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Phase diagram of multiply connected superconductors: A thin-wire loop and
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The phase diagram of a thin superconducting film with a circular hole in axial magnetic field is

presented. The result is obtained by solving numerically the nonlinear Ginzburg-Landau (GL) equation
in the limit of a thin film with large Ir,s=k, ,s/g (where A.,s=A, /d is the effective screening length for a
film of thickness d). First-order phase transitions between localized (around the hole) superconducting
states with different orbital momenta are predicted. Corresponding jumps in the magnetic moment, 1a-

tent heat, and specific heat are presented in the universal form. The same problem is solved analytically
for a thin-wire superconducting loop. All the results obtained for a film with a circular hole are valid for
high-T, superconductors with columnar defects because in such compounds the GL parameter K-100
so the screening effect is negligible: a relative distortion of the phase diagram after taking into account
the screening effect is proportional to 1/a in the three-dimensional case and 1/~, z in the case of a thin
film.

I. INTRODUCTION

Recently it has been predicted theoretically' and
confirmed experimentally that the critical field of super-
conducting transition near a circular hole is higher than
that of a uniform sample and reveals an oscillatory tem-
perature dependence with discontinuities in the first
derivative (cusps). This behavior is due to the appearance
of a localized superconducting state (LS„) at the hole
edge characterized by a definite angular momentum n [n
is integer, see (4)]. It is somewhat similar to the Little-
Parks oscillations. Such an effect may strongly inhuence
the properties of ion-irradiated high-T, superconductors
where the heavy ions create columnar defects. ' These
columnar defects cause behavior similar to the circular
holes. Then the localized superconductivity might ap-
pear near the defect at the field higher than the bulk criti-
cal field. Moreover the angular momentum n is just the
number of Aux quanta which could be trapped by the
columnar defect at lower temperature. In this context
the experimental studies of the artificially prepared super-
conducting films with a system of regular holes is impor-
tant for better understanding of the properties of irradiat-
ed high-T, superconductors.

In Refs. 1 and 2 the primary interest has been focused
on the nucleation of superconductivity [normal-state
(N) ~LS„ transition]. However the transitions between
the localized superconducting states with different
n(LS„+LS„+i) are—possible when the magnetic field
and/or the temperature changes. Such transitions are of

first order and accompanied by jumps of the magnetic
moment and latent heat. It should be emphasized that
different multiply connected superconducting systems
(hollow cylinders, ' loops, networks ) were considered
in many experimental and theoretical works but in most
case only the transition from the normal into the super-
conducting state was discussed (such characteristics as
critical current and magnetization were also considered
but within a fixed quantum state of the system). In our
paper we consider transitions between different supercon-
ducting states below the critical temperature in multiply
connected systems.

In Sec. II we review the main results of Refs. 1 and 2.
In Sec. III we add general formulas which are useful for
the analysis of transitions between states of different or-
bital momentum. In Sec. IV we consider analytically a
simple example: thin-wire loop (Little-Parks geometry)
and analyze its phase diagram including the region below
the superconducting transition. A similar problem (hol-
low cylinder) was considered by Fink and Grunfeld in
greater detail (taking into account the screening effect)
but they discussed only the transition from the normal
into the superconducting state. In Sec. V we discuss the
numerical solution of the nonlinear Ginzburg-Landau
equation for an infinite superconducting thin film with a
single circular hole. The results, namely the phase dia-
gram, the jump in the magnetic moment, latent heat, and
specific heat are presented in the universal form applica-
ble to any hole radius. Possibilities of measurements of
those quantities are also discussed. The conclusions are
given in Sec. VI.
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II. NUCLEATION OF SUPERCONDUCTIVITY
NEAR A HOLE

