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A nested Fermi surface with nearly parallel orbit segments is found to yield a singlet d-wave supercon-
ducitng state at high temperatures for a restricted range of the on-site Coulomb repulsion that avoids the
competing spin-density-wave instability. The computed superconducting transition temperature drops
dramatically as the nesting vector is decreased, in accord with recent photoemission data on the Bi2212
and Bi2201 cuprates. Superconducting transition temperatures in the 100 K range are produced by the
nesting mechanism in the leading order pairing interaction caused by exchange of spin fluctuations.

I. INTRODUCTION

Even though the BCS theory' provides a successful
description of conventional superconductors, the concept
of alternate electron pairing states of finite angular
momentum has evolved from the original proposal by
Anderson and Morel® to encompass various physical sys-
tems. Spin fluctuations suppress>* the BCS isotropic pair
binding induced by phonon exchange, and hence materi-
als with strong repulsive interactions are prospects for al-
ternate pairing mechanisms. Superfluid He® exhibits p-
wave pairing,> and heavy Fermion superconductors offer
another unconventional case at very low temperatures.
Berk and Schrieffer found that the exchange of spin fluc-
tuations in a Fermi liquid provides a destructive influence
for d-wave pairing as well as for conventional s-wave
states. The random-phase approximation (RPA) series*
in the spin susceptibility further diminishes the possibility
of generating d-wave pairing in a Fermi liquid character-
ized by a free-electron energy dispersion.

Copper oxides with high superconducting transition
temperatures 7. exhibit abnormal electrical transport
and optical properties. Figure 1 shows a plot of the tran-
sition temperature of various superconductors versus the
power-law exponent n of the normal-state resistivity as a
function of temperature, p~T". The conventional T3
behavior arising from electron-phonon interactions in
metals such as Pb and Nb is well known. The T? varia-
tion in the Ce-doped cuprates and various organic metals
is reminiscent of electron-electron scattering in a Fermi
liquid. It is remarkable that the widely observed anoma-
lous linear temperature variation (i.e., n =1) of the resis-
tivity occurs in all of the highest-T, copper oxides. This
latter correlation provides the primary theoretical chal-
lenge in the present analysis.

A linear temperature dependence of the damping was
attributed by Lee and Read® to electron-electron col-
lisions on a perfectly nested square Fermi surface that
has a logarithmic Van Hove singularity in the density of
states. A microscopic theory based on a nested Fermi
liquid (NFL) produces the anomalous linear temperature
variation of the resistivity’ and also explains the surpris-
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ing linear frequency variation of the quasiparticle damp-
ing® that is compatible with the ubiquitous infrared spec-
tra on cuprates. The cuprate reflectance data differs sub-
stantially from standard Drude behavior.

The correlation of high-7, values in cuprates with
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FIG. 1. The transition temperature of various superconduc-
tors is plotted vs the power-law exponent n of the normal-state
resistivity p=7T", where T is the temperature. Conventional
metals such as Pb and Nb which are BCS superconductors
display a T° dependence, while the Ce-doped (electron-doped)
superconductors show a T2 behavior. The cuprate supercon-
ductors with the highest-7, values have a normal-state resistivi-
ty that is linear in temperature. Note in particular the
difference in transition temperatures between the Bi2212
(T, =80 K) and Bi2201 (T, =6 K) cuprates.
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departures from the standard Fermi-liquid behavior sug-
gests that the physical origin of the anomalous damping
may be a key source of the superconductivity. The pur-
pose of the present study is to show that Fermi surface
nesting in the form of parallel orbit segments can gen-
erate a strong attractive pairing in the d-wave channel
through the exchange of spin fluctuations in leading or-
der. The Coulomb repulsion U provides the primary in-
teraction, while the nested orbit topology is the key
determinant of the attraction strength. The spin suscep-
tibility y plays an important role in the pairing and nest-
ing produces peaks in the susceptibility at the nesting
vector Q* that connects parallel segments of the Fermi
surface. While this peak structure enhances the pairing
interaction, it also drives the system closer to a spin-
density-wave (SDW) instability. We thus restrict the
values of the Coulomb interaction strength U to avoid
the SDW instability condition Uy=1.

