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A microscopic model for describing a superconducting mesoscopic weak link is presented. We
consider a model geometry consisting of a narrow channel coupled to wider superconducting elec-
trodes which act as reservoirs fixing the asymptotic values of the complex order parameter. For
this model, the Bogoliubov —de Gennes equations are discretized and solved self-consistentiy using
a nonequilibrium Green-function formalism. The transport properties and the electronic excitation
spectra of this system are studied for the different regimes that can be reached by varying param-
eters like coherence length, constriction length, normal transmission coefBcient and temperature.
We study in detail the transition from the point-contact limit to the infinite channel length case,
analyzing the maximum 3osephson current that can be sustained by the weak link as a function of its
transmission coeKcient and length. It is also shown that for a constriction size ranging from zero to
several times the coherence length, most of the current is carried, inside the constriction region, by
bound states within the superconducting energy gap. These states corresp'And to Cooper pairs with
binding energies smaller than the superconducting gap and which are spatially extended along the
channel region, decaying exponentially inside the reservoirs. The importance of the self-consistent
determination of the order parameter along the weak link is illustrated by analyzing different profiles
obtained for channel lengths of the order of the coherence length. For temperatures not very close to
T„our microscopic calculation predicts the appearance of features which cannot be obtained from
Ginzburg-Landau theory.

I. INTRODUCTION

The interest in the physics of submicrometer supercon-
ducting devices stems to a great extent from the special
combination, taking place in this kind of system, of nor-
mal electron phase coherence in the nanometer scale to-
gether with quantum macroscopic effects associated with
the superconducting state.

Some of the sup erconducting mesoscopic devices
which are recently receiving more at tention in-
clude normal-metal —superconductor (NS) junctions and
superconductor-semiconductor (Sm) junctions where An-
dreev reHection processes play a crucial role, and su-
perconducting mesoscopic point contacts which can ex-
hibit quantization of the Josephson current.

A theoretical description of the transport properties
in all these submicrometer devices has to deal with spa-
tial inhomogeneities due to the presence of geometrical
boundaries and interfaces between different materials; in
a superconducting mesoscopic device this could lead to
strong spatial variations of the superconducting order pa-
rameter.

In normal mesoscopic devices the problem of comput-
ing their transport properties has been historically ad-
dressed by different approaches. One is based on the
scattering picture proposed by Landauer and general-
ized to more complicated situations (multichannel and
multilead cases) by difFerent authors. Another approach,
especially suited to deal with local inhomogeneities, relies

on the use of a localized representation for the electronic
states of the sample, whose transport properties can then
be efBciently calculated in terms of Green functions.

The scattering approach has been extended to super-
conductors by Blonder et al. and more recently applied
to a mesoscopic NS junction by Beenakker, who has
obtained a multichannel generalization of the result of
Blonder et al. , and to different superconducting devices
by other authors. Despite its many advantages, the
scattering approach is probably not the most convenient
starting point for a self-consistent determination of the
order parameter in situations where its spatial variations
on a scale smaller or comparable to the superconducting
coherence length ((0) may be important. For instance,
this can be the case in a NS junction when there is an
appreciable induction of superconductivity in the normal
electrode by a proximity effect. Another example is that
of a superconducting weak link with a length compara-
ble to (o, in which case, as shown in the present paper,
the self-consistent determination of the order-parameter
profile becomes unavoidable.

In a recent letter, we have presented a theoretical ap-
proach based on a local description of the superconduct-
ing mesoscopic system, in which a nonequilibrium Green-
function formalism is used. This method provides an effi-
cient way of calculating the transport properties and the
spatial variations of the self-consistent order parameter
through the whole system. The aim of the present pa-
per is to discuss in further detail our approach, taking
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as a test system a mesoscopic superconducting weak link
(SWL) at zero voltage. We shall consider a model georn-
etry in which two wide superconducting electrodes are
coupled by a narrow channel. As discussed by Likharev
in his review on weak links, there are two main reasons
for the basic interest on this kind of systems: First, weak
links of reduced dimensions exhibit the Josephson eKect
in nontunnel conditions and are especially suitable for
a variety of applications. On the other hand, for weak
links of increasing length (larger separation between elec-
trodes), the transition from the Josephson eKect to bulk
transport in superconductors can be studied. This last
question is addressed in detail in the present paper.