Let us consider a thin superconducting film with a sin-
gle circular hole of a radius R in a perpendicular magnet-
ic field. This system is analogous to a three-dimensional
superconductor with a cylindrical cavity in an axial field
if the Ginzburg-Landau parameter a=A, /g is large, for
one can neglect the screening effect (here A, is the magnet-
ic penetration depth and f is the coherence length). We
start with the Ginzburg-Landau (GL) free energy (see, for
example Ref. 9):

cillatory dependence H,*3 ( T) directly. ' The linearized
equation (2) can be reduced to Kummer's equation' and
the exact solutions (see, also, Ref. 11) can be expressed in
terms of the confIuent hypergeometric functions:
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where as usual a =a(T To). —More precisely, F is the
difFerence of the free energy in the superconducting and
normal states. For type-II superconductivity (which is
always the case for thin films) the screening effect is weak
and we may take for the vector potential in (1)
A= —,'HXr, the vector-potential of the uniform external
field H. The magnetic-field energy is neglected in (1) for
the same reason (in the case of a thin film with thickness
d the screening effect is negligible if x,s =A, ,z/g
=A, /gd ))1 where A,,s is the effective screening length
for a thin film ). In our case it is natural to use polar
coordinates (p, p) with the origin at the hole center. The
equation for the superconducting order parameter is

2 2 2dQ 1 dg i 8 P ~
R

(~ ~)x dx x Bp

The dependence of R /g on n and p/po can be found
solving numerically the equation for the first boundary
condition (3) with the function f„(x) in form of (4 ). The
minimum of the ratio R /g gives us the critical temper-
ature T,' —= T(H,*3):

g(0) . R1— minR'

(for details, see Ref. 2). Oscillations in T, (H) (see Fig. 1,
thin solid line with cusps) are due to the fact that at
different values of the fIux this minimum corresponds to
different values of the orbital momentum n.

Such behavior has been observed in experiments with a
thin aluminum film of a thickness 800 A with a lattice of
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=0 and g( ~ )=0 . (3)

To calculate H,*3 it is enough to seek the solution of (2) in
the form

g„(x,q&) =f„(x)exp(in y) (4)

with some definite orbital momentum n (state LS„). Then
with the help of a variational method one can find the os-

where g=%/'koL, 0'o„=&~a /b, order parameter in
zero magnetic field at a given temperature, the coherence
length g —=g (T) =Pi /4m ~a ~, To is the critical tempera-
ture in zero field which is the same for uniform and per-
forated films. Dimensionless coordinate x =p/R is used,
P=mR H is the fiux of the external field through the
hole, and Po=mh'c/e is the fiux quantum. Here and
below we use the dimensionless universal parameters
R /g (T)=R /g (0)[(To—T)/To) and P/Po to charac-
terize, respectively, the temperature ( T) and the magnetic
field.

To obtain the upper critical field H,'3(T) for the onset
of localized superconductivity it is necessary to find a
solution of the linearized equation (2) with the following
boundary conditions:
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FIG. 1. Phase diagram of a thin film with a single circular
hole (of radius R) in a perpendicular magnetic field. Here the
thin solid curve (with cusps) shows the transitions from the nor-
mal state to the localized superconducting states (X,S„)charac-
terized by some orbital momentum n. Thick solid lines are
transitions of first order between states with different n. The
curves of absolute instability are shown by thin dashed lines (for
the transitions n~n+1; "superheating" lines) and by dotted
lines (for the transitions n~n —1; "supercooling" lines). The
phase diagram is restricted by the thick dashed line which cor-
responds to the nucleation of a nonzero order parameter every-
where in the film.



3720 A. BEZRYADIN, A. BUZDIN, AND B. PANNETIER

circular holes (the hole radius was about 4 pm and the
distance between them about 9 pm). In this work the
resistance of the perforated film was measured as a func-
tion of the temperature at different values of the external,
perpendicular to the film magnetic field (H). It was found
that while at H=0 the sample exhibits a single sharp
resistive transition, it splits into two steps in nonzero
fields. In accordance with this, one can introduce two
critical temperatures corresponding to the first and the
second drops of the resistance.

