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Magnetic self-field entry into a current-carrying type-II superconductor.
II. Helical vortices in a longitudinal magnetic field
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The previous consideration of the irreversible magnetic self-field entry into a current-carrying type-II
superconductor (SC) [Phys. Rev. 8 49, 69SO (1994)] is extended to the case of an applied longitudinal

magnetic field. The structure of the helical Abrikosov vortex is found exactly in the framework of the

London approximation. The field-dependent critical current of a spontaneous entry of the right-handed

Aux helix against the surface Bean-Livingston barrier into the SC cylinder of arbitrary radius R is calcu-

lated, as well as the critical current of the flux-line instability with respect to the left-handed helical ex-

pansion. On the basis of these two mechanisms, a diagram of the resistive state in current-field coordi-
nates is evaluated. The direction of the optimal helix for which the surface barrier is the 1east and

which, hence, is the first to enter the sample turns out to coincide with that of the full magnetic field at

the surface only in the case of a thick cylinder with R )&A,, where A, is the magnetic penetration depth.
For the latter case, the generalized Silsbee s rule of a breakdown of nondissipative state is formulated.

I. INTRODUCTION

A helical instability of flux lines (FL) and the ilux-line
lattice (FLL) is known to play a crucial role in the resis-
tivity onset in current-carrying type-II superconductors
(SC) in magnetic field parallel to current. The instability
of individual FL s lying on the axis of a current-carrying
SC cylinder with respect to expansion of helical perturba-
tions was first considered by Clem. ' The analogous insta-
bility of the longitudinal FLL against the growth of ellip-
tical helical modes at sufficiently large currents was
shown by Brandt. These instabilities have close analogy
to magnetohydrodynamic spiral instability, as was
stressed in Ref. 1, and to the process of vortex ring nu-
cleation, referred to as the Onsager-Feynmann mecha-
nism of viscosity onset in superAuids.

The origin of the above-mentioned instabilities is in
driving forces exerted on the FL elements by the current
density that make the left-handed spirals (or rings) ex-
pand. The same forces exerted on the right-handed
spirals (or rings) make them contract resulting in an al-
ternative mechanism of resistivity, namely, the irreversi-
ble entry of right-handed vortices (FL's) against the sur-
face Bean-Livingston barrier and subsequent contraction
due to both line tension and transport current driving
force. The latter process was qualitatively considered in
a lot of works (see in Ref. 4), but the critical currents and
fields at which it should begin were not correctly estab-
lished since it required the correct account of FL interac-
tion with the specimen surface. As a matter of fact, the
critical conditions of helical instability' cannot be
correctly found either without a consistent account of
surface inhuence. It is apparently significant both in thin
samples' with transverse size of the order of A, , London
penetration depth, and in the case of near-surface helical
distortions of FLL. Thus, the behavior of spiral FL's in a
current-carrying type-II superconductor subjected to lon-
gitudinal magnetic field, including the possible interplay

of left-handed helix expansion and right-handed helix en-

try resistive mechanisms, is not yet completely under-
stood.

Recently a problem of vortex ring entry into a
current-carrying SC cylinder was exactly solved in the
framework of London approximation with regard to sur-
face Bean-Livingston barrier. ' In this paper we extend
the analysis begun in Ref. 6 to the case including the
magnetic field applied parallel to the cylinder and present
the exact solution for the helical FL structure in the SC
cylinder of an arbitrary radius. The Gibbs free energy of
helical vortex evaluated with account of work done by
sources of constant field and transport current enables us
to find both critical currents for right-handed helical FL
entry and left-handed helical FL instability. The two
above mechanisms acting in a pin-free ideal SC sample
define the diagram of resistive state in the current-field
coordinates (j H)-

II. STRUCTURE OF A HELICAL MAGNETIC
VORTEX IN SUPERCONDUCTING CYLINDER

e)
5(p r)5(z Ltp)— —@=@0

e,e

is presented in cylindrical coordinates (p, y, z ) with the z
axis coinciding with the axis of a cylindrical sample of ra-
dius R; e the unit azimuthal vector: e, the unit vector
tangential to helical core of the vortex, lying on the imag-
inary cylinder of the radius r; and 2+L, the pitch length of

A helical magnetic vortex inside the SC specimen may
be described by means of the Maxwell equation and Lon-
don equation with a special right-hand side (rhs) 4:

dlvh =0,
A, curl curlh+h=@,

where
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divh=0,

curlh=O .
(2)

The boundary conditions for Eqs. (1) and (2) follow from
the requirements of continuity of the 6eld at the SC
cylinder boundary (p=R ) and vanishing of the field at
the infinity (p~ oo ).

Being presented in cylindrical components
h =(h, h, h, ) the London equation (1) reads

Bh
(3)

1 + 1
Q + 2 p

Bh

2 g2 q' 2 (j(p

the spiral vortex. The above choice of N provides that
the fiux of magnetic field h through any plane crossing
the helix only one time fhd s =@0 (in the infinite bulk,
i.e., at R ~ oo ). Let us note that @ also satisfies the re-
quirement div+=0 for the London equation to be con-
sistent with the Maxwell one.

