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Motion of a Josephson vortex under a temperature gradient
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A theory of a Josephson vortex motion under a temperature gradient is presented. Microscopic calcu-
lations of the temperature dependence of a Josephson vortex transport entropy, S~, are done in the
whole temperature range. It is shown that S~~O as T—+0 and T, . Results of the theory are compared
with our experimental data for superconductor —normal-metal —superconductor (SNS) and
superconductor-insulator-superconductor Josephson junctions. The value of a transport entropy ob-
tained from our experiments is in good agreement with theoretical estimates. An additional maximum
of the transport entropy has been found experimentally in long SNS junctions with dn/g& ))1. This re-
sult is explained in the framework of the microscopic model presented in the paper.

I. INTRODUCTION

Thermoelectric and thermomagnetic effects in the
mixed state of high-temperature superconductors
(HTSC's) have attracted much attention last years (see,
for example, Refs. 1 —13. In this paper only the ther-
momagnetic Nernst effect will be at the center of our at-
tention. When a temperature gradient is applied to a
sample, a thermal force F,z =S V'T acts on the vortices.
As a result, viscous motion of Abrikosov vortices ( 2 vor-
tices) in the mixed state of a superconductor under a tem-
perature gradient induces the transverse Nernst voltage.
This effect is connected with an entropy transport in a
direction parallel to the temperature gradient, i.e., with a
vortex creation at one side and destruction at the other.
Thermal energy is absorbed at the side where vortices are
generated and it is transferred to the other side where
vortices are expelled out of the sample.

Recently we observed the Nernst effect in the mixed
state of Josephson superconductor —normal-metal—
superconductor (SNS) sandwiches Ta/Cu/Nb. ' ' It was
the first report of the Nernst voltage due to the motion of
Josephson vortices (J vortices). The problem of the
Nernst effect due to the motion of J vortices was raised
also by Coffey' ' in a context of HTSC's and multilay-
ered systems. An important difference between J and A
vortices is that the latter have a normal core, whereas J
vortices do not. However, there is no fundamental
reason for a qualitative difference between two thermo-
dynamic phenomena —thermal diffusion of Jvortices and
that of A vortices.

In this paper a theory of the Aux motion under a tem-
perature gradient and experimental results of the obser-
vation of this thermomagnetic effect (Nernst effect) in
SNS and superconductor-insulator-superconductor (SIS)
Josephson junctions are presented. The paper consists of
two parts. First, the theory of Aux motion ofJvortices in
a Josephson junction under a temperature gradient is
presented. Numerical calculations of a temperature

dependence of the transport entropy of a J vortex in the
whole temperature range between T=0 and T, are per-
formed. In the second part we estimate the transport en-
tropy of the J vortex using our experimental results for
SNS Josephson junctions. The magnitude of the Nernst
effect in SIS Josephson junctions and the possibility of its
observation are also discussed.

II. THEORY

A theoretical approach to the problem of the Nernst
effect in the Josephson junctions was reported by us
shortly in Refs. 14 and 15 and independently by Coffey in
Refs. 16 and 17. Here a more detailed theory of motion
of Josephson vortex under a temperature gradient is
presented.

Let us consider a long one-dimensional Josephson junc-
tion of length L, )&A,J under a temperature gradient V T
applied along the junction, and let at an initial moment of
time a Josephson vortex is situated at the point xo. The
temperature gradient along the junction leads to a spa-
tially inhomogeneous distribution of the critical current
density, j,(x). As a result, the vortex is subjected to an
effective force I'. We will show that in linear approxima-
tion in 7T this force can be written in the form

I =S„VT,
and will calculate the corresponding transport coefticient
S .