At the upper critical temperature (T,*) the supercon-
ductivity appears near the holes in accordance with the
previous discussion and the resistance decreases by some
factor which depends on the relation between the coher-
ence length and the distance between the holes. In prin-
ciple, such a state of localized superconductivity can have
zero resistance if the separation between the holes is
smaller or of the order of the coherence length. Experi-
mentally a good agreement was found between the calcu-
lated (Fig. l, thin solid line) and measured critical tem-
perature at high enough magnetic field when the coher-

I

ence length at T, is small and the holes can be con-
sidered as independent. On the contrary, a number of
collective effects was observed at weak fields, for instance
a new type of oscillation in the T,'(H) with the period
corresponding to one Aux quantum through a unit cell of
the square lattice of holes. At the lower critical tempera-
ture, which coincides with the critical temperature of a
reference uniform film without holes, the resistance of the
sample drops to zero.

III. SOME GENERAL FORMULAS FOR THE REGION
BELOW THE CRITICAL TEMPERATURE

To investigate the properties of superconducting states
with different orbital momentum n and in particular to
find the line of the phase transition between them (which
is of first order as we will see below) the use of the exact
solutions of the nonlinear equation (2) is necessary. Then
it is possible to compare the free energy of the different
states:

2

~@~a ~~~4
4' 0 0' + 4'

0 2& 1 2 R2 Bx R~ x By

2

where Fd;,k
= —mR d(a /2b) is the GL free energy of a

superconducting disk with the radius R and thickness d
in zero magnetic field.

From (5) one can derive the magnetic moment
M„= BI'„/BH in—the state S„with orbital momentum

I

the specific heat of the superconducting disk of radius R
and thickness d in zero field. Under all these quantities
we understand the difference between superconducting
and normal states at a given temperature.

n e

M„=Mf x f„(x) —— x dx,
1 X

IV. TRANSITIONS OF THE TYPE S„—+S„+I

BETWEEN SUPERCONDUCTING STATES
WITH DIFFERENT ORBITAL MOMENTA:

LITTI.E-PARKS GEOMETRY

where

M= ~R d
(2m', )

8me %
k 2=

NXC

the entropy

BI„S„=— =2Sd;,„ f„xdx,
BT 1

where Sd;,„=—( Ba /B T )%&i mR d is the entropy of a su-

perconducting disk of radius R and thickness d in zero
field, the latent heat

b Q[n ~n+ I]= T(S„—S„+i),
and at last the specific heat

=2f f„xdx+2r f f„xdx
1 87 . 1

where r=R /g (T) and Cd;,k=T/b(Ba/BT) mR d is

Before proceeding further let us consider the transition
between states with different orbital momentum n for the
simplest geometry: a thin-wire superconducting loop of
radius R and wire thickness D (&R, (A, ))g»D) in a
magnetic field parallel to its axis. The system under con-
sideration is exactly equivalent to a thin-walled cylinder
in an axial magnetic field —the original Little-Parks
geometry. In such a case the superconducting order pa-
rameter depends on the polar angle y only and the free
energy may be written simply

0

, B+4
R~ By Po 2m

(7)
The transition temperature to the state S„:
f„,=f„e p(xiny) is immediately obtained from (7) in
quadratic (over @) approximation

R
g2
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p= f„exp(in'&) +i)f„+,exp[i(n + l)y] . (9)

In the Little-Peaks case, f„and f„+, are independent
of the coordinates; g can be considered as a new order
parameter which describes a second-order phase transi-
tion from the n state to the state and lower symmetry (9).
Now following the usual scheme of type-II transition
analysis one can substitute (9) into the free energy (7) and
find its expansion with respect to the even powers of g:

The orbital momentum which corresponds to the
minimum of R /g gives a transition temperature which
is an oscillatory dependence of the magnetic field (see Fig.
2, thin solid line). It is the usual Little-Parks effect. To
find the line of the first-order transition between the n
and n +1 states below the critical temperature we must
compare the exact expression (7) for the corresponding
free energies. It gives the vertical lines Plgo=n + 1/2 on
the H-T plane in Fig. 2, i.e., the transition field is temper-
ature independent in the Ginzburg-Landau approxima-
tion.

