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Enhanced electron pairing in a lattice of Berry-phase molecules
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We show that electron hopping in a lattice of molecules possessing a Berry phase naturally
leads to pairing. Our building block is a simple molecular site model inspired by C60, but realized
in closer similarity with Na3. In the resulting model electron hopping must be accompanied by
orbital operators, whose function is to switch on and o8' the Berry phase as the electron number
changes. The efFective Hamiltonians (electron-rotor and electron-pseudospin) obtained in this way
are then shown to exhibit a strong pairing phenomenon, by means of one-dimensional linear-chain
case studies. This emerges naturally from numerical studies of small-N-site rings, as well as from
a BCS-like mean-Geld theory formulation. The pairing may be explained as resulting from the
exchange of singlet pairs of orbital excitations, and is intimately connected with the extra degeneracy
implied by the Berry phase when the electron number is odd. The relevance of this model to
fullerides, to other molecular superconductors, as well as to present and future experiments, is
discussed.

I. INTRODUCTION

A signi6. cant feature of the physics of unconventional
superconductors such as the cuprates is the constraint
imposed on the motion of the charge carriers by the back-
ground degrees of freedom, i.e. , the spins in the case of
the cuprate superconductors. In this paper we focus at-
tention on a class of constraints imposed on the motion
of conduction electrons by the Berry phase, or molecu-
lar Aharonov-Bohm phase, which can arise in molecu-
lar crystals with large on-site degeneracies. In general,
for this to be the case, the symmetries of electron and
vibron states must match appropriately and, moreover,
the number of electrons needs to be odd.

As an explicit example, we have demonstrated
elsewhere the presence of a Berry phase in negatively
charged fullerene ions C60, C60, C60 ensuing from a dy-
namic Jahn-Teller (DJT) effect arising from the coupling
between the partly occupied ti„orbital and the Hg vi-
bron modes.

In such a situation a physical electron (or hole) may
be regarded as a composite particle, made up of the bare
electron plus the geometrical phase that accompanies it
when sitting, unpaired (or more generally in a state with
an odd number of electrons), on a given molecule. By
contrast, either the absence of electrons or the presence
of a pair of electrons will eliminate the Berry phase on
that molecule. We argue below that the kinematical con-
straints imposed by the Berry phase can be a factor ca-
pable of tilting the balance in favor of pairing, even in the
presence of repulsive interactions. The way this works

is for a pair of electrons on one molecule to gain energy
by each tunneling oK onto neighbors with accompanying
vibron excitations before coming together again. A sin-
gle electron, on the other hand, will tunnel accompanied
by its vibron excitations, so the electrons will gain less
energy by tunneling as individuals than will be gained by
tunneling as pairs.

In this paper, we propose a class of simple coupled
electron-rotor models, which we believe capture the es-
sential physics introduced by the Berry-phase constraint.
Omitting at this stage the complications of real C60 an-
ions, our model lattice Hamiltonian is instead directly
inspired by the simpler and well-known5 strong-coupling
Berry-phase molecule Na3.

In general, there are an infinite number of rotor states
on each molecular site. To simplify further, we shall trun-
cate to a three-state model for the rotors. The resulting
many-site Hamiltonian will be shown to take the form

H = —— ) c,. cs (S+S, + H.c.)
(i,j),cr

where S+, S are raising and lowering operators for a
spin-1 vibron manifold for each molecule, and (i, j) de-
note erst neighbors.

To test the pairing properties of (1), we include a Hub-
bard repulsion term

H~ = U ) n, tn;l.

We then study the half-filled. state of the model numer-
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ically for small systems (4—8 site rings), and also by a
mean-field BCS-type calculation for the one-dimensional
(1D) chain.

The final conclusion is that the Berry-phase coupling
is found to be greatly beneficial to electron pairing, at
least within the simple 1D lattice studied so far. Pairing,
in particular, appears to prevail and to survive even in
presence of a repulsive Hubbard U, up to values U t.

In Sec. II we will introduce the main concepts and build
our working Hamiltonian, representing an idealized lat-
tice of Berry-phase molecules. Section III is devoted to a
numerical study of the four, six, and eight-site 1D chain
clusters, where correlations can be studied exactly, and
the presence of pairing is demonstrated. Section IV dis-
cusses a mean-field BCS-type formulation for the infinite
1D chain. We close with a discussion section, where a
number of interesting open issues are also briefly pre-
sented.

order electron-vibron Hamiltonian can be written

D' 8', f] 0)+
&

+q'+q' I 02 ql q2 )

+g
hid ( —

q& q2 )
2 ( q2 qx )

E yi Ey (4)

where the 2 x 2 matrices span the twofold E electronic
level, and q, are the vibrational normal coordinates in the
vibron space; the second term is the coupling between
vibron and electron, of dimensionless strength g.

The problem is rotationally invariant in the (qz, q2)
space. It is therefore conveniently rewritten by intro-
ducing polar coordinates q, P in the vibron space and a
pseudospin 2 representation in the electron space:

II. THE MODEL In terms of these quantities the Hamiltonian is expressed
as

Our model system is a regular lattice of molecules.
Each molecule possesses initially a degenerate orbital, an
odd number of electrons, and a dynamical Jahn-Teller
(DJT) coupling (with the Berry phase) to a local vibra-
tion, also degenerate, of the pseudorotational type. For
simplicity, we stick to the case of one electron in a doubly
degenerate orbital and one rotor, which provides the sim-
plest case of Berry-phase coupling. The electron can hop
&om a molecule to the next one in the usual fashion, con-
serving ordinary spin. We will generally also include an
on-site ("intramolecular" ) electron-electron repulsion U,
so that, for a nondegenerate level and no rotor coupling,
we would have just an ordinary Hubbard model. Berry-
phase coupling to the rotors is the ingredient giving rise
to peculiar selection rules for electron hopping between
two molecules in different rotor states. In the following,
we describe successively the on-site Hamiltonian and the
full lattice Hamiltonian inclusive of electron hopping.