The energy of a static vortex in a Josephson junction is
given by the well-known expression

H= J [—,'(Vy) +l j,(x)cosy(x)—]dx . (2)

Here x =x/A, J, where A,J is the Josephson penetration
depth,

A~ = (c@o/8~ dj,o)'
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and the critical current density j,=j, /j, o, where

j,o=j,(X =xo ) is the critical current density at the initial
fluxon position. (@o is a flux quantum. ) It is convenient
to introduce the dimensionless function f(x ) according
to

perconducting banks) one can use the rigid boundary
conditions b(0)=Dues(T), where b,Bcs(T)=8m T, (T,—T)/7$(3) near T, . Assuming that V T is small, one can
write the expression for f(x ) in the following form:

j,(x)=1+f(x), f(xo)=0 f(x) «1 . (3)
~J BTf(x ) =j,(x )/j, o

—1 =x
Bx

(10)

The function f (x ) describes the critical current density
variation along the junction due to a temperature gra-
dient. It will be estimated below for a number of specific
models of a junction. The phase difFerence y(x) obeys
the perturbed sine-Gordon equation

y„„=[1+f(x)]sing(x) . (4)

In zeroth order to the perturbation f(x ), Eq. (4) has the
well-known solution

yo=4tan '[exp(x —xo] .

In this approximation the Auxon energy according to Eq.
(2) does not depend on its position X; i.e., the fluxon is not
subjected to an external force. To calculate a force ap-
plied to the vortex in the presence of the temperature
gradient one should consider a correction to its energy
Eq. (2) in first order to f(x ). One has from Eqs. (2), (4),
and (5)

+ oo0=8— f(x —xo)cosy(x —xo)dx .

As a result a force applied to the unit length of a vortex
can be written in the form

F= [aH/ax ]„—,
4J —f (t)sinh(t)cosh (t)dt . (7)

To determine the function f (x) let us first consider the
simplest case of T close to T, . For a tunnel junction one
can use the expression for the critical current density

18
Jc~

orb, '(0)Jc=
4eR~ T,

(8)

For SNS junctions with small NS boundary transparency
and dz/gz)&1 the critical current j, was derived in
Refs. 19 and 20,

n.h (0)Jc=
4eRtv T, y~g'~

exp( —d~/g„) f«y~ »1 .

Here R& is the normal state resistance of a junction mul-
tiplied by the junction area; b, (0) is the order parameter
in junction electrodes near the weak link region. The pa-
rameter y~ is defined as y~ =(2/3)(l~/gz)((1 —D)/
D), where D is the NS boundary transparency, the
brackets ( ) denote angle averaging, d&, g~, and lz
are the thickness, the coherence length, and the mean
free path in the normal layer, respectively.

For a tunnel junction and for a SNS junction with
o ~/o z && y~g~/gs (gs is the coherence length in the su-

Substituting Eq. (10) into Eq. (7) and going from dimen-
sionless units to the physical ones we get

F=4 f t sinh(t)cosh (t)dtBj BT +
BT ()X

2@, aj, aT
kg kJ&c BT Bx

Using the explicit dependences j,(T) [see Eqs. (8), (9)] we
can finally write the expression for the vortex entropy S
in the following form:

S =[8~ /7((3))k~kJ(Ro/R~), for SIS

=[8~ /7$(3)]k~lz(Ro/Rx)[2+dt's/yttgz] (12)

X exp( —dz/g'~) for SNS,

where

Ro= ——6.5kB .
2e

As is seen from Eqs. (11), (12), the Josephson vortex is
subjected to the force which is proportional to the tem-
perature gradient; i.e., the direction of this force is from
the cold to the hot edge of ajunction. The proportionality
coeScient S is the transport entropy per unit vortex
length. There exists a close analogy with the thermal
transport of Abrikosov vortices. The transport entropy
of the Abrikosov vortices was widely discussed in the
literature theoretically ' and measured both for low-

T, and high-T, samples. ' ' The important difference
between A and J vortices is that the latter has no normal
core. The entropy of bound states in a core is often inter-
preted in the literature as a source of the transport entro-
py. Nevertheless, as is shown above, a J vortex moves in
a temperature gradient, i.e., also has transport entropy.