We find that the superconducting state of d angular-
momentum symmetry is favored in the Bi,Sr,CaCu,Oq
(Bi2212) cuprate on the basis of a model energy band that
yields the nested Fermi surface shown in Fig. 2. Photo-
emission evidence for nesting has been discovered by
Dessau et al.’ and Shen et al.,' and their high-resolution
spectra also indicate an anisotropic gap that appears to
be compatible with a d-wave state. Our computations of
the superconducting transition temperature reveal a sen-
sitivity to the extent of nesting of the Fermi surface as
well as the magnitude of the nesting vector. This can ac-
count for the difference in transition temperatures ob-
served in the Bi2212 and Bi,Sr,CuQOg (Bi2201) cuprates,
as we show below.

Scalapino et al.!! found that a two-dimensional tight-
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FIG. 2. A nested Fermi surface (NFL) shown by the solid
curve was calculated to fit the photoemission data points of
Dessau et al. (Ref. 10) using the tight-binding model of Eq. (2)
with B=0.165 and p=—0.56. The nesting vector is
Q *~0.91(#,7) in this case. By contrast, the dashed curve for
the same value of B but a chemical potential = —1.6 shows a
rounded orbit reminiscent of a standard Fermi liquid (FL).

‘where the electron (or hole)
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binding energy band in a Hubbard model may give rise to
an attractive d-wave pairing interaction, whose magni-
tude could be elevated by RPA corrections to the spin-
fluctuation graphs. Similar pairing correlations were
found in Monte Carlo simulations!? on a small lattice.
However, for the band fillings and Fermi-surface topolo-
gies treated by Scalapino11 and others,>”1° the lowest-
order estimates give very small 7, values; and the self-
energy and vertex corrections need to be considered on
the same footing as the RPA series. Other anisotropic
pairing proposals have been applied to organic com-
pounds16 and heavy Fermion superconductors.!’

In the next section, we present our energy band model
formulated on the basis of photoemission experiments on
the Bi2212 cuprate. Using this model, we present our
calculated results for the spin susceptibility. In Sec. III,
we discuss the conditions for superconductivity in the cu-
prates. We also compare our model predictions of the
transition temperature for the Bi2212 and Bi2201 com-
pounds.

II. SUSCEPTIBILITY

We consider the Hubbard Hamiltonian

szE(k)clt,ack,o_’_U 2 C;—Fq,Tcp,TClt*q,lck,l > 1)
k,0 p:a:k

energy band E(k) is
represented by the tight-binding expression

E (k)= —2t |cosk, +cosk, — B cosk,cosk, + fzi . (2)

Here U is the Coulomb repulsion between electrons at a
given site, and cl’a (ck,, ) represent creation (destruction)
operators of momentum k and spin o. The Fermi sur-
faces for this model are shown in Figure 2. A rounded
orbit such as the dashed curve would produce Fermi-
liquid (FL) phenomena including an electron damping
that is proportional to 72 and w?, where o is the frequen-
cy. The nested surface shown by the solid curve resem-
bles the experimental photoemission data points obtained
by Dessau et al.” and Shen et al.l® on Bi,Sr,CaCu,Oy.
The bandwidth W =28t is estimated to be 1.5 eV from the
photoemission data.

In order to investigate electron pairing mediated by the
exchange of spin fluctuations, we compute the suscepti-
bility for the energy band model of Eq. (2). Neglecting
self-energy corrections, the lowest-order real part of the
susceptibility, ¥’'(q, ), has the standard definition

d’k fk)—f(k+q)
27)? o—E(k+q)+E(k) ’

