, we have taken the adiabatic approxi-
mation F(q,ivm,) ~ F(q,0) = F(q) and assumed a para-
magnetic ground state [i.e., we consider a situation of
IN(EF) < 1] to evaluate F(q). Hence F(g)’s above do
not have explicit spin dependences.®

The renormalized phonon frequency, Eq. (11), for the
Hubbard model has a form similar to that for the electron
gas model.* However, different from the case in the elec-
tron gas system, the bare phonon in the present model
does not have to be longitudinal ionic plasma. Since
the noninteracting electron Hamiltonian in the Hubbard
model is considered to be based on the Hartree-Fock
approximation,® the bare phonon frequency €, in the
present model corresponds to the one which is already
screened by the Hartree-Fock dielectric function. Thus
the bare phonon 2, can be assumed to have a proper
dispersion relation.!’ Note also that the effect of the
Coulomb correlation on the phonon frequency in the
Hubbard model is quite different from the exchange ef-
fect in the electron gas model. With increasing I, the
inverse of the dielectric function, Eq. (12), monotonically
decreases, and accordingly w, in Eq. (11) becomes larger.
Hence the Coulomb correlation interaction in the Hub-
bard model leads to a phonon hardening rather than a
phonon softening, in contrast to the case for the electron
gas model. Furthermore, the hardening is reinforced by
ladder diagrams taken into account in our case. This
finding implies that a charge density wave (CDW) ground
state accompanied by a phonon softening may be unlikely
in the Hubbard model, especially when the Coulomb cor-
relation interaction is very large.

The static form of the dielectric function in Eq. (12)
is easily negative. This property is expected to origi-
nate from the intrinsic nature of the Hubbard Hamil-
tonian. In the Hubbard Hamiltonian, there is only
one g-independent parameter, I, describing the electron-
electron interaction with opposite spins only. Hence
the properties of the dielectric function in the Hubbard
model system are very different from those in the the
electron gas. The problem of the negative dielectric func-
tion in the electron gas system has been studied much in
relation to the sum rule.!2 It has been found that nega-
tive values of the static dielectric function may appear in
the system, in the case of an inhomogeneous electron gas
with a strong exchange-correlation interaction. In con-
trast, the problem of the negative dielectric function and
the sum rule for the Hubbard model system has been rel-
atively unexplored. In the Hubbard model system, the
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form of the dielectric function €c.(g) which screens the
electron-electron interaction is quite different from that
of €c;(g) which screens the electron-ion interaction, even
in the level of the random phase approximation. The
dielectric function given in Eq. (12) is the one which
screens the electron-ion interaction. As a matter of fact,
the negative dielectric function of €;(g) does not make
any problem in the present formalism, since it does not
produce any instability, as discussed above for the CDW
state.

Using the phonon Green’s function, we now evaluate
the electron-phonon coupling constant Apy. The coupling
constant A can be calculated from the electron self-energy

B(w),
A = —90%(w)/0w|w=o. (13)

We consider the diagrams of Fig. 2 for the electron self-
energy ¥pn(k,w), induced by the electron-phonon inter-
action. Vertices in the diagram represent renormalized
electron-phonon interaction matrix elements §(q) due to
both electron-phonon and electron-electron Coulomb in-
teractions [see Fig. 2(b)].

We employ in the present study Migdal’s theorem to
neglect a vertex renormalization by the electron-phonon
interaction. Instead, we treat carefully a renormalization
by the electron-electron Coulomb interaction. We con-
sider both bubble and ladder diagrams of vertex renor-
malizations, shown in Fig. 2(b). The inclusion of the lad-
der diagram in the vertex function is in the same spirit
as for the phonon self-energy.!3

Then g(g) is now given as

i(0) = 9(0) = 9@ F @ %) 15—

+9(9)T'L(g, ivm).- (14)

The second term corresponds to a vertex correction due
to the bubble diagram, and the third due to the ladder
diagram. I'L(q,iv,,) represents an approximate vertex
correction averaged over incoming and outgoing electron
lines:

FIG. 2. Diagrams for the electron self-energy due to the
electron-phonon interaction. (a) denotes the self-energy
diagram and (b) denotes vertex corrections for the elec-
tron-phonon interaction matrix element.
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(g, ivm) = —IzzZGk twn) G

(“"n—m)Gg' (twn )Gg’+q (twn'+m)

kk' nn'
9 F(k' —k+q,in'—nim) 1 (15)
1- IF(kl -k + q, iuﬂ'—n+m) an Gg(zwn)Gg—q(zw"—m) '

Thus, I'r(g,i,,) no longer depends on the momentum
and the frequency of the incoming electron. To calculate
I'v(g,%Vm), we adopt again the mean value approxima-
tion similarly as in the calculation of Iy, (g, ivy,) [Eq. (7)]:

. . 1
FL(q,ZVm) = —FI a(q,ZVm)T(q’iV”l)
XD "G (iwn)GY_ g (iwn—m) G (iwn )
kk! nn'
XGgl+q(1:wn’+m)7 (16)

with a parameter &(q,v,,). Then, I', (g, ivp,) becomes

I?F(q,ivm)?