Traditionally, the transport properties of SWL's
have been analyzed with the help of phenomenological
Ginzburg-Landau (GL) theory. However, GL theory is
only valid for a limited temperature range (T ~ T,) and,
furthermore, the implicit hypothesis of slow spatial vari-
ation of the order parameter in GL theory, as derived
&om the microscopic theory, breaks down for a general
mesoscopic geometry. In these situations a complete self-
consistent solution of the Bogoliubov —de Gennes equa-
tions would be necessary. As we show in this work,
features in the order parameter profile associated with
length scales smaller than (o, like the Fermi wavelength
and some geometrical length scales, emerge in a natu-
ral way &om the microscopic calculation. In addition,
another result arising from the microscopic calculation,
which could never be obtained &om GL theory, is the
existence of bound states inside the superconducting gap
playing a fundamental role in the transport through the
weak link.

The plan of the present paper is the following: In
Sec. II we introduce our discretized (tight-binding)
model for a general constriction geometry, and discuss
the conditions for the fulfillment of current conserva-
tion within our model. In Sec. III the nonequilibrium
Green-function formalism in a superconducting broken-
symmetry representation is presented, giving the expres-
sion for the relevant quantities within this formalism and
details about its self-consistent determination. Section
IV is devoted to an analysis of the transition &om the
point-contact regime to infinite one-dimensional (1D)-
superconductivity, discussing the maximum current that
can Aow as a function of the weak-link transmission coef-
ficient. The analysis of the spectral densities reveals the
presence of a slowly increasing number of bound states
inside the superconducting gap. It is shown that these
states give the main contribution to the supercurrent in
the constriction region and decay exponentially inside the
3D electrodes.

In Sec. V the importance of the self-consistent de-
termination of the order parameter is illustrated by dis-
cussing the diferent type of profiles that can be obtained
for a mesoscopic SWL. We emphasize those features that
cannot appear in a GL calculation. Finally, in Sec. VI
the eKects of temperature both in the current-phase re-
lationship and self-consistent pro6les are analyzed. We
And that, except very near T, there is no simple scaling
of the system properties with temperature.

The paper is closed with some concluding remarks.

II. DISCRETIZED MODEL
FOR A MESOSCOPIC WEAK LINK

We consider a model weak link like the one depicted
in Fig. 1. The constriction width W is assumed to be
smaller than the penetration length and comparable to
the Fermi wavelength A~, leading to a small number of
conducting channels. The constriction length L can be
varied from the point-contact regime I,/(0 ~ 0 to the
opposite case L,/(0 -+ oo, recovering in this case the
limit of a homogeneous quasi-1D superconductor. Phase
coherence is assumed to be preserved along the whole
system.

The wider regions representing the left and right elec-
trodes ensure the asymptotic convergence of the com-
plex order parameter L to its bulk value. This model
geometry would be similar to the one-dimensional struc-
ture with electrodes in equilibrium model proposed by
Likharev.

Our aim will be the complete self-consistent solution
of the microscopic Bogoliubov —de Gennes equations for
this system. For this purpose we find it convenient to
formulate these equations using a site representation for
the electronic states. This representation can be viewed
either as a tight-binding description of the electronic
states or as a discretization of the Bogoliubov —de Gennes
equations (a simple scaling of the parameters would ac-
count for the use of one or another description). For
the electron-electron interaction we make the usual sim-
plifying assumption of taking it as a contact attractive
interaction, which in a site representation adopts the
form of a negative-U Hubbard-like local term.