X'(q,0)= (3)

where f(k)=f[E (k)] is the Fermi function. The calcu-
lated susceptibility is plotted in Fig. 3 for model parame-
ters corresponding to the two Fermi surfaces shown in
Fig. 2. The dashed curve in Fig. 3 represents the Bi2212
case and the solid curve the Fermi-liquid case. Also
shown is the susceptibility for the Bi2201 cuprate (dot-
dashed curve). For the latter case, the model parameters
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are determined from a fit to the Bi2201 Fermi surface
seen in photoemission experiments by King et al.'® This
surface is also nested, but with a smaller nesting vector.
The susceptibility peaks are significantly enhanced in
magnitude and narrowed as a result of nesting, as seen in
Fig. 3 which shows the static susceptibility as a function
of momentum |q| along the g, =g, direction. The peaks
in the susceptibility are located at the nesting vector Q *
that spans the parallel segments of the Fermi surface.
When plotted in gq,, q, space, the three-dimensional
structure of x'(q,®) consists of four peaks, located at the
following points: Q,=(&m,m), Q,=(m,&m),
Q=027 —§&m,m), and Q,=(m, 27— &), with £=0.91 for
the Bi2212 model parameters. As the orbit becomes
smaller and more rounded, the peaks in the susceptibility
spread apart and are greatly reduced in magnitude. Ex-
J
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tensive calculations!® of the spin dynamics for tight-
binding models have provided quantitative insight into
understanding of the NMR spectra as well as the
neutron-scattering data in cuprates. In the limiting case
of a free-electron energy dispersion in two dimensions,
the static susceptibility is constant up to 2k, where k. is
the Fermi momentum. The latter (FL) example is a case
in which spin fluctuations suppress superconductivity in
the d-wave as well as in the s-wave state.

Virosztek and Ruvalds’ showed that a self-consistent
calculation of the susceptibility for a nested Fermi liquid
gave rise to an anomalous quasiparticle damping, of the
form T «< T for |w| < T and I’ « |w| for || > T, where T is
the temperature and w the frequency. Taking these NFL
self-energy corrections into account, we compute the real
part of the susceptibility as defined in Ref. 20,

Y'(qw)= (21 3 fdw’fdk[ImG(k,w’)ReG(k—q,co’—co)—HmG(k—q,w’)ReG(k,w’+w)]tanh§)—T, 4)
T
where the Green’s function
G(k,0)= 1 5)

o—E(k)—Z2(k,0)

and Z(k,w) is the self-energy, Z=3'+i3". Following Ref. 7, we neglect the mass renormalization, i.e., ' =0; this al-
lows a self-consistent determination of the imaginary part of the self-energy, giving —2"(w)=T(w)=Max(|w|,T). The

expression for x¥'(q,) then reduces to

' —_1 ' —(') o' —o—E(k—q)
(qo)=——= | d dk
Xt (21r)3f wf [0'—EX) P+ T ') [0'—0—Ek—q)?+T o' —o)
—TNw') o' +to—E(k) o'
+ tanh ) 6
[0 —E(k—q)P+TAe') [0 +o—EK) P+THo'+o) | 2T (©)

We calculate the above susceptibility for the band
model of Eq. (2) using the Bi2212 parameter values at a
fixed temperature of 7=100 K. The zero-frequency sus-
ceptibility is plotted in Fig. 4 as a function of momentum
|q| along the g, =g, direction (solid curve). For compar-
ison, we also plot the result for zero damping calculated
earlier (dashed curve). One can see the peak structure at
the nesting vector persists, though the magnitude of the
susceptibility is smaller than the zero damping result at
all g values.

The SDW constraint on the susceptibility requires
U =<1.1 eV in the case of Bi2212, provided one considers
the susceptibility renormalized by the self-energy. Since
the peak heights decrease as a function of frequency, this
bound is set by the static susceptibility whose maximum
value occurs at the nesting vector Q *. We note that the
peak structure at low frequencies is similar to the neutron
spectra for the La,_, Sr,CuO, superconductor.?! Anoth-
er consequence of nesting is the scaling’ of the spin sus-
ceptibility y''(Q *,w) as a function of /T which has
been confirmed by neutron scattering on several cu-
prates.22

The intermediate strength of the Coulomb coupling U
that we invoke is comparable to the energy bandwidth
8t=1.5 eV which was estimated from photoemission
data.!®!! Larger values of U are difficult to reconcile
with these experiments and other photoemission data on

[

the YBCO superconductors as well. Independent experi-
mental evidence for intermediate U values includes the
magnitude of the resistivity as discussed in Ref. 7, and
the shapes of the optical reflectivity of various cuprates
which are analyzed in Ref. 8. Theoretical groups that
have also used intermediate U values include Refs. 11, 14,
15, and various references cited therein.