A. On-site Hamiltonian:
Modeling a Berry phase molecule

We consider at each site a molecule with a partly oc-
cupied doubly degenerate electronic state. Suppose this
orbital interacts via linear DJT coupling with a dou-
bly degenerate vibration. A practical example (not rele-
vant for superconductivity) of such a situation is the Nas
molecule. A single unpaired electron occupies the dou-
bly degenerate electronic molecular orbital E = (E,E„),
and the doubly degenerate vibron is a pseudorotation
of the Na3 triangular structure. Direct spectroscopical
evidence has been found, showing that the formalism
we present here (supplemented by quadratic couplings,
which are omitted here for simplicity) correctly describes
the dynamics of this system.

The single-molecule, one-electron, linear coupling case
is a classic textbook Jahn-Teller problem. When only
one electron occupies the degenerate state, the lowest-

Ru t92 1 6 1 82
+q

2 Bq2 q Bq q2 0(P
gM ( 0 qe+'&l+, i(„-.~ 0 )I

A new total angular momentum j, defi.ned as

1 . 0 ( — 0j = & '(qip2 q2p1) 0 ~
~ ] ~

(6)
Oy qo

is found to commute with H. Note that o is only a
pseudospin 2 spanning in reality the twofold orbital state
and should not be confused with the true spin, which is
ignored at this stage. Because of this pseudospin 2 term,
the eigenvalues of j are a half-odd integer, an amusing
anomaly pointed out by Herzberg and Longuet-Higgins
for the case of the triangular molecule. This &actionaliza-
tion can be seen as a manifestation of a Berry phase of vr,

which the vibrons pick up &om the electron degeneracy.
Diagonalization of (5) must, in general, be done

numerically. ' In the limit of strong coupling (g » 1),
however, the massive radial q motion can be approxi-
mately separated f'rom the P pseudorotation quantized
by j, and both can be solved analytically in the form of
an oscillator and a &ee rotor, respectively. The resulting
spectrum is classified according to j and v, the quan-
tum number coming from the quantization of the radial
massive motion:

2n (, 1, gs
E(v, j) = M v+ — + j2+ —+ j2+—

4

1 3v=0, 1, 2, ... , j=+—,+—,... . (7)2' 2'"'

Since we shall be concerned only with the low-lying rotor
states, we can forget the massive boson ladder. Further-
more, we will express all energies in units of the pseu-
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dorotational quantum 0:=
g

The corresponding wave functions in the strong-
coupling limit are

i cos o, e'(~+-:)~ i
&-,'(«) =&-(&)

l . 0', (, )~ l

(j half-odd integer), (8)

where g„(q) is the appropriate harmonic oscillator wave
function and 0~ is a pseudospin mixing angle,

j+—gp+ gs/64
tano~ = 8

g4

In the g ~ oo (strong-coupling) limit, 0~ tends to 6—.
The energy can be expanded as

pose that, if the average occupancy is one, states with
n ) 2 are strongly suppressed by Coulomb repulsions.

To summarize, if n is the number of electrons present
in the degenerate orbital, 2j assumes even or odd val-
ues according to whether n is even or odd. The j de-
pendence of the energy eigenvalues is quadratic, as in
a free (pseudo)rotor. The full quantum state of such a
molecule, in the limit considered, is described by a set of
three quantum numbers, which for convenience we define
as integers:

n (occupancy),
m = 2j (rotor state),

cr = 2m, (spin state),

where m, = +z is the z component of the true electron
spin. Their allowed values are constrained in the form

-2 1 jE(j) = +—+ j'+ —+4—+ " .
8 4 g4

At low energies, we consider only the rotor states

n= 0, 1, 2,
m = 2t + sin(7m),
o = + sin(~n) .

l = 0, +1,+2, +3, . . . ,

( e(i+2)& l 1 3 s (»)

with energy

1 3 5
E(q) = j', j = +—,+—,+ —,... ,2' 2' 2'" ' (12)

4
where we have omitted, as usual, the —~8 oBset contribu-
tion (polaron energy shift), but also the extra zero-point
energy 1/4 required by the Berry phase. This is our sim-
plified model for the one-electron Berry molecule.

To study electron hopping among di8'erent molecules,
we also need an equivalent description for molecular oc-
cupancy difFerent &om one. When two electrons occupy
the molecular orbital in a singlet state, the DDT distor-
tion is still present. However, the orbital phases for the
two electrons cancel each other and a Berry phase is no
longer present.

For uniformity with the one-electron case, we will still
label for n=2 the pseudorotational levels with j. Can-
cellation of the geometrical phase now requires j to be
an integer. The assumed spectrum is simply that of a
standard &ee pseudorotor:

With reference to the physics of C6o, discussed in Ref.
3, the similarity with the present model should be clear.
In that case, in particular, the ground state has even L
for even n, and odd I for odd n.

B. Intersite Hamiltonian —+ hopping
between Berry molecules

To allow electrons to move among sites, we need to
specify how the hopping process is afFected by the j quan-
tum numbers on each site. Therefore, we begin con-
sidering one electron hopping between two neighboring
molecules. With suKciently high point symmetry, such
as one has for the linear chain, we will have hopping be-
tween lE i) and lE 2) and between lE„ i) and lE„z)
only, with amplitude t and t» respectively. If, for in-
stance, the twofold degenerate state is associated to a
p orbital, then t —tpp ty —tpp, in Slater-Koster's
notation. The hopping Hamiltonian then is

Hi,;„=) t (ct ic 2+ H.c.)