Within these assumptions, the mean-6. eld model
Hamiltonian giving rise to the Bogoliubov —de Gennes
equations for our system can be written as

II = ) (eg —p)c c~~ + ) t~~c. c~~
i,a &A2)&

+ ) (K,*ct~ct~ + b„c,tc;g),

where, for the zero voltage case, the chemical potential p
is a constant throughout the whole system and the sum
over i and j in the second term is restricted to nearest
neighbors only. The self-consistent conditions for the or-

L,

FIG. 1. Schematic representation of our discretized model
weak link.
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der parameter on each site are given by

A; = —U, (c,.~c,.~), (2)

where U, is the attractive e —e interaction at site i.
By choosing appropriately the U;, t;~, and e; in the
three regions (left electrode, constriction, right electrode)
one can model difFerent situations: S-S'-S, S-N-S, S-Sm-
S, etc. In this paper we shall concentrate in the first
situation, assuming the same bulk value of the order-
parameter modulus ~A~ on the three separate regions and
fixing the value e; = p = 0 (which implies e —6 symme-
try) in the whole system for simplicity. This criterion
fixes the ratio U;/t;~ inside the three regions. The to-
tal phase drop along the whole system P = Pl, —P~ is
imposed as a boundary condition, Pl. and P~ being the
the bulk value of the order-parameter phase on the left
and right electrodes, respectively. A relevant parame-
ter is the superconducting coherence length in the con-
striction (o(T), which in our model can be estimated as
(o(T) = 2t, /7rb (T), where t, is the hopping parameter
in this region.

The current between two neighboring sites ij is given
by

Then, the different correlation functions appearing in the
Keldysh formalism adopt the standard causal form

where T is the chronological ordering operator along the
closed time loop contour. The labels o. and P refer
to the upper (n:—+) and lower (n—:—) branches on
this contour. The correlation functions G, , which can
be associated within this formalism with the electronic
nonequilibrium distribution functions, are given by the
(2 x 2) matrix

Equations (2) and (3) can then be written in terms of
the Fourier transform matrix elements of G,+. (t, t'):

2.;

In the zero-voltage case the supercurrent does not de-
pend explicitly on time. It is worth noticing that cur-
rent conservation is only fulfilled when the solution of
the mean-field superconducting Hamiltonian is fully self-
consistent. ' ' ' Indeed, current conservation pro-
vides a stringent test of self-consistency.

The proof of this statement is straightforward when
using a site representation. Starting from the equation
of motion for the charge density operator at site i (p; =
—eP c,. c; ) we find

The last term appears due to the fact that H does
not conserve the particle number. However, when the
self-consistency condition [Eq. (2)] is fulfilled, this term
vanishes, and the continuity equation ~&~'~ + P. I,z

——0
is recovered for every site.

III. SOLUTION IN TERMS
OF NONEQUILIBRIUM GREEN FUNCTIONS

For the zero-voltage case the calculation of the differ-
ent G+ (u1) is particularly simple because the following
relation holds:

where f(tu) is the Fermi distribution function, and G
are the advanced and retarded Green functions, which
can be computed using recursive techniques. (Note that
this relation is the same as in a currentless state. )

The Green functions must be calculated self-
consistently, according to Eq. (8). This is achieved start-
ing kom an initial guess for the order parameter pro-
file and then using an iterative algorithm. As reported
in Ref. 12, the electrodes can be modeled in a simple
way by Bethe lattices. This choice both facilitates the
computation of the Green functions and ensures a fast
spatial convergence of the order parameter to its bulk
values. The Bethe lattice geometry is able to simulate
in a simple way the geometrical dilution of the cur-
rent taking place when passing &om a quasi-1D to a 3D
structure. We have fixed the Bethe lattice coordination
number z + 1 = 4, which leads to a convergence of the
order parameter within three or four layers.

The averaged quantities appearing in Eqs. (2) and
(3) can be expressed in terms of nonequilibrium Green
functions. For the description of the superconducting
state it is useful to introduce spinor field operators,
which in a site representation are defined as

IV. TRANSITION
PROM POINT CONTACT TO 1D FLOW

It is interesting to analyze in detail the maximum dc
Josephson current I that can be sustained by a SWL
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with a single conducting channel as a function of its
length and transmission coeKcient o.. Within our tight-
binding model, o. is a known function of the hopping pa-
rameters t,~. For the results presented in this work o. is
varied by changing uniformly t,~ inside the constriction,
while keeping them Gxed inside the reservoirs.