Nesting generally enhances the susceptibility and
therefore the tendency to form spin-density waves.??
Chromium?>»?* and various rare-earth metals exhibit
nesting-induced peak structure in the susceptibility which
leads to SDW states and other spin-ordering phenomena.
Hence it is vital to find novel features of the Fermi-
surface topology to distinguish the mechanism responsi-
ble for superconductivity in cuprates from other process-
es that create competing spin-correlation instabilities.

In calculating the pairing coupling between electrons it
is useful to devise an analytic form for the susceptibility.
We represent it by a Gaussian form

gl =0 +(lg | —Q))
2a?

X'(q,0)=A4+Cexp

’

0))

where q=k—k’, Q=(r,7), the constants 4 and C deter-
mine the normalization and a the width for the Gaussian.
This model yields a reasonable fit to the computed Bi2212
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susceptibility, as shown by the dot-dashed line in Fig. 4.
Though the detailed calculations for the Bi2212 model in-
dicate four nesting peaks in the two-dimensional struc-
ture of the susceptibility, we find that using a more so-
phisticated model which reproduces this four-peak struc-
ture makes only small corrections to the superconducting
coupling constant determined by the simple Gaussian in
Eq. (7). These results will be described in the next sec-
tion.

In order to determine an appropriate cutoff for the
spin-fluctuation exchange interactions, we calculate the
susceptibility as a function of frequency @. The result for
the Bi2212 model parameters is shown by the solid curve
in Fig. 5. The damping I'=Max(|w|,T) suppresses the
susceptibility at large o, which suggests a cutoff in the
range of w,=0.3 eV. Also shown in Fig. 5 is the suscep-
tibility (dashed curve) for a perfectly nested square Fermi
surface that occurs at half-filling (x=0) if we set B=0 in
our tight-binding model. In the square orbit case there is
a logarithmic increase in ¥’ as w—0, since the Fermi en-
ergy coincides with the logarithmic Van Hove singularity
in the density of states. This increase in Y’ will drive the
perfectly nested system into the SDW state for arbitrarily
small values of the Coulomb interaction.

The density of states for the energy band model of Eq.
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FIG. 3. The real part of the static susceptibility calculated
from Eq. (3) for zero damping and at temperature 7T=100 K is
shown as a function of momentum |q| along the direction
qx =q,. The dashed curve is calculated using the Bi2212 band
parameters B=0.165 and p=—0.56, and the solid curve
represents the results for the FL parameters B =0.165,
©= —1.6 that correspond to the rounded Fermi surface shown
in the previous figure. The dot-dashed curve is the result for the
Bi2201 band parameters B=0.33 and p=—1.36. The band-
width is held fixed at 8t=1.5¢eV.
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(2) follows from the standard definition,
d%k
(27)?

A numerical evaluation of the phase-space integral in Eq.
(8) leads to the density of states for the nested band
shown in Fig. 6. It is interesting to note that the Fermi
energy is located 0.04 eV =500 K below the logarithmic
Van Hove singularity for the Bi2212 model parameters.

Nw)= [ Slo—E(K)] . (8)

III. SUPERCONDUCTIVITY

The presence of nesting in a two-dimensional band is
detrimental to a BCS mechanism for superconductivity
because the electron-phonon coupling favors a charge-
density-wave instability instead of s-wave singlet pair-
ing.?> The enhanced spin fluctuations will also be detri-
mental to the binding of electron pairs in s states.*

The primary basis for the d-wave pairing we consider is
the Berk-Schrieffer* process of exchange of spin fluctua-
tions shown in Fig. 7. These consist of a direct Coulomb
term and the spin-fluctuation graphs, where the
electron-hole bubble represents the susceptibility.