E(j) = j', j =0, +1,+2, ...

with wave functions
+ty(c icil 2 + H.c.)t (17)

g~(P) = e"~, j = 0, +1,+2, ... . (14)

In the energy eigenvalue (13) we are again omitting the
4

polaron energy gain —~2 (units of 0).
In the n=0 case, where no electron is present, no Jahn-

Teller eÃect occurs and thus no pseudorotor either. How-
ever, we really would like to mimic an electron-hole sym-
metric situation, such as, for example, going to C60 or
C60 with respect to C60 . For this reason we assume even
for zero electrons a pseudorotation [(13) and (14)] iden-
tical to that of the two electron case. We finally discard
occupancies higher than two; for instance, we may sup-

C+ —C

—i~2
+,e+ ~—,88=v~8

The matrix element we compute depends also on the
(even) pseudospin of the empty sites l2 (final state) and
li (initial state) in the following way:

To characterize its behavior, suppose we have on site 2
a spin-up electron, with m2 (odd) molecular pseudospin,
and we want the hopping amplitude of this electron to
site 1 with final spin up, and pseudospin mi (also odd).
We need to invert relation (4) to express the fermionic
operators in the pseudospin basis:
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1 0 0 1 tx + ty ~'Imp+1, lg~l2, m2+1 + ~my —i, lr~l2, m2 —1~
m, L, IIk;„l, m,

0 0 g
2 ( 2 )

tx ty ~ ~mr+1, lr lIl2, m2
—1 + ~mr —i, lr ~l2, rn2+1

~~

) (19)

The Kronecker deltas here originate through trivial or-
thogonality of angular-momentum wave functions [(11)
and (14)], while the overall —factors originate from the
~2 factors in (18) and in (11).

If we limit ourselves to the special case of intermolec-
ular interaction with t„= t (t„= t ),—then we have
an additional conservation li + m2 ——m, i + &2 (&1 —m2 =
mi —l2) of the total pseudospin, as shown by Eq. (19). In
this case, the spectrum separates into different indepen-
dent manifolds. For t„=t, they correspond to different
values of total pseudospin. Even if somewhat unrealistic
(for a real p state, t is larger and positive, t ys mall re

and negative) this is a very convenient choice, and we
shall adopt it in the following. We have made a check, to
be described in Sec. III, releasing this restriction, which
have satisfied us that the physics is not fundamentally
difFerent in the more general case ty g t . Accordingly,
we define a single effective hopping

Hamiltonian in second quantized language as

Hi„„=—— ) c,. c, (L+L, +L., L+)
(i,j),cr

(22)

where the action of the operator L+ is to raise (lower)
the pseudospin m~ (really an orbital angular momentum)
by one unit:

nj
L' m1

~ ~ 0 n'
2

~ ~ ~ m 2
~ ~ o 03

nl ~ ~ ~ n 2
~ ~ ~

ml m +13
0 g

0 ~ ~ 0 '

2

(23)

To the hopping Hamiltonian Hg;„, we add an on-site
rotor Hamiltonian H, q, as well as an additional on-site
electron-electron Hubbard interaction term HU

t. + t„t =
2

(20)

N N

H...= ) -' (L;)', H~ = V) n, „n, „, (24)

which in the absence of direct electron-electron interac-
tions is the only independent parameter of our model,
the rotor energy quantum 0 being unity.

Similar considerations and selection rules to those dis-
cussed above for the process ~0, 1) + ~1, 0) apply to the
case involving doubly occupied sites, namely ~0, 2)
~l, 1) or ~1, 2) + ~2, 1). Now we have all the ingredi-
ents to place these "Berry molecules" on a lattice to see
the effect of local rotor coupling on electron hopping.

=1 2H, g j ———m
4 2 (25)

as in Eqs. (12), (13), and having introduced a third op-
erator

the rotor energy contribution is at site j due in the rotor
state mj being

C. Lattice of Berry molecules:
The working Hamiltonian

nl
L,- m,

~ ~ ~ n'
2

mj
Oj

= m2

~ ~ ~ n'
2

~ ~ ~

m] ~ ~ 0 m 2
~ ~ ~

~ ~ ~ 0 '
2

~ ~ ~

(26)

As a first attempt to study this model on a lattice
we consider a linear chain of N sites, with N ~ electrons
moving on them. The basis we consider is labeled by
the set of all the n;, m, ;,o, , for i = 1, . . . , %, so that-an
arbitrary state is expandable on states:

ny n2 . n~
m] m2 - ~ ~ mph (21)

These basis states are obtained by ordered applications of
N ~ local fermionic creation operators c on a vacuum

2~O

state, where no electrons are present, and setting the
m,. rotational quantum numbers to values allowed by the
Berry constraint (16).

The hopping of an electron between site i and site j
is, in this space, a composite operation, since it implies
n; m n; —1, nj —+ nj + 1, but also m; m m; + 1, mj —+

m~ ~1 [(16),Eq. (19)]. Hence, we write a general hopping

The commutation relations for these operators are
[L+,L ] = 0, [L', L+] = +L+. We stress here that the
kinetic term Hi, ;„alone in Eq. (22) is the relevant part
of the Hamiltonian we want to study.

The new electron operators ct L,+. are different from

the original ones, ct „c„,, of Eq. (17). In particular,
we now have a single band instead of the original double-
band problem. However, with the exclusion of all site
occupancies higher than 2, all matrix elements are the
same in the two descriptions.

By construction, the Hamiltonian (22) conserves the
constraints (16) among the quantum numbers, and can
therefore be diagonalized in the Hilbert space of states
defined in (21). The matrix elements of the kinetic
term Hi„n (ofF diagonal) and of H, nl, + H~ (diagonal)
on the basis (21) are trivial, once periodic boundary con-
ditions (PBC's) are applied to indices. In some cases
we shall, however, need antiperiodic boundary conditions
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(ABC s), replacing t with t—in the kinetic term involving
sites 1 and N.