For any value of n, the point-contact limit (L,/(p ~ 0)
is weH understood. ' ' In this case, the phase profile
can be well approximated by a step function and the
current-phase relationship can be obtained analytically
for a symmetric junction (details of this derivation within
our formalism are given in Appendix A):

1.0
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where e(P) = +I+(T)I 1 —o. sin (0/2) denotes the po-
sition of bound states within the superconducting gap.
These bound states give the main contribution to the
supercurrent across the interface. As we shall see the
existence of bound states inside the gap remains even
for a SWL of length much larger than (p. It should be
mentioned that an expression essentially equivalent to
Eq. (11) was first derived by Kulik and Omel'yanchuk
within a semiclassical approximation to the Bogoliubov-
de Gennes equations.

The maximum supercurrent in this point-contact limit
can be obtained as a function of n from Eq. (11). At
zero temperature we find

FIG. 2. Maximum supercurrent for a single-channel weak
link at zero temperature in the point-contact limit (L, = 0)
and in the asymptotic infinite-length limit, as a function of
the transmission coefBcient.

1.0

0.5-

eLI, (np) = (1 —Ql —n) .

Therefore the maximum possible current through a
single quantum channel is eA/5 whereas in the tunnel
regime I, p eAcr/2h, which corresponds to the well-
known Ambegaokar-Baratoff value, 7rA/2eB~, for the
single-channel case. The function I, p(o) is plotted in
Fig. 2. Let us mention that the divergence in the deriva-
tive cII, p/cia as o. tends to 1 is a zero-temperature fea-
ture, which is quickly smoothed at finite temperatures;
at T = 0.2T, I, p(n = 1) is reduced by a factor of

20%. This suggests that the experimental observa-
tion of the quantized critical current eA/6 requires quite
delicate conditions (i.e., perfect transmission, symmetric
junction, very low temperatures, etc.).

At zero temperature, when L, is increased keeping the
value of a fixed, the maximum current can either decrease
or increase &om the L = 0 value. In Fig. 3 we represent
the behavior of I(P) with increasing L, for three values of
the transmission n. Only the positive part of I(P) is plot-
ted. A general trend is the appearance of multivaluation
for L /(p ) 1, although the precise value for this thresh-
old ratio is dependent on o. , as can be observed in Fig.
3. Note that the form of the I(P) curves itself is strangly
dependent on o.; therefore there is not a simple scaling
between the di8'erent set of curves. For instance, the low
transmission case [Fig. 3(c)j becomes markedly different
from the other two when L,/(p increases [note the pe-
culiar form of the 48-site case in which there appears a
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FIG. 3. Supercurrent-phase characteristics at zero temper-
ature for difI'erent constriction lengths and three pairs of val-
ues for the transmission and the coherence length: (a) n = 1
and (p = 22.05, (b) n = 0.75 and (p ——12.73, and (c) o = 0.28
and $p = 6.37. The coherence length and the L, values given
in the figure are measured in units of the site spacing.
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FIG. 4. Maximum supercurrent at zero temperature for the
same three cases as in Fig. 3 as a function of L /(p.

cusp at P = 27r; for larger lengths this cusp progressively
bends down while I(P = 2m) tends to zero]. In the limit
L, /(p ~ oo, the behavior would be that of a double tun-
nel junctions with a I(P) sin(P/2) characteristic for
the upper branch.

The maximum current I is represented in Fig. 4 as a
function of L /(p for the three cases shown in Fig. 3 .
It can be observed that when L,/(p )) 1 and for high
transmission I decreases asymptotically to a limiting
value, whereas for low transmission the trend is the op-
posite. On the other hand, when L,/(p 1 interference
e8'ects can lead to a nonmonot onic behavior of I, with
length. See for instance the intermediate transmission
case (o = 0.75) where a dip at L, (p is found.

The limiting case L, /(p ~ oo corresponds to a ho-
mogeneous flow in a one-dimensional superconductor in
which the coupling to the left and right electrodes acts
as boundary conditions. The asymptotic value of the
maximum current I, depends on this coupling and is
therefore a function of n. These values are represented
by the triangles in Fig. 2, where they can be compared
with the I = 0 case. It is worth noticing that for perfect
transmission I coincides with the depairing current of
a one-dimensional superconductor, i.e. , 2eb, /mh. The
derivation of this result within our model is given in Ap-
pendix B. The self-consistent phase gradient along the
linear chain is equal to 2b, /hv~ when this limit is reached.