Decomposition of the two-particle scattering into
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FIG. 4. The solid curve represents the calculated static sus-
ceptibility for the Bi2212 band parameters B=0.165 and
u=—0.56, shown as a function of momentum |q| along the
direction g, =g, by including the damping I'yg.=Max(|w|,T)
where T=100 K [see Eq. (6)]. As a comparison, the result for
zero damping is shown here by the dashed curve. The calculat-
ed maximum y'(Q*)=~0.97 eV ™! constrains the interaction
strength U <1 eV which compares with the bandwidth 8¢=1.5
eV that we estimated from the photoemission data of Ref. 10.
The dot-dashed curve represents the Gaussian model of Eq. (7)
with a=1.2, 4 =0.49, and C=0.476.
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angular-momentum channels yields an effective pairing
coupling:!!
> 8(k)V(k,k')g,(k")S[E(k)]IS[E(k')]

A=—X . )
! S gA(k)S[E(K)]
k

The conventional symmetry classification of the basis set
g; (Refs. 11-15) is g, =1 for s-wave states, 8, =sink, for
p-wave, and gxzﬂyz=coskx —cosk, and g,, =sink,sink,
for d-wave states.

The primary pairing interaction V(k,k’) (see Fig. 7) is
given by the term with two spin-fluctuation bubbles,
U3y’ %k—k'), and the exchange term proportional to
U?y'(k+k’). The direct Coulomb repulsion term van-
ishes in the d-wave channel because the Hubbard model
presumes a point interaction in real space for the
Coulomb repulsion. A standard Fermi-liquid example of
a free-electron dispersion in two dimensions that gives
rise to a constant susceptibility x'(q,0), up to 2kg, will
not be superconducting in the d-wave channel. The
reason for the lack of attraction (i.e., A=0) between a
pair of electrons in this cylindrical Fermi surface case fol-
lows directly from the phase-space integration in Eq. (9).

Nesting of the Fermi surface creates an opportunity for
d-wave pairing since the symmetry favors overlap of the
positive and negative regions of the gap function. We
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FIG. 5. The solid curve shows the real part of the susceptibil-
ity at the nesting vector Q *=0.91(w,7) [Eq. (6)] for the Bi2212
model parameters plotted as a function of frequency, using the
damping I'=Max(|w|,T) with T=100 K. The dashed curve
represents the result for a perfectly nested square Fermi surface
with B=p=0 and Q *=(m,7). In the latter case, the logarith-
mic increase in ¥’ as T—O0 drives the system into the SDW
regime even at small values of the Coulomb interaction
strength U.
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FIG. 6. The density of states for the Bi2212 model parame-
ters B=0.165, u= —0.56, and bandwidth 8¢=1.5 eV. The lo-
cation of the Fermi energy is indicated on the figure. Note that
the logarithmic Van Hove singularity in the density of states is
situated approximately 0.04 eV ~500 K above the Fermi ener-
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FIG. 7. Diagrams for the electron-electron scattering in the
singlet channel show the direct Coulomb repulsion by a dotted
line and the spin-fluctuation exchange processes with a bubble
representing the susceptibility. In the d-wave channel for a
nested Fermi surface, the leading-order attractive contributions
from the graphs involving the susceptibility are of the same or-
der, whereas the direct bare Coulomb repulsion gives no contri-
bution in the Hubbard model, because U is assumed to be
momentum independent.
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proceed to compute the superconducting transition tem-
perature for the realistic band model whose chosen orbit
topology naturally links lobes of opposite sign of the
dngyz states by virtue of the nesting vector direction

along the g, =g, direction. We use the Gaussian analytic
form for the susceptibility given in Eq. (7), and evaluate
the coupling constant kxz_yz by numerical integration

over momenta. As seen in Fig. 5, our computed suscepti-
bility indicates an energy cutoff o, ~0.3 eV for the spin-
fluctuation exchange process. An upper limit on a cutoff
is set by the energy scale of the bandwidth 8¢ =1.5 eV.
Our conservative choice of 0.3 eV is the frequency where
the calculated susceptibility decreases to half of its static
value, as shown for Bi2212 in Fig. 5. Numerical calcula-
tions for the FL parameter set yield a similarly smooth
susceptibility decline, which indicates that the cutoff is
relatively insensitive to the shift of the chemical potential
which distinguishes the FL case from Bi2212. A similar
value of w, is obtained for the Bi2201 parameters, which
suggests that the cutoff varies weakly with this change in
B. However, the overall magnitudes of the susceptibility
as a function of frequency follow the trends for the static
susceptibility seen in Fig. 3. In our leading-order analysis
the cutoff does not depend on U. The leading-order eval-
uation of the superconducting temperature gives