The Hilbert space of the problem is infinite dimen-
sional even for finite N, due to the m; rotor quantum
numbers, which are boundless. In the numerical com-
putations, we shall truncate the basis (21) by choosing
a cutoff energy E,„t, including only states having some
local energy smaller than this E,„t. Unfortunately, the
choice H, t & E,„t is unfair with respect to singly occu-
pied states, having larger energy (at least by 1/4) than
the unoccupied and doubly occupied lowest-j ones. To
achieve better convergence even at relatively small E,„t,
we subtract this contribution and retain those states sat-
isfying

H.o + ). l~ '"~'~
2

n, g+n, g)
4 ) (27)

The special case E,„t ——0 is of very strong interest.
Physically, this corresponds to the limiting case t (( 0,
where the intramolecular rotor energy is much larger than
the hopping energy. In this limit, the only allowed val-
ues for m~ are 0 (even occupancy) and +1 (odd occu-
pancy). The resulting model has six states per site, two
corresponding to even (0 and 2) occupancies, and four
to the 2 x 2 combinations of spin oj and pseudospin mj
values allowed for one electron. It is possible and con-
venient to rewrite this simplified version of the model in
terms of fictitious spin-1 states, the mj quantum num-
ber becoming the z projection of a pseudospin S = 1.
For this simplified version we can rewrite the Hamilto-
nian (22) replacing the free rotor operators L+,L,L'
with the generators of the spin-1 algebra S+,S,S,
respectively,

H~;„= —— ) ct c~ (S+S. + H.c.).
(i,j),cr

(28)

).(n, gn, g

2
~',~+ ~',~&

4 ) (29)

i.e. , it is the same as a positive Hubbard U term with
U = 2, apart from a chemical potential. For t &( 0,
this term amounts to a divergent shift of the Hubbard
U. Such a diverging term has no physical origin [the
JT energy gains we have neglected in (12) and (13) are
also infinite and have the opposite sign]. Therefore, we
will omit it, and simply work with the Hamiltonian (28),
with the only caveat that we need to remember the shift
in Hubbard U when comparing the results of this low-
cutoff model (28) with the fully converged one.

The full ladder of rotational states [(ll) and (14)] has
now disappeared, being replaced just by the double de-
generacy of the n=l sites (S,=+1), with H, q = 0 for
all n.

The extra terms (24) would still need to be added to
H&;„. However, H, t has the simple effect of giving an
energy shift of 0/4 per each singly occupied site. As
suggested above, this has the same effect as an operator
such as

Both Hamiltonians (22) and (28) show a significant de-
gree of symmetry, which we can take advantage of. Each
of them conserves the number of electrons N, ~, the to-
tal pseudo-angular momentum 2J = M = P, m; (i.e. ,
the total S, in the S=l pseudospin version), and total
electron spin. For a linear chain, the lattice translational
symmetry is also obvious. Pseudospin conservation is a
result of our approximation t = t„. The others are ex-
act. We choose to study the problem (22) in the manifold
at half filling (N, i = N) and at M = 0 (even. N) because
of the higher symmetry present in this case, which in-
cludes electron-hole symmetry. Although we have not
yet carried out a complete study of the model away &om
half filling, we believe that the basic physics will be (at
least for U=O) the same, due to a suggestive analogy
with the negative-U Hubbard model, which will finally
emerge.

At this point, we are set with two alternative working
models. The electron-rotor (ER) model

HER —Hkin + Hrot + HU ) (30)

where Hi„„, H, &, and H~ are given by (22) and (24), is
more realistic, and is characterized by two parameters,
the hopping energy t and the rotor energy Q. This latter
quantity, in turn, contains the ionic mass, and will there-
fore make the model sensitive to isotopic changes. The
second, electron-pseudospin (EP) model

HpI ——H~;„+ H~,

where Hz;„ is given by (28), represents the extreme
molecular limit and is more idealized, the hopping en-
ergy t being the only parameter. Clearly, there will be
no isotope effect in this model.

Although the important terms are Hg;„and H&;„, both
models are endowed with the Hubbard term H~, which
can describe additional repulsive interactions, and is also
convenient as a gauge of the effective attractions that will
arise. Having taken 0 as the energy unit, the physical
results in the ER model will depend on the two dimen-
sionless ratios t/0 and U/O. Those in the EP model will
depend only upon U/t, making direct comparison with
the simple Hubbard model particularly straightforward.

As will be shown, there is numerical evidence that the
two models, ER and EP, lead to qualitatively similar ef-
fects, at least when t is not too large. Hence, it will be
possible for many purposes to focus on the simpler EP
model.

In the next two sections, we propose to study these
models on a 1D linear chain, as follows. First, we will
study numerically some very small clusters, by direct di-
agonalization. This will permit a first crude comparison
between ER and EP, and also between them and the
simple Hubbard model. Next, we will introduce a mean-
field theory for the EP model on the infinite 1D linear
chain. Here, the S=1 pseudospin variables can be ap-
proximately integrated out, giving rise to negative efFec-
tive electron-electron forward and backward couplings,
again suggesting singlet pairing.
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III. NUMEB. ICAL STUDIES FOR. SMALL
LINEAR CHAIN CLUSTERS (RINGS)

( ) = —y p /f'. c. «g«g I ), (M)
j,l

N

s„«(v) = —) e«~' ~ c, g«i«, g«.t ~-)
j,L

We ignore alternative channels, such as charge density
waves (CDW's) or triplet superconductivity, which can
also be probed, but whose behaviour is not relevant at
th ta e. In particular, a CDW will be definitely is-t is sage. npa

f half fill-f d the more general case away irom haavore in e
ing. The property of correlations (32) and (33) is a
they transform into one another under the transforrna-

(33)

Hubbard — closed shell

0.3

N=6

We consider here small N-site linear chain clusters
t' lar %=4 6 8 accessible to numerical di-rings', in par icu ar

agonalization using col t' ' onventional Lanczos method. While

tative results for small N are clear enough at this initial
stage. 12

forWe define useful equal-time correlation functions or
singlet superconductivity (SC) and spin density wave

(SDW) in the standard form of q-space "structure fac-
tors:"

tion c. -+ c~ t, c ~ (—1)~c~ g, which, remarkably,
amounts simply to the transformation U +-
in the Hubbard model. Hence in that model Ssc(q) and
SsDw(q) are perfectly symmetric around U=O, where
their values must cross, the SC instability prevailing for
U (0, the SDW for U )0. This of course is confirmed for
the N-site rings, as shown in Fig. 1. In the upper pane
we choose a PBC, so that the &ee system (U = 0) is in
a closed shell configuration of six electrons. In the lower
panel, instead, ABC's are applied. Here, the resulting
shift of the single-particle k states yields an open shell for
free fermions at half filling. Open-shell and closed-shell
calculations must finally converge to the same answer for

oo, and their systematic comparison at finite N
provi es a roug ud h but useful measure of finite-size correc-
tions.