The line of absolute instability ("superheating" bound-
ary) of the n state may be easily obtained by looking at
the change of the energy of the n state due to admixture
of n +1-state:

77 Q8= RD fn+1

The transition from the n state to the hybrid state (9)
starts to be energetically favorable when the coefficient A
before il changes sign (from positive to negative). The
condition 3 =0 [which as it is clear from (10 ) is in-
dependent on the amplitude f„+,] gives us the line of ab-
solute instability of the n state with respect to the transi-
tion to the n + 1 state (Fig. 2, dashed lines):

2
R
g2

As it is clear from Fig. 2, the lines (11) are just "su-
perheating" lines but do not correspond to any thermo-
dynamic transition because the first-order transition from
the pure n state to the pure n + 1-state always (in thermo-
dynamically equilibrium cases) takes place earlier in the
field. The "overcooling" lines (dotted curves in Fig. 2) or
the lines of the n-state instability with respect to the n —1

state take place always at lower field than the correspond-
ing first-order transition and can be expressed as

2

2 1
FLp =FLp„+ A g +—Bg (10)

(n+1) ——2 .
0o

where
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V. PHASE DIAGRAM AND LS„~LS„+) TRANSITIONS
IN A FILM WITH A HOLE
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FIG. 2. Phase diagram of a thin-wire loop. X, normal state;
S[n], superconducting state with the orbital momentum equal
n. Thick solid lines show the first-order phase boundaries be-
tween the states with difFerent n. The dashed and dotted curves
are the lines of absolute instability ("superheating" and "super-
cooling" boundaries).

The case of a hole (radius R) in a film (thickness d) in
perpendicular magnetic field H is more complicated than
a thin-wire loop because now the factor f„ in (4) is a
function of the dimensionless polar radius x =p/R. To
calculate the free energy we need to know the spatial dis-
tribution of the order parameter in the film. The non-
linear Eq. (2) can be solved numerically taking the order
parameter in the form (4) (to make the equation be one
dimensional) and using the boundary conditions (3).
Below the critical field H,"3(T) there is one nonzero value
of the order parameter at the hole edge (starting value)

f„o)0 which is consistent with the second condition of
(3) (the first boundary condition, namely zero derivative
of the order parameter at x = 1 is fulfilled in all cases). If
one takes f„(1))f„o then the numerical solution f„(x) is
always positive and infinite when x approaches infinity.
In the opposite case when f„(1)&f„o, f„(x) approaches
negative infinity at large x. Above the critical field H, 3

one can satisfy the second condition (3) only if f„(1)=0,
i.e., there is no nontrivial solution.

In Fig. 3 one can see the evolution of the order param-
eter localized near the hole (state LS&) with decreasing
magnetic field at a constant temperature. The dashed
curves correspond to H & H, 2 or in other words to
Pleo& (1/2)(R /g ). Similar to the case of a plane sur-
face in parallel field' we find that if the field is small
enough (for given n) then the maximum of f is shifted
from the hole edge. For example if one follows the criti-
cal temperature line T(H 3) (N-S boundary in Fig. 1) then
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FIR. 3. Spatial distribution of the dimensionless order pa-
rameter normalized to 4zL( T), the value of the order parameter
at the same temperature but at H =0. The temperature is given
by the relation: R /g (T)=2.7, p is the distance to the hole
center and R is the hole radius. Dashed curves correspond to
fields smaller than K,2.

in the left vicinity of each cusp the maximum of the order
parameter coincides with the hole edge [x (f,„)= 1],
while when the field is slightly higher than the cusp field
the maximum is shifted [x (f,„)) 1]. When the state
LS„has the maximum critical temperature with respect
to the IS„+, and L,S„,and H & H, 2 the shift is of the
order of g or smaller (at H =H, 2 the /=0. 6R in Fig. 3).
Similar to Ref. 12 no abrupt change in the order-
parameter distribution was observed at H=H, 2. In this
paper we consider only the region H & H, 2 because below

H, z the second boundary condition (3) is not true and our
approach is not valid.