1

x2_y2

T, =w.exp (10)

The clear benefit for achieving high-temperature super-
conductivity by means of a spin-fluctuation mechanism is
the prefactor o, =~0.3 eV =~2500 K. However, the dilem-
ma is to find a way to achieve a substantial coupling
A>0.1, since the exponential dependence seen in Eq. (10)
will otherwise suppress T, to negligibly small values for
weaker coupling.

A. Fermi liquid

We first test the case of an ordinary Fermi-liquid topol-
ogy without nesting for comparison with previous calcu-
lations using tight-binding models.!! ~!% Spin fluctuations
generate a net repulsion of electrons and therefore
suppress superconductivity in the standard parabolic
band model as shown by Berk and Schrieffer.* Therefore
we consider a tight-binding model better suited to cu-
prates and use the Fermi liquid (FL) label to distinguish
cases with rounded orbits that are expected to exhibit a
characteristic T2 variation of the electron-electron cross
section. Using the energy band parameters that produce
the dashed curve (FL) Fermi surface shown in Fig. 2 we
compute the susceptibility for zero damping (as shown in
Fig. 3) and then compute T,. Choosing a Coulomb in-
teraction U=0.95 eV that is close to the highest value
permitted by the SDW constraint, and approximating
xX'(q) by the Gaussian model of Eq. (7), we find
ApL=0.037 and T,=0. An analytic representation of the
susceptibility that models the dip between the nesting
peaks more accurately by a parabola leads to a
A =0.054 which also corresponds to a vanishing T,.
This example is qualitatively similar to other cases stud-
ied by several groups,'! !° and our conclusions regarding
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an inadequate superconducting pairing in leading order
are consistent with the earlier work. Although random-
phase-approximation (RPA) contributions selectively
enhance this coupling near the SDW instability,'"1371° a
reliable estimate of such higher-order contributions re-
quires a full scale examination of self-energy and vertex
corrections which is beyond the scope of the present
work.

B. Nesting

Nested segments of the Fermi surface provide a two-
fold benefit for creating a superconducting state of d-
wave symmetry that persists up to the 155-K range of T,
values that have been discovered so far in the cuprates.
The first and obvious advantage of nesting is the
enhanced peak structure in the susceptibility evident in
the calculated curves in Figs. 3 and 4. Although perfect
nesting would give rise to the largest susceptibility, it is
not suitable for superconductivity since such a square or-
bit would trigger a SDW instability instead. Thus, the
present model for Bi2212 offers a realistic hope for
achieving superconductivity since the rounded corners of
the nested surface shown in Fig. 2 lower the density of
states at the Fermi energy and also suppress the SDW in-
stability by reducing the value of the susceptibility near
the nesting vector Q *.

The novel advantage of nesting that we find here is the
beneficial influence of the nesting topology in the phase-
space integrals of Eq. (9) which determine the pairing at-
traction. We thus obtain by direct computation for the
Bi2212 parameters that the leading-order spin-exchange
processes along with the susceptibility shown in Fig. 4
give }‘x2—y2=0'27 and a superconducting transition tem-

perature of T,=89 K if we choose Uy ,,,=0.93 which
requires a Coulomb repulsion U=0.95 eV for our calcu-
lated Xi.,=0.97 eV~ !. Since the bandwidth for our
model is 82 =1.5 eV, the requisite Coulomb interaction is
of intermediate strength.

Quantitative accuracy of course requires rigorous
treatment of higher-order corrections, and we hope that
our novel and surprising results for the lowest-order cou-
pling will stimulate further theoretical research along
these lines.