Our strategy is therefore to calculate Ssg and SSD~
for our Hamiltonian IIER and IIEp, as a function of U/t,
and to find the value of U = U* where they cross, so that

U*. Theerconducting pairing prevails at a
finding that U' is finally positive will in turn imply tha
the bare U=O model is approximately equivalent to a
negative Hubbard U model, with U = U,g, where a crude
linear estimate is

(34)

so long as U* is small.
Figure 2 shows results for the EP model, obtained for

%=4,6,8 sites, at half filling (N i = 1V) as a function of
U. The two panels (a) and (b) correspond to the difFerent

0.1— SDW

0.4

0.3

a) EP — closed shells

0.4—
Hubbard - open shell

0.2

0.1

0.2

0.1
0.4

I I

0 1 2 32 -1 0
/

FIG. 1. Structure factors Ssc(q) (32) and Ssnw(q) (33) foi
the Hubbard model (six-sites ring), as a function of the dimen-
sionless parameter U/t In the upper pa. nel periodic boundary
conditions (PBC's) are applied to indexes& so that for U=O the
ground state is nondegenerate ("closed shell" ), while in t e
lower panel antiperiodic boundary conditions (ABC' s) make

CCthe noninteracting ground state degenerate ( open shell" ). In
panel (a) q = 0, while in panel (b) q = vr/K, as appropriate to
the boundary conditions applied. Solid dots mark crossings,
where the switching from superconductivity to spin-density
waves takes place.

0.2

0.1

I0
U/t

FIG. 2. Structure factors Ssc (32) and Ssow (33) for the
EP model, plotted as a function of U/t. In panel (a) we report
the result for the closed-shell case, while panel (b) has the re-
sult for the open-shell case, as discussed in the text. Solid dots
mar crossings e ningk '

d fi U* indicating that superconductive
pairing prevails even at positive U.
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choices of closed shells and open shells, respectively. For
instance, N = 4 and 8 correspond to closed shells gen-
erated with antiperiodic boundary conditions (ABC s),
while N = 6 does that with periodic boundary condi-
tions (PBC's). Conversely N = 4 and 8 yield open shells
with PBC's and N = 6 with ABC' s. The condensation
wave vector q is correspondingly zero with PBC's and

fol ABC s.
These results show, strikingly, that in the EP model,

a finite positive U*/t is needed to suppress superconduc-
tivity in favor of SDW's. Roughly, the EP model (28)
behaves therefore like a negative-U Hubbard model, with
U g (x. —t For small N, the value of U,~ varies with N,
and also depends on whether the shell is closed or open.
Although we have not tried a systematic finite-size scal-
ing extrapolation for U ~ to the N = oo limit, the result
up to N=8 suggests that

-0.2

-0.4
U,fy/0

-0.6

-0.8

—0.8t ( U,~ ( —0.2t . (35)

In particular, at N=6 both ABC's and PBC's yield
U, Ir = —0.37~t~, which may therefore be a likely value.

We have also studied the full ER model (30). For this
model, the Hilbert space is that of states (21), with an
upper cutoff in the rotor states E,„t. Due to the larger
Hilbert space, we have restricted calculations to N = 4, 6.
We proceed by calculating Ss~ and SsDiv for fixed t/fI
as a function of U/0, and we look for the value U*/0
where they cross. This again defines, via (35), a value
for U ~. Typical results are shown in Fig. 3.

Now t is an independent parameter. The effective in-

FIG. 4. The efFective Hubbard term U,s (35) for the ER
model (%=4,6), plotted as a function of t/O. The %=4
ABC's and N=6 PBC's are closed shells, while N=4 PBC's
and N=6 ABC's are open-shell cases. E,„t ——8 for N=4, and
E,„t. ——4 for %=6. For t/0 « 1, the slope of U,q coincides
with U,s/t of the EP model (Fig. 2). For t/fI )) 1, the dy-
namical Jahn-Teller effects are suppressed, whence U ~ ~ 0.

a)
o.4 S~c N=6

0.3

0.2

0.1

0.4

0.3

0.2

0.1

I I

ER(t=l) — closed shells

teraction U,g can be recalculated by varying t, and the
results are given in Fig. 4. The main feature is that
the negative U g at small t, already found in the EP
model, is confirmed. Hence, the ER model also leads
to superconductive pairing for t/0 not too large. This
fully confirms our expectations that kinematical restric-
tions imposed by the switching of orbital states are im-

portant in that regime. For larger values of t, these re-
strictions gradually become irrelevant, until, for t ~ oo
we recover the value U g —+ 0. In other words, when the
hopping energy is too large, the DJT effect does not work
any more, and Fig. 4 describes how its "phase" part is
quenched (the JT distortion magnitude is held constant
in our model). The pair attraction U, Ir of Fig. 4 does,
as anticipated, depend on the ionic mass M, since it has
the form U, Ir = —0/2 —o.t for t ~ 0, and 0 cc M

One may suspect that the pairing we are demonstrat-
ing is just a consequence of the exact symmetry between
the x and y degenerate molecular orbitals that we enforce
by the assumption of having equal intermolecular hop-
ping matrix elements t, t„, defined in (17), as discussed
in Sec. II. A simple test releasing this assumption shows
that this is actually not the case. If t g t„, the hitherto
missing term corresponding to unequal t, t„contribu-
tions is the following kinetic additive contribution:

FIG. 3. Structure factors Sso (32) and SsDw (33) for the
ER model (N=4, 6), plotted as a function of U/fI, with t = ]..
In panel (a) we report the result for the closed-shell case, while
panel (b) has the result for the open-shell case. E,„& ——6 for
N=4, and E,„t ——3 for N=6. Solid dots mark crossings
defining U', again indicating pairing even at positive U.