After f (x) is calculated one can easily find the first-
order transition lines [using (4) and (5) and the condition
F„+,=F„] between the states with different orbital
momentum n (Fig. 1, thick solid lines). The transition
from the normal into the superconducting states in Fig. 1

is shown by the thin solid line. It is a second-order tran-
sition which is calculated from the linearized GL equa-
tion' (see, also, Ref. 2). The diagram is restricted by the
thick dashed line which represents the appearance of the
nonlocalized superconducting (mixed) state everywhere
in the film.

As in the case of the hollow cylinder [see Eqs. (10) and
(10')] the lines of absolute instability were calculated by
the substitution of (4) [where f„+,was the solution of the
linearized equation (2)] into (5) and looking for the tem-
perature (at fixed magnetic field) when the coefficient be-
fore g starts to be negative. In Fig. 1 the thin dashed
lines are the "superheating" lines corresponding to the
transitions of the type "n ~ n + 1" in increasing field (and
fixed temperature). The n state cannot exist when the
field is higher than the "superheating" field and the sys-
tem must jump into the n +1 state. The "supercooling"
boundaries are shown by dotted curves.

Knowledge of the order parameter enables us to calcu-
late the magnetic moment of our system (6). The field
dependence of the magnetic moment calculated for two
di6'erent temperatures is shown in Fig. 4. Solid curves
correspond to the thermodynamic equilibrium (minimum
free energy). One can see the jump corresponding to the
first-order transition. If the equilibrium is not established
the system can follow dashed curves ("superheating" and
"supercooling" processes). Only with increasing field (see
also phase diagram) the system can reach the instability
line. The jump of the magnetic moment at the "su-
perheating" point is of opposite sign with respect to the
point of the first-order transition.

Figure 5 shows the jump of the magnetic moment as a
function of the magnetic field at the first-order transition
LS„~LS„+i. Corresponding latent heat (6") is also
shown.

Specific heat (6"') of the film with a hole is shown as a
function of the temperature in Fig. 6 for some values of
the reduced Aux through the hole. The first jump in each
curve corresponds to the second-order 5—+I.S„ transi-
tion. At a lower temperature which corresponds to the
first-order transition S„~S„+„there is another jump in
the specific heat. The infinite singularity corresponds to
the latent heat. As it is clear from Fig. 6 the jumps are of
the same order of magnitude (or even higher) as the jump
of the specific heat at To of the disc (radius R and thick-
ness d) in zero field which is equal to

Cdisk ~ T= To

To see whether these transitions can be observed exper-
imentally let us estimate the magnetic moment of a per-
forated film. As an example we consider a thin Nb film
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FIG. 4. Magnetic moment of a thin film with a hole in the
state of localized superconductivity with orbital momentum n as
a function of the reduced flux through the hole for two values of
the temperature. The jumps correspond to first-order transi-
tions between states with different n. The dashed extrapolations
correspond to "superheating" and "supercooling" regions.



PHASE DIAGRAM OF MULTIPLY CONNECTED. . . 3723

0.15

0.1

I

+~ 0.05

I I I
I

I I I
I

I I I
I

I I I

I
I I I

I
I I I

I

I I I
I

$ I

10—

I I I I
I

I I I I
I

I I I I I f
I

I I 1 I
I

1 I I I

I

-0.05 —
~

-0. 1

6/}
-0.15 —,

-0.2

Il=2

I i i i I i i i I i i i I i « I i i i I

Il=3

5—

n=l

11=2

Q/Q =1.05

11=3

P/Q =1.7

n=4-

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0.5 1.5 2

R /( (T)
2.5 3.5

FIG. 5. Values of the magnetic moment jumps and of the la-
tent heat for a thin film with a hole along the first-order phase
transition lines which correspond to transitions of the orbital
momentum n ~n+ 1 (see thick solid lines in Fig. 1).