—IF(g vy 7

I11’..(‘1’ 'I,I/m) = ‘51((17 “/m)
Within our approximation scheme, the unknown param-
eter a(q,iv,,) can be taken to be unity. By substituting

Eq. (17) into Eq. (14), §(g) becomes

. 9(a)
q = 9 18
9(q) @) (18)
with
2 2
1 __ 1 IR (19)
e( 1+IF(q) 1-1IF(q)
The adiabatic approximation is also used here. Note

that the dielectric function for the vertex renormaliza-
tion, Eq. (19), is exactly the same as that for the renor-
malized phonon frequency, Eq. (12), reflecting that our
procedures of selecting diagrams in Fig. 1 and Fig. 2 are
quite consistent. The above result suggests that the ab-
solute magnitude of §(g) becomes strongly enhanced as
IN(EF) — 1, due to the ladder diagram contribution to
the vertex correction.

With D, (iv,,) and g(g), Epn(k,w) and Agp can be cal-

culated in a conventional way:!

Zon(k,w) = Zlg(q IZQ" [n(“’q) +1— fler—g)

W — €g—q — Wq

L lwq) + f(em)] 20)

W — €g—q + Wy

and

don = NE)( (i@ 20) ), (21)

q

where n(wg) and f(ex—q) are the Bose and Fermi dis-
tribution functions, respectively, and ({---)) denotes an
average over the Fermi surface.

For high-T, superconductors, Migdal’s theorem is ex-

[

pected to work because they have rather wide bands
obeying Luttinger’s theorem. However, the application
of Migdal’s theorem to narrow band systems, such as
heavy fermions, remains to be justified. At present there
is no way to calculate the vertex corrections in detail.'®
Pietronero and Strissler'® have recently claimed that, for
narrow band systems which do not satisfy Migdal’s the-
orem, the effect of higher-order electron-phonon vertex
corrections produces a strong enhancement of the super-
conducting transition temperature T, with respect to T,
from the usual McMillan’s theory.!” They argued that
the T, formula in this case has a different structure from
McMillan’s formula. Their finding suggests that the esti-
mated T, based on Migdal’s theorem will correspond to a
lower limit for a given Apy, which is to be increased more
when considering the effect of breakdown of Migdal’s the-
orem.

III. COMPARISON OF A, AND A, ¢

In order to compare App with Age, we also evaluate Ay
in the Hubbard model. Since a lot of studies have been
reported on Agg,3'® we briefly introduce here a procedure
for calculating the self-energy Ys¢(k,w) and Ags. In calcu-
lating Y4¢(k,w), one considers both particle-hole bubble
and ladder diagrams.!® Only an odd number of bubbles
should be considered in the bubble diagrams because the
bare interaction I connects particles with opposite spins
only. The contributions to the electron self-energy from
two kinds of diagrams are given as follows:

Z Go_ I?F(q,ivm)

~an ) T (g i)

2bubble k Z(Un) -

(22)
. ) 1 . I’F(q,ivy,
Elidder(k’ 2(41") = B Z Gg—q(zwn—m)l___j—;m'
q,m
(23)

With the self-energy E“(k,w), one can calculate the
coupling constant Ass. The resulting APFPPle and Aladder

are given by

-)) is identical with that in Eq. (21).

gt = N () ((

The definition of ((: -
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The effective (total) spin-fluctuation coupling constant
Ast is given by

Aot = AbpbPle 4 pladder  (gecond-order contribution),

(26)

since the second-order contribution is doubly counted in
Als);'lbble and /\;?dder.

We have carried out numerical calculations for Egs.
(21) and (26), assuming a parabolic electron band for €.
Calculated results are plotted as a function of IN(EF)
in Fig. 3. Figure 3 reveals several interesting features.
First, both Aph and A4 increase rapidly as IN(Er) — 1,
reflecting that both coupling constants become enhanced
in a strongly correlated system. Second, A4 is larger than
Aph for IN(EF) > 0.4, implying that the spin-fluctuation
effect dominates over the phonon effect in the correlated
regime. It seems thus unlikely that a phonon-mediated
BCS superconducting state can be realized in a strongly
correlated system.

Our finding of the correlation enhanced Ayp, in the Hub-
bard model is consistent with the exchange enhanced Ay,
in the electron gas model.* However, the origins of the en-
hancement are different from each other. In the electron
gas model, both the phonon softening and the screening
due to an exchange interaction play roles, whereas in the
Hubbard model, the ladder diagram in the vertex func-
tion which is not taken into account in the electron gas
model gives rise to the enhancement. Remember that
the phonon is rather hardened by the correlation in the
Hubbard model, which is the reason why Ay, in Fig. 3
decreases first with increasing IN(EF).