(36)

where t' is the independent hopping amplitude t' = (t
t„)/2. This term violates the conservation of total m

t'
a„',„=——) c,'.c,.(I.+I,+ + I..;r.;), . .

(i,j),cr
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-0.1

tions. We can then integrate out the vibron degrees of
freedom and apply the BCS equations to the resulting
interacting fermion system.

Introducing an auxiliary spin-& fermion B, , we clas-
sify the m = +1 vibron state as an "o.-up" state, and the
m = —1 state as an "o;-down" state. The m = 0 state is
treated as a vacuum state for the B fermions, which we
will call "berryons":

-0.16

U, ff 02
~m =1)—:B„'~0), ~m = —1)—:B~~o). (37)

Using this representation, we express the spin-1 operators
by

-0.3

8+—:B~+ Bg, S = Bg+ B~, S = B)Bt —B)Bg .

(38)

-0.37—
0.1

I

10

FIG. 5. The eA'ective Hubbard term U, ir (35) for the EP
model (N=4, 6, in closed shells) with the addition of the term
(36), describing t g t„, plotted as a function of t/t', at fixed
t + t' = t = 1. The effective interaction survives everywhere
except at the isolated point t/t' = 1, corresponding to the
unphysical case t„= 0 (or t = 0).

This representation is overcomplete (in particular, it does
not exclude unphysical states with n, , m; of different
parity) and will therefore not allow a strictly variational
treatment. Still, it is of use in exploring whether the
model does or does not display tendencies toward pairing
at the simplest mean-field level.

We rewrite the Hamiltonian (1) in this fermion repre-
sentation as

Hj,;„=—— ) c c, ~(B &B,~ + B &B~g
(i,j),a

+Bt~Bt~ + B;gag + H.c.)

(equivalent to complete z-y symmetry). By adding to
the symmetric Hamiltonian (30) a term like (36) we can
break this symmetry continuously, monitoring the efFects
of this on pairing, and, in particular, on the U, ff that was
defined above.

In Fig. 5 we plot U,tr for the EP model (for simplicity)
in the closed-shell configurations for four and six sites,
as a function of t/t', at fixed t + t' = t . This figure
shows that although the negative effective attractive U, ff
is maximum for t = t„and t = —t„, it is not cancelled
in the general case t g t„, except for the very special
case t„= 0 (or t = 0). The cancellation of pairing
interaction in this limit is due to the complete breaking
of the rotational symmetry, creating two separate bands
f'rom the x and y orbitals, the x-originated band being
a regular tight-binding band, the y one being made of
localized degenerate states. Anyway, this is indeed a very
special case, in which no t„ term is present. In a more
realistic situation having, say, t„—t /2, the pairing
effect fully survives.

IV. THE INFINITE-CHAIN —MEAN-FIELD
BCS APPROACH

In order to get a qualitative idea of the effects of the
Berry-phase constraints on the infinite system, we first
integrate out the vibron degrees of &eedom in the simple
spin-1 model Hamiltonian (1). To do this, we make the
further approximation of replacing the spin operators by
pseudofermion operators representing the vibron excita-

or, in Fourier representation,

t
Hki~ = — ) cos(ki + g)ct cy2 ~

A:1,IC2, q, O.

x(B ~B„, „, g+ B ~B„,
+B ~B q+q ~+B qgB& &+q~+H, c, )

(40)

We take as a zeroth-order mean-field Hamiltonian just
&ee fermions (note that this term was missing in the
original problem)

HMF = ) et, c& c& + ) rIt, B& Bt (41)

such that

@MF (0MF I
H I0MF )

8tN . /ir
EMF ——— sin —x

'tr (2 )
(43)

is minimum. ~OMF) is the direct product of a half-filled
Fermi sea of c electrons and of a Fermi sea of berryons
filled up to 2::—NI3/N. Here, x can be regarded as an
adjustable variational parameter [although HMF is not
truly variational, as it violates the constraints required by
Eq. (16)]. The precise value of x is, however, immaterial,
since the qualitative results we will find appear to be
independent of N~.

Direct substitution gives
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= —20cos k,
4t

'gI = ——cos k
jr (45)

which is minimum for x = 1. The single-particle excita-
tion energies are

teraction (H —HMF) around the free dynamics HMF
For this purpose, we write the full many-body partition
function at temperature 1/P:

Z= ZMF

where 0—:—sin(vrx/2) is the effective mean-field hop-
ping amplitude for c electrons.

The next step is the determination of the first non-
trivial correction to the mean Beld due to the actual in-
teraction (40) between c electrons and berryons. These
corrections are achieved through an expansion in the in-

I

c B

with

1
ZMF exp —S B+ — S B —S B +...

2

(46)

d~[H(C(~) "B(~))—HMF(C(~) " B(~))l
0

(O[cg~]), = " exp l

— dT ) c„(r)(B +7eA, )cA~(T) O[cA~(q-)],
D[ l."-],

MF

(OP-)) = J
' m — d ) &'.()(~.+n)&-(.) o(&-(.)l,
MF

(47)

where 0[] is any operator, and

P
ZMF —— D c& cI, exp — d~ c& ~ 0 + ~I, CA,. v. (48)

and a similar expression for ZMF.
Averaging over the noninteracting many body B fields in the cumulant expansion in (46) leaves an effective Hamil-

tonian operator for the c electrons. That expansion contains a first term (S)~, whose form is jo dr P c& (~)cq (q.).
It simply renormalizes the mean-field parameters. The lowest-order nontrivial action correction belongs to —(8 )~,
having the form of an effective electron-electron interaction term

Seg ——— d~ d7 Cy 7 CI,&~ 7 Cy I 7 CI,4~ 7 KIg& I,2 I,3 I,4 7 7 o

Cr, a'' k1,kg, IC3, IC4

This term has a very simple significance. It corresponds to the exchange of a berryon particle-hole pair with singlet
total pseudospin between the two electrons, as in the diagram of Fig. 6.

