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superconducting —normal-metal —superconducting structure
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Using the Bogoliubov —de Gennes equation, we study superconducting current in a ballistic double
superconducting —normal-metal —superconducting (SNSNS) structure. There are two contributions
to the current: current Iq due to the discrete part of the excitation spectrum and current I2 due to
the continuous part of the spectrum. Bound states (Andreev levels) are associated to each normal
region. If the length L of the middle S region is comparable to (or smaller than) the coherence length

(0, the Andreev levels in diferent regions interact; if L )) (o the Andreev levels are noninteracting.
The interaction between the Andreev levels inQuences I&. Moreover, I2 is negligible only in the
limits L (( (o and I )) (o. We present curves for the dependence of the critical current I, on L
and on the pair potential of the middle S region. The pair potential of the middle S region prevents
reduction of I . The effects we study will not be present in a transfer Hamiltonian approach.

I. INTRODUCTION

Transport properties of weak superconducting struc-
tures have been under intense study since the prediction
and observation of the Josephson effect. Superconduct-
ing heterostructures with normal-metal inclusions are ex-
amples of such weak superconducting structures.

In recent years there has been renewed interest in su-
perconducting heterostructures. One reason is the intro-
duction of superconductivity into mesoscopic physics.
One is then motivated by the possibility to fabricate var-
ious small structures where superconducting regions are
included. Another reason is the discovery of high-T, su-
perconductors (HTSC), whose strange properties may be
explained by their intrinsically layered structure. More-
over, the mechanism of electron transport through grain
boundaries of HTSC is not well understood, and the on-
going discussion on the symmetry of the order parameter
of HTSC is partly based on weak link experiments.

The simplest case of a superconducting heterostruc-
ture is the ballistic sup erconducting —normal-metal-
superconducting (SNS) junction, which has been stud-
ied by a number of authors. ' The opposite case is
the superconducting superlattice, where the alternat-
ing S and N regions are repeated periodically. Theo-
retical work on superlattices rely on periodic boundary
conditions which are not present when considering real
6nite systems. The cluster case with a small number of
periods is worth studying, partly because this is closer to
what is fabricated in the laboratory.

Therefore, in this paper we study a ballistic SNSNS
junction. In our treatment there are no normal scatter-
ing mechanisms present. In this situation Andreev reQec-
tion makes current transport possible. It is well known
that superconducting bound states with energies below
the gap A (Andreev states) contribute to the current
through SNS structures. The Andreev states are local-
ized to the normal region. Now, if there is more than one
normal region, Andreev states are found in each normal

region. In the SNSNS case this results in interaction be-
tween Andreev states associated with different regions.
This interaction is strong if the length L of the middle
S region is short compared to the coherence length (p
((o ——k& p/6, where kg is the Fermi wave vector and

p is the Fermi energy) and small if L )& (o. In the su-
perlattice case the interaction leads to broadening into
a band structure of the Andreev states. ' The same
effects were also investigated for the bound quasiparticle
states of vortices in type-II superconductivity for a dense
Abrikosov lattice.

We calculate the stationary sup ercurrent for the
SNSNS structure as a function of the superconducting
phase diB'erence P, modeling the pair potential as a step-
wise constant function. This means we do not use a self-
consistently determined pair potential (a self-consistently
determined pair potential has been used in the SNS
case ). The lack of a self-consistent pair potential leads
to violation of current conservation, a matter thoroughly
discussed in Refs. 15 and 16. In the case of a point-
contact geometry with a small number of modes com-
pared to the number of modes in the wide leads, the cor-
rections due to self-consistency are small. Moreover, we
concentrate on the single-mode case. This corresponds to
a double point-contact geometry. However, our approach
can be generalized to the multimode case.

The problem of supercurrent through a Coulomb dot
(the phenomenon of Coulomb blockade) is related to the
SNSNS structure we study, but there are important dif-
ferences. We do not include any electrostatic interaction
in the middle S region. In addition we study the ballistic
case, contrary to the tunneling case of Ref. 17, where the
transfer Hamiltonian was used. Any detailed compari-
son between our work and Ref. 17 is therefore diKcult to
make.