MacDonald?® once pointed out that a shortcoming
of conventional ways of evaluating Mg for the Hubbard
model is attributed to the use of a parabolic band with
an infinite bandwidth. He estimated Ag for Pd which has
a finite d band, and found that Ags becomes much smaller
than the value obtained with an infinite parabolic band.
He took account of a finite bandwidth using a truncated
parabolic band for the noninteracting Hamiltonian as fol-
lows:

Hy =" excl,ckoO(ke — k). (27)
ko

Coupling Constant

IN(EF)

FIG. 3. Apn and Asf as a function of IN(EF). The original
Lindhard function with an infinite parabolic electron band
is used. The electron-phonon interaction matrix element is
chosen such that |g(q)|* N(Er)/Q, = 0.22.

0sf !
0617
04}f °

0.2}

Lindhard Function F(q)

q/2kr

FIG. 4. Comparison of the original Lindhard function and
modified Lindhard functions with the finite bandwidth.

A model parameter k. gives a bandwidth (© is the step
function), and the fraction of the occupied band corre-
sponds to (kr/k;)® = f. With this modification, the
Lindhard function F'(q) is accordingly modified in such
a way that F'(gq) becomes much smaller than the original
Lindhard function, as f — 1.0 (see Fig. 4).

Note that, in high-7. superconductors and heavy
fermions, spin fluctuations originate from d- and f-band
electrons, respectively, which have finite bandwidths.
Therefore, it would be essential to take into account the
effect of the finite bandwidth in comparing Ay, and Ag.
Employing the modified Lindhard function, we have per-
formed again numerical calculations for Ap,p and Ay for
the case of f = 0.90. The results are presented in Fig. 5,
which shows that both quantities are reduced a lot in
overall magnitudes, as compared to the case of an infi-
nite bandwidth of Fig. 3. Most prominent is the suppres-
sion of Ay, which becomes smaller than Ay, even when
IN(Efr) — 1.0. Indeed, when IN(Er) = 0.95, Ay is
estimated to be larger than Ay for f > 0.83 (see Fig. 6).
This finding suggests that, for a correlated material with
nearly filled band, Ay, becomes larger than Ay, so that
a phonon-induced superconductivity could be possible in
the strong correlated limit [IN(Efp) = 1.0].

It is anticipated that the present formalism can be ap-
plied to high-T, superconductors, in view of the fact that
they have nearly filled bands and are considered to be

0.8 —r———————
= Aph
I |
z | |
S
w 04—
g I T
g i
B ozt ]

005" 04 06 08 1
IN(EBp)

FIG. 5. Apn and Agf as a function of IN(EF). The modified
Lindhard function which takes into account a finite bandwidth
with f = 0.9 is used.
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FIG. 6. Apn and Ass as a function of f for IN(Er) = 0.95.

in the vicinity of the magnetic instability. Interestingly,
Fig. 6 reveals that Ay, is larger than Ay for f correspond-
ing to the occupied band fractions of high-T, supercon-
ductors. A quantitative comparison, however, may not
be meaningful, since coupling constants in Fig. 6 were
evaluated with a model parabolic band and the assumed
IN(EF) = 0.95. More detailed studies incorporating re-
alistic electron and phonon band structures are required.
The crucial result of this work is to give evidence that
the phonon-induced superconductivity could be possible
even in the strongly correlated systems with nearly filled
bands, which might have relevance to superconducting
mechanisms in high-T, materials or heavy fermions.
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IV. CONCLUSION

In order to investigate the electron-phonon interaction
in strongly correlated systems, we have evaluated the
phonon self-energy and Ay, for the Hubbard Hamilto-
nian including the electron-phonon interaction. Main
results of this paper are as follows. (i) By including
the ladder-type diagram for the phonon self-energy, it is
found that the phonon becomes hardened with increas-
ing the Coulomb correlation in the Hubbard model, and
so a CDW ground state is unlikely in the strongly corre-
lated systems. (ii) Considering the ladder-type diagram
for the vertex function of the electron-phonon interac-
tion, we have found that A, becomes enhanced by the
Coulomb correlation in the Hubbard model. (iii) Taking
into account an effect of the finite bandwidth, we have
found that both Ay, and A are reduced a lot in overall
magnitudes, and that Ay, becomes dominant over Ag for
a system with a nearly filled band in the strongly corre-
lated limit. Owur results indicate that phonon-mediated
BCS superconductivity can be possible even in strongly
correlated systems such as heavy fermions or high-T,. su-
perconductors.
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