The imaginary time integration can be recast in a Matsubara &equency summation, in terms of a kernel

g2 1K), i, ), g, (i ~a) = b), +i; i,+g„) cos(ki+ k) cos(ks+ k+ q) —) [ 2git(~„)g)t(~„—+ ~~)
k &n

+git(~ )gib( ~ ~&)&&l(~ )&It( ~ + ~&)] (50)

where q:= k2 —ki, u are fermionic Matsubara frequencies, and gA, (w ) is the free ferrnion propagator in Matsubara
space as defined in Ref. 15. The sum over the Matsubara &equencies can be performed to recast Eq. (50) in form

g2
Kg& gg2 )cs k4 (&M&) = 8g~+g~)A.'~+Ie4 ) cos(kl + k) cos(ks + + g)

x [2Z(in~, (i, () q)
—E(ice~, (), () q)

—Z(in~,. —(—), (I q)]

where Z(z, a, b):= [fF(a) —fF(b)]/[z —(b —a)], fF() are Fermi occupation factors, and (g .= qg —p, = ——[cos(k)—
cos( 2 )] are the single-particle excitation energies for the berryons reduced by the corresponding chemical potential.

We would now like to extract physical conclusions &om this calculation. Since we deal with an e8'ective 1D electron
system, we wish to use the calculated effective electron-electron scattering as a guide to understanding which one of
the standard 1.D Luttinger model fixed points will prevail. In particular, for that model, an estimate of the forward



3740 NICOLA MANINI, ERIO TOSATTI, AND SEBASTIAN DONIACH

and backward coupling constants gq and g2 (Ref. 13) will determine what kind of ground state to expect.
The pair-scattering amplitude we have obtained is obviously time (or frequency) dependent, i.e., non-Hamiltonian in

nature. In this sense, straight identification with true Hamiltonian parameters, such as gi and g2, is not automatically
correct. However, we see no physical reason preventing us from using our derived amplitudes as effective coupling
constants so long as we stay suKciently close to the Fermi surface.

We therefore identify

gi cc ~ k,—k,k, k—(~~a) (g = ~), g2 cc ~k,k, k,—k—(t~a) (9 = o)

Direct computation of K for these special momenta gives

k~, ky—, kp, —k~ (~~) ~k~, kp, kp, ——kz (~~)
dk 2

n'(k) V~(—&k) —&~(&k)j2N 2(k —ZCd

8N
(4

dv Ql —v2 tanh
~

Ptv-
('Jr j v—

k -k+q
1 2

J L

q

L

FIG. 6. The second-order effective interaction between
electrons is due to the exchange of a pair of berryons.

Interestingly, these two couplings arise from difFerent
terms in the Hamiltonian. The former is due to the B~B,
BB"terms in (40), whereas the latter is due to the BtBt
and BB terms.

In the zero frequency limit z —+ 0, the two quanti-
ties are negative and coincide. In terms of the Luttinger
model phase diagram, this corresponds to a spin singlet
superconducting state, which is therefore found to pre-
vail. This is in very good agreement with the efFective
negative U of the preceding section, with the additional
remark that the alternative possibility of charge-density
waves is now explicitly ruled out.

Actually, the zero-frequency limit is singular at zero
temperature, when the Fermi functions become step
functions and the k integration diverges logarithmically
for vanishing frequency around k&, the Fermi momentum
for the berryons. In other words, in this approximation
gq

——g2 diverge as ln ~z~ at small z. This is a singu-
lar feature, due to our assuming the exchange of a bare,
unrenormalized particle-hole pair as in Fig. 6. Higher-
order diagrams will modify that. More importantly, in
the presence of a finite pairing amplitude, for example,
this divergence will disappear, due to a pairing gap in
the berryon spectrum. There is, in fact, an exact sym-
metry between fermions and pseudofermions, and the two
Cooper channels are also identical.

V. DISCUSSION

A very important property of our Berry-phase-
constrained tunneling Hamiltonian is the fact that the
constraint operates at the energy scale of the tunneling
matrix element t. Thus the pairing tendency induced by
the constraints is not dictated directly by the strength of
the intramolecular electron —vibron coupling, but rather
by the indirect efFect of this coupling in the semiclassical
limit on the relative phase space available for single elec-
tron tunnelling versus that for pair tunnelling. Thus the
enforcing of the Berry-phase constraint efFectively sepa-
rates the energy scale of the tunneling t from that of the
internal degrees of freedom of the constituent molecules.
In this sense, the resulting part of the attractive pair-
ing interaction is unretarded. The ensuing superconduct-
ing state, which we expect in a 3D case, is not yet fully
worked out, but does not appear to be Eliashberg-like.

In the case of C60 itself, the model is in too extreme a
semiclassical limit to give a reasonable representation of
the physics of K3C60, since, in that case, the dimension-
less electron-vibron coupling strength g is of order 0.4,
whereas the strong-coupling limit, where the Berry-phase
representation becomes useful, is for g & 1.

Nevertheless, the model does illustrate a new physical
principle for superconductivity in strongly constrained
systems. It is tempting to make an analogy with the
physics of the t-J model of interest for describing the
physics of doped. Mott insulators. In that case, the hop-
ping Hamiltonian may be rewritten as

Hq —— t ) (S+c,~c~gS —+S, cJ~c~g. S+ + H.c.), (54)
(ij)

where S,+. , S:are spin raising and lowering operators. A

number of recent studies suggest that pairing of holes
close to the half-full insulating state occurs as a result of
kinematical constraints in this model.