In addition to the current from the bound states, there
is also a current contribution from the continuous part of
the excitation spectrum. We calculate this contribution
using the Landauer formalism describing current trans-
port in terms of transmission probabilities. '
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II. THE SNSNS JUNCTION eigenfunctions of Eq. (1) are

To determine the current of the SNSNS junction we
solve the one-dimensional time-independent Bogoliubov-
de Gennes (BdG) equation:~s

'Ro A(x) '

14'+. , = exp(+iq, ,x), q, , = kp. /1+ E/p, ,

0
exp(+iq, hx), q, h = k~gl —E/p,

where 4'(x) is a two-component wave function and 'Ro ——

y /2m —p, is the one-electron Hamiltonian. The positive
eigenvalues E of Eq. (1), measured relative to the Fermi
energy p, determine the excitation spectrum of the sys-
tem. The cross section area of the junction is assumed
to be less than the penetration depth, so that the vector
potential can be neglected.

The pair potential of the SNSNS system, shown in Fig.
1, is assumed to have the form

'ue'@' '
2
v'

' v.e'&' '
2

2

exp(+ik, ,x),

exp(+ik, h, x),

(5)

where k~ = v 2m@/h. In the superconducting regions j
(j = 1, 3, 5) the unnormalized eigenfunctions of Eq. (1)
are

e
—i@//2

0
A(x) = g

0
a e'&/"1

if x & 0,
if0&x&L~)
if L~ & x & L~+ L)
if L~+ L & x & 2L~+ L)
if 2L~ + L & z.

(2)

where, if E ) L~,

[1 + (E2 ~2)1/2/p]1/2

k, , = k [1 —(E' —~,')'/'/p]'/',

We assume that the junction is symmetric, but allow the
pair potential L3 of the middle S region to differ from
the electrodes. However, throughout the paper L3 & 4 j .
Considerations of the case L3 & Lq have been carried
out for the asymmetric SNS system. Due to current
conservation, we have Ps —Ps ——Ps —Pq

——P/2. We are
&ee to choose the absolute phase of the middle S region
to zero.

or, ifE&4~,

k, .= k~[1+ i(&,' —E')' '/p], kj, h —(kj,e) ~ (7)

and

; = [1+(E' &,')"/E]l2-
u,' = [1 —(E' —&,')"/E]l2.

Now we make the ansatz for regions 1 and 5

III. THE DISCRETE SPECTRUM
c&4, .+ d&@+, „ if x & 0,
asks, +bs@s& if 2L~+L & x,

The discrete part of the excitation spectrum, meaning
solutions of Eq. (1) with E & Aq, depends on P. From
this dependence we calculate the current contribution Iq
fI'om the discrete spectrum: '

2e dE„
Iq ————) tanh (E /2k~T)

The sum in Eq. (3) is over the discrete energy levels de-
termined from Eq. (1).

To produce wave functions of the SNSNS structure, we
proceed as in Ref. 21 treating the SNS junction.

In the normal regions j (j = 2, 4) the unnormalized

and for the middle regions j = 2, 3, 4

4(x) = a, @+.+ b, 4, „+c,@,—..+. d, %+„. (1O)

r 0
0

Cy

1

'a5'
b5
0
0

The form of the wave functions 4 ~ and 45 guarantees a
decaying behavior when ~x~ ~ oo. We match the ansatz
and the derivative of the ansatz at the interfaces. After
eliminating the coeKcients of the middle regions, we end
up with the following equations for the coefFicients cq, dq,
a5, and b5..