A fundamental mystery is the surprising disparity in
T, values for Bi2212 (T,=85 K) and Bi2201 (T, =6 K).
This needs to be reconciled with the fact that both of
these compounds exhibit the anomalous linear tempera-
ture dependence of the resistivity and strong deviations
from Drude behavior of the optical properties. We were
motivated to understand this dilemma by the discovery of
King et al.'® that both of these compounds have nested
Fermi surfaces, but with nesting vectors that differ by
roughly 10%. Thus we were led to examine the sensitivi-
ty of the d-wave transition temperature 7, to the magni-
tude of the nesting vector by direct numerical analysis,
which is shown in Fig. 8. Our computations reveal a
dramatically steep rise in T, (solid curve) as the nesting
vector reaches Q*=~0.91Q which corresponds to the
Bi2212 Fermi surface shown in Fig. 2 if Q=(s, 7). If the
nesting vector is reduced to Q *~0.8Q and if U is held
constant, the calculated T, falls below 10 K, and rapidly
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approaches zero for even smaller Q *. This behavior of
T, resulting from the nesting mechanism is compatible
with the photoemission evidence!® for a reduced Q*
value in Bi2201. The SDW region that constrains our
model band structure is also shown in Fig. 8 by the shad-
ed area which marks the nesting vector range that would
trigger a SDW instability for the value of U=0.95 eV
chosen here.

Finally we examine the sensitivity of the Bi2212 model
to changes in the chemical potential ;1 while keeping the
other band-structure parameters constant. It is remark-
able that the present model that includes next-nearest-
neighbor tight-binding interactions retains nesting
features over a significant range of chemical potential
shifts in the particular case of the B and ¢ parameters
used here, as seen in Fig. 9. This persistence of nesting is
in sharp contrast with the simpler tight-binding model®?
with only nearest-neighbor orbital overlaps whose nesting
features are spoiled by small changes in u. A direct nu-
merical check confirms that the nesting approximation
E(k+Q)+E(k)<kgT is satisfied by major segments of
the Fermi surface shown in Fig. 9. These are then com-
patible with the NFL derivation of the linear T and o
damping which explains a key feature of the cuprates.
Other studies have used different model Hamiltonians, al-
ternate band models, and a variety of parameter sets. It
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TABLE 1. Gaussian fit parameters used in the calculation of
T. as a function of u (see Fig. 10). The Fermi-liquid (FL) sus-
ceptibility is calculated for zero damping.

u A4 V™) C (V) a T, (K)
—1.60 (FL) 0.737 0.210 1.60 0
—1.00 0.350 0.210 1.25 0
—0.70 0.430 0.240 1.25 0.07
—0.56 (Bi2212) 0.494 0.476 1.20 89
—0.53 0.508 0.522 1.19 164
—0.40 0.630 0.780 0.80 SDW

would be interesting to see how other models may gen-
erate nesting and influence the superconducting pairing
caused by spin fluctuations.

Changes in oxygen content or chemical composition
that serve to shift the Fermi energy will influence the d-
wave superconductivity even though the nesting may per-
sist. This phenomenon is illustrated in Fig. 10 which
shows the computed superconducting 7, values as a
function of u for the present band model. The nesting to-
pology is the key determinant of T, in this case. The
relevant parameters (a, 4,C) employed in the Gaussian
fit are listed in Table I.

Elimination of nesting features by doping will destroy
the present mechanism for d-wave superconductivity and
cause the electrical transport properties to revert to con-
ventional Fermi-liquid behavior. This type of correlation
is seen experimentally’® in the T1,Ba,CuOq,s cuprate
which exhibits 7,=85 K and a linear T resistivity for
8=0 but becomes nonsuperconducting at 6=0.1 and de-
velops a T? resistivity that persists up to room tempera-
tures.

We do not find superconductivity of xy symmetry for
our Fermi-surface geometry. The favored x2—y? state
for the present nesting model is consistent with photo-
emission measurements of the energy gap anisotropy in
Bi2212.1% If the Fermi surface is rotated in other cu-
prates, as suggested by photoemission spectra of
YBa,Cu;0,_; by Liu et al.,”’ then states of other sym-
metry should be examined in more detail. We find a van-
ishing T, for p-wave symmetry pairing using g, =sink, in
both the Fermi-liquid model and the nested Fermi-
surface case.