On the other hand, for low transmission, when the
matching to the electrodes is poor, the self-consistent
phase drop concentrates mainly on the contacts and, as
mentioned above, the system becomes equivalent to a
double tunnel junction. In these conditions the maxi-
mum current is controlled basically by the transmission
through a single junction. For a symmetric weak link
this single-junction transmission a~ is related to the total
transmission n by nj = 2~a (this relation holds only for
n (( 1). Then, according to Eq. (11), I, (a) —'& ~n,
which is qualitatively in agreement with the numerical
results for small n in Fig. 2.

A deeper insight into the transition &om the point con-
tact to the infinite 1D case can be obtained by analyzing
the evolution of the local quasiparticle spectral density
p;(w) and the associated current density j,(w), given by

1
p, ((u) = —Im[G, ,(~)]„,

2c
j'( ) = —„(t*,'+ 6,'+,;( )] —t'+, *tG,+„+ ( )] j

(14)

where site i is chosen to be located at the center of the
constriction, where the eR'ect of the 3D reservoirs is less
pronounced. In the following discussion only energies
w ( 0 are considered as p, (w) = p;( —w) due to e —h
symmetry.

For L,/(p (( 1 the most relevant feature is the ap-
pearance of a bound state in the spectra inside the gap.
The position and weight of this state are a function of
the phase difference P and the transmission coefficient n,
as noted in the discussion of Eq. (11). In this regime
this state gives the main contribution to the current in
the constriction: j;(u) is essentially a h function at the
bound state energy. In Fig. 5 the evolution of p;(u) and
j;(w) as L,/(p increases is represented for the case of per-
fect transmission. In all the cases plotted in this figure
the current is the maximum one for the corresponding
constriction length.

Two main features are observable in these curves:
First, with increasing L new bound states appear in
the gap. The new states initially split from the con-
tinuum, moving to energies closer to p = 0. Eventually,
for I, ~ oo these states would fill the gap as shown in
the uppermost curves of Fig. 5, which correspond to the
uniform infinite 1D superconductor carrying the critical
current (see Appendix B). The number of bound states
increases very slowly with L,/(p For insta. nce, for L /(p
as large as 10, only three bound states are present.

On the other hand, the current density of the cont inu-
ous part of the spectrum (cu ( —4), which at L,/(p -a 0
is negligible, becomes more important with increasing
length, and in the limit L, /(p ~ oo gives a contribu-
tion which has the opposite sign to the total current.

To conclude this section, let us analyze briefly the na-
ture of the bound states. The study of their spatial distri-
bution shows that they correspond to Cooper pairs that
are extended along the constriction region and decay ex-
ponentially inside the reservoirs within a typical length

(p. In Fig. 6 we represent the local spectral weight of
the bound states along the constriction. It corresponds
to case (d) in Fig. 5, in which three bound states are
present. As can be seen in Fig. 6, the bound state closer
to w = 0 has always a no deless form, while the number of
oscillations increases for the bound states with a larger
binding energy. This situation is reminiscent of the one
found for a potential well; however, one should keep in
mind that the bound states in the present case are due to
variations of the superconduc ting phase on a Rnite spa-
tial region (the constriction region), disappearing when
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FIG. 5. Local spectral and supercurrent
density at the center of the constriction for
the o. = 1 case and diiferent values of L, /(p.
(a) L, /(o = 2.18, (b) L /(p = 5.80, (c)
L~/(o = 9.43, (d) Lc/(o = 13.06, aud (e)
L, /(o = oo. The curves are displaced up-
wards with respect to case (a) for clarity. All

cases correspond to the maximum superciir-
rent.