-i Q/2

S

01

N

'02
s '

l(

03

N

04

S

0s

i Q/2 M = M(E) is the 4 x 4 transfer matrix associated with
the clean SNSNS structure. Besides Eq. (11) there is also
a normalization condition for the wave function, which
in this work is of no interest. We do not need all the
components M;z) since the condition for having nonzero
solutions cq, di, a5, and b5 is

FIG. 1. Layout of the SNSNS system. M33 M44 M34M43 ——0. (12)
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FIG. 2. Discrete levels for several lengths for the case
Note that in this figure the full 4' variation is

not shown. The energy vs phase curves have even symmetry
about 2'.

FIG. 3. Discrete levels for several values of A3. For both
cases L = 5(0.

IV. THE CONTINUOUS SPECTRUM

Equation (12) determines the excitation spectrum for the
bound Andreev levels of the SNSNS structure. We solve
Eq. (12) numerically. The results are presented in Fig.
2. In all plots we have chosen Ai/p = 1/50 and zero
temperature.

Let us erst consider the case when the pair potential
in all S regions is the same, Aq ——43 ——L. In the
case L~ )) (o, there are several Andreev levels present
in the spectrum. In Fig. 2 we show the case L~ && (o,
when there are at most two levels present. For small
length I of the middle S region, we approach the short
SNS junction case, as is seen in Fig. 2, with the disper-
sion relation E = A Icos(P/2)I. The small gaps in the
spectrum are because of normal reflection due to a fi-
nite value of the ratio E/p, , as investigated in Ref. 21.
We note that for L )) (o the two levels approach each
other and become almost degenerate with the dispersion
relation E = A Icos(P/4)I. This is clearly due to the
small overlap between the wave functions of the local-
ized Andreev levels associated to each N region. The
cos(P/4) dependence is easy to understand [see Eq. (2)]:
when L )) (o the phase difference over each junction is
gV = P/2, giving back the usual cos(P'/2) dependence of
a ballistic SNS junction. We would like to emphasize,
however, that the general dependence of E(P) is 4vr peri-
odic. Moreover, by analogy, a SNS ~ . NS structure with
n periods should show n2m periodicity of E(P).

We also vary the pair potential L3 of the middle S
region. The result is shown in Fig. 3. Levels disappear
into the continuum when L3 is increasing from zero.

To calculate the current contribution &om the contin-
uous spectrum we use the Landauer formalism describing
current transport in terms of transmission probabilities.
The approach by Landauer has to be generalized to han-
dle the superconducting case. ' Since we diQ'er from Refs.
4 and 5 we describe in detail the procedure, which is close
to Ref. 22 treating NS junctions.

The erst step is the introduction of the modified
quasiparticle operators p k and phk which change the
charge by exactly +e, respectively:

kCkg
—Vkm C

kg
—vkc kg + vkS ckt ~ Qh kg)

where St (S) adds (destroys) a Cooper pair to (in) the
condensate. It is important to note that both types of op-
erators exist for k both greater than and less than k~.
For k ) k~ the excitations have electronlike character;
for k ( k~ the excitations have holelike character. The
reason for introducing the modified quasiparticle opera-
tors in Eq. (13) is that we want to study processes where
exactly +e is transferred through the junction.

To calculate the current, one studies excitations inci-
dent on the SNSNS structure from both the left (positive
group velocity) and the right (negative group velocity).
In the superconducting case, it is possible to have both
electronlike and holelike quasiparticles incident, as shown
in Fig. 4. Let us erst consider the current contribution
kom the electronlike branch, expressed in a Landauer-
type formula:

dk hk—[Tl,~/(EI„y) —T/~1, (Ek, y)] [1 —f (Ey)]
7t m

dk hk
+e [TL~R(E» ~) T&~1.(E» ~)] f (E~) ~2K m (14)

where Tg &(EI„P) [T& &(Ei„g)] is the transmission
probability for an electronlike quasiparticle incident
from left (right), Ei, = (ez& + Ai) and f (Ei,)
[1 + exp (Eg/k~T)] . In Eq. (14), the first integral rep-

I

resents quasiparticle injections caused by p&& IO) (IO) is
the ground state of the superconductor). The minus sign
is due to the fact that p&k IO) increases the momentum
of the state by hk. The last factor of the first integral
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(14) and (15),

I = e ——(TL R(Ek, p) —TR L(Ek, p))
dk hk h h

2K m

x [2f (Ek) —1] .