Although the present model does not have the or-
dered or quasiordered background of the antiferromag-
netic state in the t-J model, it does have the feature that
pair tunneling proceeds by each partner causing a vibron
excitation when executing a tunneling step, which then
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annihilates when the pair of carriers come together again
on the same site. Similarly, in the t-J model case, indi-
vidual hole hopping is accompanied by a spin Hip, which
can be cancelled by the hopping of its partner.

It is of interest to consider whether our Berry-
phase considerations could also apply to the Chevrel-
phase class of superconductors such as LaMo6Ses or
PbMo6S„Sea „." In these materials the Mo6Ses clus-
ter has a set of degenerate lowest unoccupied molecu-
lar orbitals (LUMO's) analogous to those in Ceo. Mea-
surements of the doping dependence of T indicate a
sharp maximum as a function of doping in the unfilled
LUMO shell. Thus, there is the possibility of a gen-
eral class of constraint-driven superconductors with dis-
tinctly different dependence of T on material parameters
than those of the conventional BCS-type electron-phonon
superconductors.

Although, as stated above, we do not expect our model
to be a realistic representation of the physics of K3C6p, it
would nevertheless be interesting to test experimentally
whether the kind of electron-vibron coupling we have pro-
posed could be observed in this compound. One way to
do this would be through the two-vibron Raman spec-
trum. Our coupling mechanism would naturally lead to
a direct electron-hole pair channel coupling to a pair of
vibron modes. This channel would open up a gap of 2A,
in the vibron spectrum, where L is the superconducting
gap, on lowering the temperature of the material below
T.

More generally, we observe that the pseudorotor Berry-
phase mechanism sketched here, ties together electron
hopping with the hopping of quanta of orbital molecu-
lar angular momentum, which is unquenched in the &ee-
molecule limit we start &om. In the paired state, orbital
quanta are also paired, whereby the orbital excitation
branch will also develop a gap at q = 2k~. The gap will
follow identically the superconducting gap at T = T, .
The staggered orbital susceptibility should therefore be
maximum at T . In turn, the uniform q = 0 orbital
susceptibility may also develop a maximum, although
weaker, via momentum nonconserving or local field ef-
fects. It is possible that orbital effects of this kind,
even if weaker than suggested by this extreme picture,
could be detectable, e.g. , by NMR. In particular, the re-
laxation time 1/Tq could be enhanced at low tempera-
ture, and peak up around T, due to large susceptibility
fluctuations.

It would be of considerable interest to see if these new
efFects could be observed in K3C6p and Rb3C6p. Encour-
agingly, in this latter compound, very recent NMR data
seem to indicate a behavior of the relaxation time, which
is anomalous precisely in the way suggested above. The
anomaly at T, in particular, is seen in the Rb ion, but
not on the carbon, as we would expect for a C6p orbital
efFect.

Finally, it is of interest to speculate that T would be
enhanced by doping our model system away &om half
filling. Because of the nature of our pairing mechanism,
the carriers would have more phase space for pairing if
each partner in a pair could find many empty neighbor-
ing sites to hop on to before pairing again. Thus the

doping dependence of T might be expected to have a
maximum away &om half filling in systems for which
this mechanism is driving the superconductivity. In this
sense the case of half filling is probably the least favor-
able. There are indications &om an exact solution for
the two-electron state that in the EP model, U,g is one
order of magnitude more attractive near zero filling.

In the fullerides, exact half filling appears to be re-
quired by chemical stability. In the Chevrel systems,
however, where continuous &oping is feasible, one indeed
finds a maximum of T for a hole density close to one per
molecular unit. This corresponds to only 1/6 filling of
the narrow I'25 molecular band in that case. A second
observation is that the correlation length should tend to
be short, of the order of the intermolecular distance a,
since this is the scale where the energy gain takes place.
In K3C6p, this expectation is well borne out, with a cor-
relation length of order = 2a.

Experimentally, it would be of interest to consider
building new molecular solids where high-symmetry
Jahn-Teller molecules can exchange electrons. Larger
molecules may be better ones because of a weaker in-
tramolecular Coulomb repulsion U. Relatively weak JT
coupling may provide an additional favorable circum-
stance, since in that case the effective 0 is larger (al-
though our treatment does not strictly apply there) and
DJT quantum effects are more important. Both these
conditions are met in the fullerides, but it might be pos-
sible to find other systems where they apply.

VI. CONCLUSIONS

We have proposed a model for constrained tunnehng
of charge carriers in a lattice of Berry-phase molecules,
inspired by the physics of the fullerides. The general
model [Eq. (22)] is based on an electron-quantum ro-
tor Hamiltonian, which includes a (in principle, infinite)
manifold of vibron states on each site. Although we have
been able to investigate the effects of a large number of
vibron states on the pairing tendency, it is clear that the
effect is strongest when only the lowest are important.
For the extreme case where only the lowest vibron state
is important (S = 1 pseudospin model), both our numer-
ical studies on small clusters (Sec. III) and our BCS-type
mean-field treatment (Sec. IV) indicate a strong pair-
ing tendency for a half —filled band. The fact that the
model exhibits intrinsic pairing even in the presence of
Hubbard repulsion U of the order of the tunneling ma-
trix element t is understood readily &om the form of the
model Hamiltonian [Eqs. (1) and (22)]. On integrating
out the vibron degrees of &eedom, we obtain an efFective
BCS attraction of order t /W, where W is a vibron band-
width of order t. Thus the Berry-phase constraint leads
to an electron-electron attraction whose energy scale is
not directly related to the strength of the intramolecular
electron-vibron coupling in the semiclassical limit.

In physical terms, our model is based on the entangle-
ment of the orbital angular momentum of the individ-
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ual molecules with electron hopping between molecules.
Pairing of electrons is generated by an accompanying
("singlet" ) pairing of orbital momenta on neighboring
molecules, suggesting short correlation lengths in. the or-
der of the intermolecular spacing. It has been argued
that this mechanism might be relevant also in such other
molecular superconductors, such as the Chevrel com-
pounds.
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