I

-2
I

-2

fd/4,

the total phase drop is zero. In junctions of the type S-S'-
S or S-N-S with large variations in the pairing potential
one could find bound states even without current. '

We should comment that the spatial distribution of the
current carried by a bound state follows closely that of its
weight. Actually, we have verified that the ratio between
current and weight for each bound state is practically a
constant along the constriction region. This result fur-
ther illustrates the fact that the bound states correspond
to Cooper pairs with a well-defined velocity inside the
constriction.

I

50
I I I

100 150 200
site nmvnber

I

250

FIG. 6. Spectral freight along the constriction for the
bound states appearing in case (d) of Fig. 5. The order
from top to bottom corresponds to increasing binding energy.

V. SELF-CONSISTENT ORDER-PARAMETER
PROFILES AT ZERO TEMPERATURE

The self-consistent determination of the order-
parameter profiles is essential for a weak link of length
L, ) (o, whereas for L, « (o, the point-contact limit,
the detailed form of the self-consistent profiles becomes
irrelevant. In this latter case the current-phase relation-
ship is given to a high degree of accuracy by Eq. (11).s'i2

In this section we present results for L, & (o in or-
der to illustrate the effects of self-consistency. Although
some of the overall features appearing in the profiles can
be expected on intuitive physical grounds, their detailed
form reBects a complex interplay between the different
model parameters.

In Fig. 7 we represent the phase and modulus pro-
files for fixed L, and P, and three different values of the
transmission coeKcient. All three results correspond to
the upper branch of the I(P) characteristic.

The common general features of the profiles along the
upper branch are displayed in Fig. 7. They consist of a
constant phase gradient along the constriction together
with localized drops at the contacts with the reservoirs.
One could draw an analogy between these localized phase
drops and the voltage drops at the contacts with the leads
in a normal mesoscopic sample (Sharvin resistance). '

On the other hand, the modulus is on average constant
along the constriction.

Superimposed to this general structure, oscillations
with a spatial period A~/2 can be observed. These os-
cillations have a maximum amplitude in the proximity of
the contacts and decay when moving inside the constric-
tion with a typical decaying length (o. This behavior
is most clearly seen in case (c) of Fig. 7, which corre-
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2.0-

FIG. 7. Upper branch self-consistent or-
der-parameter profiles (phase and modulus)
for a total phase drop P = 4.60 and fixed
constriction length I, = 88. The transmis-
sion and coherence length correspond to the
three cases shown in Fig. 3. The curves (a)
and (b) are displaced upwards with respect
to case (c).
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sponds to L,/(o » 1 and low transmission, leading to
oscillations which are more concentrated near the con-
tacts, having a larger amplitude due to the presence of
larger barriers. This interference phenomenon is a conse-
quence of the phase coherence of normal electrons along
the mesoscopic system. As shown in the next section,
there is a gradual disappearance of the oscillations with
increasing temperature. Let us remark that a similar
oscillation pattern can be found for the electrostatic po-
tential along a normal mesoscopic constriction.

When I(P) is a multivalued function, the solutions in
the lower branch exhibit a very diferent character: They
correspond to the solitonic solutions predicted by GL

theory. 33 In Fig. 8 we show the phase and modulus
profiles for this second type of solution, corresponding to
three difFerent values of L, with fixed n and P. We have
chosen P a where the specific features of these solutions
are more pronounced. It can be observed that the gross
features are the ones predicted by GL theory, namely, an
abrupt phase drop together with a significant depression
of the modulus which nearly goes to zero at the center of
the constriction. Note that this profile leads to a very low
value of the current. In addition to this general shape,
an oscillation pattern of period Ay /2 is again found. An
interesting feature is the existence of a well-defined core
region of length (o where the phase drop takes place

2.0-

1.5-

X 1.0-

FIG. 8. Lower branch self-consistent or-
der-parameter profiles (phase and modulus)
for a total phase drop P = 3.20, o. = 0.75,
and (0 = 12.73 and three values of the con-
striction length: (a) L, = 48, (b) L = 64,
and (c) L, =- 88.
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and the modulus is nearly zero (see Fig. 8). This core
remains practically unchanged with increasing L . This
is a feature that cannot be predicted by GL theory, the
reason being, as we shall see in the next section, that the
core size vanishes when T approaches T ~

The question about the stability of these type of so-
lution deserves some attention. As discussed by Langer
and Amb egaokar, these solutions corresp ond for a ho-
mogeneous infinite system to saddle points of the &ee
energy. However, for a finite weak link these solutions
are presumably unstable. As a matter of fact, we have
verified that these solutions cannot be reached using a
simple iterative algorithm no matter how close &om the
actual solution one starts. Instead, the use of a more
sophisticated algorithm (Broyden type ) capable of ob-
taining any sort of extrema leads to the solitonic solution
without diKculties.