Let us discuss some limits in the temperature depen-
dence of S: T=—T, and T=—0. As follows formally
from Eq. (12), S diverges as T approaches T, for SIS
junctions and SNS junctions with small NS boundary
transparency. For SNS junctions with large NS bound-
ary transparency, when the condition o&los »y~gz/
gs holds, the temperature dependence of the order pa-
rameter b.(0) is given by b, (0) ~(T, —T) (see Ref. 24),
whereas for SNS junctions with small NS boundary tran-
sparency and for SIS junctions b,(0)
~ (T, —T)'~ . Then j, ~(T, —T) and S =const at
T +T, for the first—case, whereas j, o- ( T, —T) and
S ~ oo at T~ T, for the second case. However, Eq. (12)
is not applicable in this limit. The divergence should be
cutted off at a temperature T' such that AJ(T )T') & L,
where I. is a junction length. To show this explicitly, one
shall change the limits of integration, + ~, to I. and then
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j, =(2cr~/e)~TQG~C ~C ~/co (13)

obtain S ~ (L /A, z) o- ( T, —T) for SIS junctions and
(T, —T) for SNS junctions with large NS boundary tran-
sparency. On the other hand, Eq. (12) was derived as-
suming that T is sufficiently close to T, where Eqs. (8)
and (9) forj, are applicable. Therefore Eq. (12) is not ap-
plicable at T=—0. It is the reason why S according to
Eq. (12) does not go to zero as it should according to the
third law of thermodynamics.

To show explicitly that S really vanishes in this limit,
one should use a microscopic model to calculate the criti-
cal current density j, at arbitrary temperature. Let us
consider the case of arbitrary T. In this case the general
expression for the critical current density of SNS Joseph-
son junctions can be written in the form

where co=vrT(2n +1) is the Matsubara frequency, and
6& and +& are the normal and anomalous Green's func-
tions in the X layer. To determine @z and 6& one
should solve the microscopic Usadel equations, which
are valid in the whole temperature range. We have done
the numerical calculations for yii =5 (which corresponds
to the real experimental conditions as discussed below) by
the method described in Ref. 26 and various values of
y =o zg, /O, g~ and thickness of a normal layer d~. The
results of calculations are shown in Fig. 1(a). It is seen
that positive curvature of the j,(T) dependence exists at
low temperatures for sufficiently large dz/gz values [it is
due to the factor exp( —d~/g~) with g~ ~ 1/Tj. Howev-
er, at T=0, j,(—T) levels off and thus dj, ldT ~0. Figure
1(b) shows the results for S /T. The dimensionless func-
tion A ( T) as defined as

A (T)=
1/2

eZ~T,
jc jcd' /dT (14)
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The entropy S is expressed through A (T) in the follow-
ing way:

@3

1T eCG~R~T

1/2

A(T) . (15)

It is seen from Fig. 1(b) that the temperature dependence
of S could be rather complicated; in particular, an addi-
tional maximum could have taken place at low T in the
case d~/g~ &&1. However, this calculation demonstrates
that S goes to zero at T~O in accordance with the
third law of thermodynamics. This is also the case in a
more general case of vortex thermal motion in a vertical
stack of Josephson junctions (multilayered system). For
the case of S/N multilayer parallel critical currents along
the layers were shown to have the property dj, /d T~0
as T~O in Ref. 27 (see Fig. 4 of Ref. 27). The same
property holds for the perpendicular j, . The Nernst
effect in a multilayered system will be discussed sepa-
rately.
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FIG. 1. (a) Temperature dependences of the critical current,
j,*=eR&j, /2m T„of SNS Josephson junctions for different
thicknesses dz/g~: (0.5, 1,2, 3) and y~ =5, y= l. (b) Dimen-
sionless function A ( T) =(eR& T, /2~)' j, ' dj, /dT, which
determines the transport entropy of the Josephson vortex, S~,
according to Eq. (15).

III. DISCUSSION OF EXPERIMENTAL RESULTS

In this section we present our discussion of the experi-
mental results obtained by us in SNS (Refs. 14 and 15)
and SIS (Ref. 28) Josephson junctions. First of all we re-
call the experimental results of SNS junctions. ' We
omit the details of the experimental procedure and
preparation of our samples. For more details see Ref. 14.
The Nernst coefficient E /V T of the asymmetric
Nb/Cu/Ta Josephson junction versus temperature at
different magnetic fields is shown in Fig. 2. The Nernst
coefficient has a maximum near the critical temperature
of the Ta plate of our sample and then it tends to zero at
T~T, and decreases at lower temperatures. This tem-
perature dependence of the Nernst coefficient is similar to
that in HTSC's (see for instance Refs. 1 —13). At lower
temperatures the Nernst voltage in our SNS junction de-
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FIG. 2. Nernst coefficient E~ /V „T of the asymmetric
Nb/Cu/Ta Josephson junction versus T at different magnetic
fields 8 (1 Oe, 2 Oe, 3 Oe, 4 Oe, 5 Oe).