FIG. 6. Dimensionless specific heat of a thin film with a cir-
cular hole at three values of the magnetic field as a function
of the dimensionless temperature: R /g'(T)=R /g (0)(TO
—T)/To. The first jump corresponds to the second-order tran-
sition from the normal to the localized superconducting state
while the second one with an infinite peak represents the first-
order transition of the type n ~n + 1. Here Cd;,k is the specific
heat of the thin disk of radius R and thickness d in zero field.

of a thickness 1000 A with 4 000000 holes of a diameter 1

pm which form a square lattice with a period 5 pm. In
such a case the holes are separated enough to be indepen-
dent [coherence length is of the order of the hole radius
or smaller along the lines of first-order transitions (Fig.
1)] and the total area of the sample will be 1 cm . All the
results in Figs. 4 and 5 are presented in units of M [see
Eq. (6)] which can be written in the form
(Po/4m)(R/g') (d//r ). For our example this value is
equal approximately to 7X10 ' emu. Here we take into
account that ~=5 and for transitions between small n one
can take g=R (in general case R /$&0. 88 on the first-
order transition lines). The jump in the magnetic mo-
ment is approximately, by a factor of 10, smaller than M
(Figs. 4 and 5) so the total jump for the array of 4X 10
holes will be about 3X10 emu. Such value can be ob-
served experimentally. As an example of similar mea-
surements one can consider Ref. 11 (and references
there), where the magnetization of an array of thin disks
was measured with the accuracy 10 ' emu. A multilay-
er system can be used to increase the signal.

The specific heat of the same Nb perforated film can be
also easily found. The total jump in the specific heat is
equal approximately to the b C=61VCd;,„=6X10 ' J/K
fN is the total number of holes; see (6'") and Fig. 6 for the
relation between the specific heat of the disk in zero field
and of the hole]. We take for the specific-heat jump in
Nb at zero field the value 0.036 J/Kcm . Note that in
this paper we assume under the specific heat the
difference between the specific heat in the normal and in
the superconducting states. The calculated magnitude
for AC can be observed experimentally as one can under-
stand from Ref. 13 where a new calorimeter for thin-film
applications is presented. The addenda of the device is
equal to 2 X 10 J/K at 4.3 K.

VI. CONCLUSION

A numerical solution of the nonlinear Ginzburg-
Landau equation is used to reconstruct the phase dia-
gram of a thin superconducting film with a single circular
hole. The results are presented in Fig. 1 in the universal
form. Our calculations are valid only if the field is higher
than the bulk upper critical field H, 2, i.e., when a nonzero
order parameter exists only near the hole edge due to the
effect of surface superconductivity. ' ' In accordance to
this we restrict the phase diagram by the thick dashed
line which represents the second-order transition into the
Abrikosov vortex state.

The phase diagram of the thin-wire loop (Little-Parks
geometry) has been found analytically (Fig. 2). In both
cases the transitions between different superconducting n
states were shown to be of first order. Corresponding
jumps in the magnetic moment and latent heat are calcu-
lated. While in the case of the circular wire loop the
boundaries between the states with different orbital
momentum are parallel to the temperature axis, it is not
the case for a perforated film. In the last case, first-order
transition can be observed under decreasing the tempera-
ture at constant field. It can be easily shown that one
may neglect the screening effect for a superconducting
film (as we do here) assuming that A,,s»g (d (g in our
consideration).

Two systems considered in this paper are exactly
equivalent to the corresponding three-dimensional (3D)
configurations: a thin-walled hollow cylinder and a cylin-
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drical cavity in a bulk superconductor if the screening
effect can be neglected. The last example is realized in
high-T, superconductors with columnar defects. The
screening effect in the 3D geometry can be neglected if
tr =A, /g ))1, which is usually the case in high-T, su-
perconductors (tr —100).

For experimental observation we suggest using
artificially prepared thin alms with an array of holes.
The magnitudes of the specific heat and of the magnetiza-
tion jump are estimated and are shown to be measurable.
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