0.4-

02-

0.0
L

oz-

VI. EFFECTS OF FINITE TEMPERATURE
0.0

{c}

In this section we discuss the effects of a Gnite temper-
ature on the I(P) characteristic and on the self-consistent
profiles for our model weak link. Although L,/(p(T)
is the main parameter controlling the di8'erent regimes
(point contact, infinite homogeneous superconductor),
there is not a simple scaling of the system properties as
a function of this single parameter.

This becoInes apparent when studying the evolution
of the diferent properties with temperature. Figure 9
shows the current-phase relationship for the same set of
parameters as in Fig. 3(b) and three increasing values of
temperature: 0.3T, 0.5T, and 0.95T . As one can ob-
serve, the phase interval where I(P) is multivalued grad-
ually disappears while I(L/l) tends to the familiar sing
dependence as T ~ T ~ This behavior can be qualita-
tively understood noticing that for a given length and T
sufficiently high (T -+ T,), the condition L,/(p(T) (( 1 is
fulfilled, and the system should behave like a point con-
tact, in which case Eq. (11) approximately holds. Note,
however, in Fig. 9(c), that a significant deviation from
the maximum current value predicted by Eq. (11), i.e. ,

I = & ~ T, is observed as soon L is a small &action2eR~ K~ T
of (o(T). This is due to the fact that the self-consistent
phase profile, even for small L,/(o(T), deviates from a
step function form.

The possible scaling of the maximum supercurrent
with L,/(o(T) can be analyzed with the help ol
Fig. 10. For these values of the transmission coef-
ficient (n 0.75), a universal behavior of the type

exp[ —AL /(p(T)] is only observed for temperatures
larger than 0.5T, ~ For lower transmission this depar-
ture &om a universal behavior is even more pronounced;
the maximum supercurrent at low temperatures is in this
case an increasing function of L /(o(T) (see bottom curve
in Fig. 4) while the exp[ —AL, /(o(T)] behavior is only re-
covered for T ~ T ~

Let us brieQy comment on the eIII'ects of Rnite tem-
perature on the self-consistent order-parameter profiles.
Either in the upper and lower branch solutions there is a
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FIG. 10. Maximum supercurrent for n = 0.75 as a function
of L /(p(T) for increasing values of temperature.

FIG. 9. Supercurrent-phase characteristics for n = 0.75,
different constriction lengths and three values of tempera-
ture: (a) T = 0.3T, and (p(T) = 12.78, (b) T = 0.5T, and

(p(T) = 13.37, and (c) T = 0.95T and (p(T) = 39.79.
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der-parameter profiles (phase and modulus)
for a total phase drop P = 3.20, a. = 0.75, and
L, = 88 and three values of temperature: (a)
T = 0, (b) T = 0.3T„and (c) T = 0.5T, .
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gradual disappearance of the AR/2 oscillations (see Fig.
11). In the upper branch solutions there are no notable
changes in the phase profiles, besides the smoothing of
the oscillations pattern, the expected Josephson current
decrease being due to the global lowering of b, (T) in the
whole system. The evolution of the solitonic profiles with
temperature is more unusual. This is illustrated in Fig.
11, where it can be observed how the solitonic core, which
at zero temperature has a size (o(0), shrinks and eventu-
ally disappears as temperature increases. This evolution
is particularly clear in the phase profiles of Fig. 11.

link of mesoscopic size due to the spatial inhomogeneity
of the pairing potential in the constriction region. Even
in the absence of a well-de6ned pairing potential well,
spatial variations of the superconducting phase associ-
ated with a supercurrent can lead to the formation of
bound states.