Impurity scattering should be detrimental to anisotrop-
ic pairing as well as for the SDW formation. By analogy
with the Abrikosov-Gorkov theory,?® d-wave suppression
by disorder constrains T, in the cuprates.”’ Similarly,
nonmagnetic impurities also impede the competing SDW
transition.3 The case of chromium reveals a further sen-
sitivity of the SDW to impurity induced shifts of the
band structure®! which may also occur in the cuprates.
Impurities at sites in the copper-oxide planes should
presumably be more destructive for d-wave superconduc-
tivity than those at interplanar sites. An extension of the
present model to include impurity effects is surely war-
ranted.

The origin of nesting features in cuprates is evident in
band-structure calculations®? because of the nearly half-
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filled d bands in two dimensions. The relative persistence
of parallel segments in a given band subjected to doping
may be also stabilized by a second band that acts as a
charge reservoir. Photoemission data support the ex-
istence of multiple bands in YBCO (Ref. 27) and in
BSSCO.’

IV. CONCLUSIONS

We have found that nested regions of the Fermi surface
produced by a realistic tight-binding energy band model
can yield superconductivity at very high temperatures.
The necessary ingredients for the d-wave symmetry pair-
ing mechanism are a Coulomb repulsion of intermediate
strength, nesting vectors whose magnitudes are restricted
to a narrow range, and a nearly two-dimensional nested
Fermi-surface topology.

Since our band model is tailored to resemble the Fermi
surface of Bi2212 unveiled by recent photoemission
data,”!° there is an empirical constraint on the on-site
Coulomb repulsion U that is imposed by the spin-
density-wave instability. We find that values of U that
are close to but less than the bandwidth are suitable for
producing a d-wave superconducting state while avoiding
a transition to the SDW phase. Thus our present analysis
of the spin susceptibility for a realistic Fermi surface in
the Bi2212 cuprates establishes an upper limit on U that
may provide a useful guide for other theoretical ap-
proaches to metallic cuprates.

A novel feature of the nesting mechanism is the ability
to generate high-T, values above 100 K in the leading-
order treatment of spin-fluctuation processes. Our
analysis yields negligible values of T, in the same lowest-
order graphs if the nesting topology is removed by chang-
ing the chemical potential to produce rounded Fermi-
liquid-like structures, and the latter cases are in qualita-
tive agreement with previous calculations.!! ~!> However,
higher-order self-energy and vertex corrections need to be
examined in any event.

Our model distinguishes the high-7, (=85 K) Bi2212
cuprate from the low-7, (=6 K) Bi2201 compound on
the basis of a 10% change in the magnitude of the nesting
vector which has been observed by King et al.!® This re-
markable sensitivity of the calculated d-wave T, is a
direct result of the Fermi-surface topology, while the
presence of nesting in both these bismuth-based cuprates
is compatible with their electrical’ and optical® transport
anomalies. More generally, the nesting mechanism pro-
vides a direct link to the linear T variation of the resis-
tivity which has been a puzzling feature of all of the very
high-T, superconductors found to date.

Theoretical extensions of the present work may be
relevant to higher-order spin-fluctuation graphs, includ-
ing the “spin-bag” variety.’> Nesting of a two-
dimensional electronic structure produces”® a linear fre-
quency variation of the quasiparticle damping that bears
similarities to the Luttinger theory’* for a one-
dimensional electron gas, which is known to exhibit
unusual charge and spin dynamics.3%3

Nevertheless, nesting in two dimensions is dis-
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tinguished by a crossover temperature T* below which
the electronic response reverts to standard Fermi-liquid
behavior because a finite curvature of an electron trajec-
tory is expected in a realistic situation. Accordingly, the
concept of a well-defined Fermi surface is valid in the
NFL approach, despite the unusual damping features
that arise above T* and at frequencies above a corre-
sponding crossover o* determined by the nesting
geometry.
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