FIG. 3. Nernst coefficient E~ /V „T of the symmetrical
Ta/Cu/Ta Josephson junction with d~/g&=-10 versus T/T, at
different magnetic fields 8 (0.6 Oe, 1.2 Oe, 1.8 Oe, 2.4 Oe, 3 Oe).

creases remarkably and may be due to the pinning of
Josephson vortices.

In Ref. 14 we estimated the value of the transport en-

tropy using our data as

S =3X10 ' J/mK

near T, at T=4.35 K. Let us estimate a value of the
transport entropy S, according to Eq. (12) for the SNS
case. Substituting the resistance of our sample
R~=1.6X10 Q, the sample area 0.1 cm and Joseph-
son penetration depth A,J =50 pm we have obtained the
value of S =2 X 10 ' J/Km which is in reasonable
agreement with our experimental value.

The measurements shown in Fig. 2 were made of asym-
metric Nb/Cu/Ta Josephson junctions. Symmetrical
SNS junctions Ta/Cu/Ta with large dz/gz values were
also measured. Figure 3 shows the Nernst coefficient
versus temperature for a thick Ta/Cu/Ta junction with
d/v/g&—= 10. It is seen that an additional maximum of
the Nernst coefficient, E /V„T=S p/v /+o, exists at low
temperatures (here E is an electric field across the junc-
tion due to the Aux How under a temperature gradient,

p& is resistivity of normal layer, and +0 is magnetic fiux
quantum). This observation is in qualitative agreement
with the results of calculations presented in Fig. 1(b) for a
thick symmetrical SNS junction. Namely, with an in-
crease of d~/g'~ an additional maximum of S appears at
low temperatures. Results of a quantative comparison
between the model and measurements will be presented
elsewhere.

We also have measured the Nernst voltage in SIS long
Josephson junctions. We used Nb/A10 /Nb Josephson
junction with different dimensions. Typical parameters
of the junctions used were following: the critical current
I, (4.2 K) = 20 mA, the Josephson penetration depth

A,J-——15 pm, and the resistance multiplied by the sample
area was 0. 1 fL X 2.4X 10 cm . The Nernst voltage was
measured by applying a temperature gradient along the
junctions in different magnetic fields. However, any
Nernst voltage caused by the Aux motion in the SIS
Josephson junctions was not observed within the resolu-
tion of our experiment, 5V-10 V. We observed a new
thermoeffect in these tunnel Josephson junctions which
was caused by a temperature dependence of the viscosity
drag coefficient along the Josephson junction. The fact
of the absence of the Nernst voltage is not inconsistent
with our theoretical estimations according to Eq. (12).
Indeed, as follows from Eq. (12) with the parameters of
our Josephson junction given above, S = 5 X 10
J/Km. It is about three orders of magnitude lower than
that for SNS Josephson junctions estimated above. Using
this value of S and the measured resistivity of our
SIS junctions at the Aux Bow step pFF, we estimated
the Nernst voltage in a SIS junction as V&

=dp„„S V'T/4o= 10 V. This —value is less than the
resolution of our experimental setup.

In summary, a theory of Aux motion a J vortex under a
temperature gradient has been presented. The micro-
scopic calculations of the temperature dependences of a
transport entropy, S, of the J vortex were done. It was
shown implicitly that S —+0 as T~O and as T~T, .
The theoretical results were compared with the experi-
mental data obtained for SNS and SIS Josephson junc-
tions. The magnitude of the transport entropy of a
Josephson vortex was estimated from our experimental
data. The value obtained is in good agreement with
theoretical predictions. An additional maximum of the
transport entropy was found experimentally in long SNS
junctions with dz/g~ ))1, which can be explained in the
framework of the microscopic model presented in this pa-
per.
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