FIG. 4. Quasiparticles injected from the left. Filled (un-
filled) circles correspond to electronlike (holelike) injections.
In both cases the shown processes assume the Andreev ap-
proximation. Also, not. shown in the figure, there are quasi-
particle injections from the right.

Further simplification gives, analogous to Eq. (16),

(T." R(E, ~)E2 Q2

R—I( &))[ f( ) — ].

dk hk
I2 ——e ——[TL~R(Ek, p) —TR~L(Ek, p)]m

x [2f (Ek) —1]. (i5)

Making use of dek/dk = h k/m and dek/dEk

Ek/ (Ek —Ai), we rewrite Eq. (15):

e
[TL R(E 0) —TR L(E 0)]

x [» (E) —1]. (16)

The current caused by holelike quasiparticles (see Fig. 4)
incident on the structure is written, analogous to Eqs.

takes into account the occupation probability for finite
temperatures T. The second integral of Eq. (14) rep-

resents quasiparticle injections caused by p,g p,k 0

which decrease the momentum of the state by hk. Adding
the two contributions of Eq. (14) we have

@+i.+ d, 4+„ if x & 0,
asiiz'3, if 2L~ + L ( z,

and for the middle regions, j = 2, 3, and 4,

ill(x) = a, 4'+. + d, @+„. (2O)

Matching the wave functions at the interfaces makes it
possible for us to eliminate the middle region coefBcients
and solve for a5. To simplify, we investigate the case
L~ = 0. Then we get

Now, it remains to calculate the transmission proba-
bilities. Investigating the continuous spectrum, we make
the Andreev approximation. This approximation is valid
for L~ (( p, and means that we neglect processes with
large momentum changes. Within the Andreev approx-
imation, we write down the wave function for the elec-
tronlike quasiparticle with energy E ) Lq incident &om
the left, see Fig. 4. For the outer regions j = 1 and 5 we
have

2 2) (
2 2)/ 2 zP( 2 zkz, L — 2 ,

—kz, qIz)

2$/2( zk3 hL —zkz, L) 2( 2 —zkz gL 2 zkz, Lq— (2i)

Putting A3 ——0, we reproduce the result of Ref. 5 without
an impurity.

Repeating the calculation above for a holelike quasi-
particle incident on the structure (see Fig. 4), we have

R(E, 0) = I~3(E 4)l

TL R(E 0') = l~s(E 4) I' = los(E —&) I' .

g (E y) ez4e —( sz,.kz+, z)Lu (E

The result of Eq. (22) can also be obtained by making
the transformations u3 + v3 v3 —+ Q3 ll M v v M ll,
ks z ~ ks +pl and ks k ~ —ks, in Eq. (21).

Now we can write down the transmission probabilities
using Eq. (22):

In addition to Eq. (23) we have

TR~L(E &) = TL'~R(E —&). (24)

Putting Eqs. (16), (18), and (21)—(24) together we can
finally write down the total current contribution I2 &om
the continuous spectrum

2e ~" +
Z2 ——Iz + Iz ———— dE a5 E, —a5 E, — tanh E 2k~T

h
(25)



3758 MAGNUS HURD AND GORAN WENDIN

2.0
(a)

1.0

0.0

-1.0

-2.0
0.0 1.0

P/(2n)

I2

I,+I,

2.0

2.0
(b)

1.0

0.0

-1.0 ————I2

I,+I2

-2.0
0.0

2.0
(c)

1.0
P(2n)

2.0

To arrive at Eq. (25) we note that it is enough to in-

tegrate between Aq and A@2 + Ez in Eq. (16), simply
because within the Andreev approximation ~as(E, P) ~

~as(E, —P)~ = 1 for E ) Qp2+ A2~.