The application of the present approach to the descrip-
tion of submicrometer superconducting devices of current
experimental interest, which may include S-N or S-Sm
interfaces and where the sample geometry plays an im-
portant role, is under progress in our laboratory.
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characterized by a continuous spectrum. The appearance
of bound states seems to be a general feature of a weak
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APPENDIX A

2c
~~f(~) T [TIR(CRg —&RL)6

—&Rl.(CI.R —GI.R)1» (A1)

In this appendix we give a short account of the deriva-
tion of the supercurrent-phase relationship for a SWL in
the point-contact limit. Starting &om Eq. (9), the cur-
rent evaluated at the interface between the electrodes can
be written as
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where I and R indicate the left and right electrodes and
Tr denotes trace over orbitals at the interface. The hop-
ping elements in the superconducting broken-symmetry
representation are given by the 2 x 2 matrix T, ~

= a3t; ~,
where v 3 is a Pauli matrix and i, j denote any pair of or-
bitals.

The Green functions appearing in this expression can
be obtained &om the ones corresponding to the uncou-
pled electrodes (Tr,R = 0) g&'', g&", using Dyson equa-
tions:

APPENDIX B

A simple derivation of the depairing current for a 1D
superconductor within our tight-binding model is given
below.

The Hamiltonian in this case is the one given in Eq.
(1) with t,, = t(b;, +g+8;, g), e, = 0, and 4, = Aqe*qs.
This last relation holds for a uniform superconducting
flow, with Cooper pairs of net momentum q. For an
infinite system, the Green functions adopt a simpler form
in the k representation:

+LR gLTLRgRDLR & (A2) [CA:,q(~)]ii =
(cd —ek) ((d + e g+q) —E

where Dl & ——[I —Tr ttg&TRL, gl ] with similar expres-
sions for the retarded quantities. Substituting in Eq.
(Al) and performing some elementary algebra, we ob-
tain

2eI = — d~ f (~) Tr[(Dttl —Dl, ~)h

—(DRI —DL R)]„.
This equation is valid for a general junction geometry

with any number of conducting channels. For the simple
case of a symmetric junction with a single channel, an
analytical expression can be derived for I(P) if a steplike
phase-profile is assumed:

4ei gk, .i(~)N, i2( )I = ~tL, tt~ sing d(sf(~) det D~~ (u

[Gl,q(~)]i2 =—
(~ —e~)(~+ e —~+q) —&q, ' (B2)

where eJ, ——2t cos k —p. The poles of these functions at

Eq —beg q + eq + 6, , where hei, q
—(ey —e g+q)/2

and eg q
= (eg+e y+q)/2, give the excitation spectrum of

a current carrying 1D superconductor. The critical mo-
mentum q, which corresponds to the condition that the
gap in the excitation spectrum goes to zero, is given, for
suKciently small q, (q, sink~ && 1), by q, = b, o/t sink~.

It can be shown that the self-consistent order param-
eter Lq for q & q is in this limit equal to Lo up to
corrections of order q . Actually, these corrections are
positive, leading to a small increase in L~ with increas-
ing current.

The local spectral density p(ur) and the local current
density j(w) discussed in Sec. IV can be directly calcu-
lated Rom Gq q(~). In particular, the total current is
given by

gL, ,21( )gR, 12( )

det[DLtt(~)]
(A4) 4eI = t dksink

vrh
d~f((u)Im C„((u) „.(B3)

where the tilde indicates that the phase factor has been
removed, i.e., gL 2i ——e '

gL 2i and gR i2 ——e' "gR ]2.
The integration in Eq. (A4) can be performed analyti-
cally as a contour integration by realizing that the main
contribution (up to corrections of the order E/e~) is
given by the zeros within the superconducting gap of
det[DL&(tu)], which correspond to the bound states com-
mented in Sec. IV. The contribution &om these poles
yields Eq. (11) straightforwardly.

CA, q sinkI=
Ic,q q

2c
tslnkF q (B4)

where the last approximation holds in the limit
qsinkF (( 1. Thus, for q = q the depairing current
is simply —eA/h, in agreement with Ref. 27.

At zero temperature, the integral over u can be easily
performed, giving
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