V. THE CURRENT

In this section we use Eqs. (3) and (25) to calculate
the contributions &om both the discrete and continuous
spectrum, respectively. From now on we specialize to the
case when the length L~ of the N regions is zero, L~ ——0.

First we check the case L~ ——A3 ——4, see Fig. 5. In
Figs. 5(a)—5(c) we show how Iq and I2 compare to each
other for different lengths. Also in Figs. 5(a)—5(c), the to-
tal current I = I~+I2 is shown. For L && (o, see Fig. 5(a),
the contribution I2 from the continuous spectrum is small
(and zero for I = 0) compared to Iq. Increasing L, the ra-
tio I2/Iq increases, reaching a peak at (o, see Fig. 5(b).
For L )) (o the ratio I2/Iq approaches zero and only Iq
contributes to the total current, see Fig. 5(c). In this case
there is only one level per N region with the dispersion
relation E = icos (P/4). From Eq. (3) we then have
directly I(P) = (eA//I) sin(P/4) for T = 0, in agreement
with the numerical calculations. In Fig. 5(d), the critical
current I as a function of length is shown. For small I,
I, exceeds the value eA/h for a short SNS junction, while
for larger L the limit eb, /5 is approached. Therefore, in-
troducing a third middle superconducting region with the
same pair potential as in the superconducting electrodes
does not change I much, but rather redistributes the
current contributions between the bound states (Iq) and
the continuum (I2). There are also oscillations in Fig.
5(d) on the scale of k~L 7r.

Next, we vary L3, keeping L fixed. Putting 43 ——0
we can reproduce the known result for a long and clean
SNS junction, where I(P) is triangular in P. This case is
discussed in detail in Ref. 5. In Fig. 6 the critical current
I, as a function of As/Aq is shown.

1.0
L=5(0 VI. SUMMARY AND CONCLUDING REMARKS
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In this paper we have studied the simplest case of sta-
tionary Josephson current through two coupled, ballistic
SNS junctions by solving the one-dimensional BdG equa-
tion for a SNSNS structure. This allows us to go contin-
uously between the two limits L )) (p and L « (p, where
L is the length of the middle S region.
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FIG. 5. In (a)—(c) the current contributions Iq and I2 as
a function of P for different L are shown. In (d) the critical
current I, as a function of k~L is shown.

FIG. 6. The critical current I, as a function of Ks/Aq for
different I .
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For L )) (p our treatment describes two independent
junctions with nonoverlapping Andreev states, only cou-
pled via current conservation. As a result the critical cur-
rent is unchanged compared to the single junction case
(I, = eA/5). There is one (L~ = 0) Andreev state
for each junction. These two states are degenerate in
this case. For L « (p (the strong coupling case) one ap-
proaches the single junction case with only a single bound
Andreev state, which results in a 2' periodic dispersion
relation for L = 0.

In the intermediate range (p L, the bound Andreev
states of each junction more or less overlap. The situa-
tion is analogous to bound states of a double quantum
well, and the Andreev levels are split. We get "bond-
ing" and "antibonding" combinations of bound Andreev
states. The development &om the weakly overlapping
case to the strongly overlapping case is clearly demon-
strated in Fig. 2. The upper level goes above the gap 4
when decreasing the distance L between the junctions.

Our results show that, when L (p, it is essential to
take into account the contribution I2 from the continuous
states, in addition to Iq. Only when L « (p or L )) (p
I2 is negligible. The enhancement of the critical current,
compared to I, = eA/h of the single junction, is tech-
nically due to the continuum current which adds to the
current (and also subtracts at other phases P), see Fig.

1.5—
=sin(Q/4)

L=($5
z —3=

'v0

0.5

-0.5

—l.5
0.0 1.0

P/(2n)
2.0

FIG. 7. Total current as a function of P for three lengths
L of the middle S region (Az = &3 —A).
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5. In Fig. 7 we show the three cases discussed, plotted
on the scale of the full 4~ period.
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