Outside the cylinder the magnetic field is described by
Maxwell equations in empty space

(7)

8bk 1 Bbk+
~p p p

8 c„ 1 Bc„+
~p p ~p

1+k
kp'

Ckp'

1 k .2k
L p

, +, bk —
&

No
5(p r—), (8)

2nA. L

1 k
k

()'6 1 4'k k2 k

~p p dp p

with boundary conditions

~4k
ai(R )= (R ),

4o
5(p —r ),

2&A, T
(9)

(10)

bk(R ) = it(k(R ),

1+k2
ak 2+ 2 ak+'

p2 g2 L 2 p2

=0,

A,
2 5(p —r )5(z L(p), —

ck(R ) = 1f(k(R ),ik

@o L
b,h, — h, = — —5(p —r )5(z L(p), —

where the Laplace operator in cylindrical coordinates is

1 5( Y)+ 1 BY+BY
p~pp p a~ az

To simplify the problem let us note two points. First is
that the magnetic Geld is potential outside the SC speci-
men that enables one to present it by means of some sca-
lar potential g as H=Vit(. The latter satisfies the Poisson
equation

following from Eqs. (2). The second point is that the heli-
cal symmetry of the problem allows one to express the
dependencies on z and y variables as functions of one
variable g: Lg=z L(p. Clearly, the fie—ld components
are periodical in g with a period of 2n and, thus, may be
presented by Fourier series as

h (p, g)=pe' ~ak(p),
k

h~(p, g) =g e'"~bk (p),
k

h, (p, g) =g e'"~c„(p)
k

4(P»V=X '"~4k(p») .

Finally, the full set of equations in Fourier amplitudes
acquires the form

it(k(p) =dk&k( I
k lP/L ) (12)

c„=
2 8(p r)P„(r,p)+i'I(r —p)P„(p, r)—No k

ikdk Ik(~kp/r)
L Ik(((;k )

lklR
L

(13)

where the notations a.
k
= (R /A, ) +k (R /L ) and

P("(x,y ) = [I((vk )K((v(,y /R ) I((sky /R )K((v—(, )]

I((((.kx /R )
X

I((~k )

are introduced. The unknown coefficients dk will be
found below.

Consider the coupled equations [(7) and (8)]. They
may be separated from each other by introducing the
complex amplitudes fk =ak +ibk which satisfy the equa-
tion

a'f„ 1 af, (1+k)2
~p p dp p

1 k, +, fk

i@o= T 5(p —r) (14)
2m'. L

4k(~)=o.
Equations (9) and (10) part from the set of Eqs.

(7)—(10) and may be solved separately in terms of the
modified Bessel functions Ik(x) and Ek(x). The ac-
count of boundary conditions (ll) and the requirement
that H be 6nite at p=O and vanish at p —+ ~ lead to the
following solutions:
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following from Eqs. (7) and (8). The latter equation may be easily solved, and then the solutions of Eqs. (7) and (8)
satisfying the boundary condition (11)and requirement that field be finite at p=O read

&k

ibk

or k k[~(r p—)[I'. i(p-r) +I'~+i(p r))+~(p r—)[I'. i(r-p) +I'.+i(r p)]]
4~A, L

~k~ k —1(+kp/R ) ~
( )

k~R I~+i(Kkp/R
+k+1L Il +i«a) L

(15)

To obtain the coefficients dl, one can use the Maxwell equation of Eqs. (1) inside the SC sample that, in Fourier com-
ponents, takes the form

Oak ak+
~p p

Then

ikbk ik+ ck=0 .
p L

lCpr [I&+,(vI, r/R )/II, +,(vI, ) I& i(vl,—r /R )/II, i(v& )]
2~x'[k[ ~)II, (~I, )[&g, i(lklR/L)/Iq, (scj, )+Kl, +,((k]R/L)/Il, +,(~1, )]+2(k)(R/L)I I, ((k(R/L) (17)

One can see that ck and bk are even in the subindex k while ak and dk are odd, particularly ap =dp =0.
Equations (12), (13), (15), and (17) provide the full description of the helical vortex. In the case of the zero twist

(when the pitch length L ~ ~ ) h and h vanish as 1/L together with ai and bl, (15) while h, transforms to the well-
known solution for the longitudinal linear vortex in a SC cylinder (see, for example, in Ref. 9). Let us note that the lim-
it of the set of vortex rings cannot be reached at L ~0 starting from the solution (12)—(17) because helical and ring Aux
configurations are topologically different.

Really, the magnetic Aux Aowing through the helical vortex in z direction is

N, (r)= f dp f dpph, (p, g)
R=2'f dp pco(p) =@0[1 Io(r /k )/Io—(R /A )] (18)

at any L, while this quantity for vortex ring equals zero. The Aux Aowing through the vortex in the azimuthal direc-
tion equals

@i=f dp f dz h (p, g)

r r r Il(r/~) R R=2mL dpbo(p) =@0 ~ 1 ——X, 1 ——E)
o A,

'
A, R I (R/X) 1, A,

(19)

which, in the infinite bulk case (R ~ oo ), gives the value

@i(oo ) =@0[1—(r/A, )J,(r/A, )]

that coincides with that of vortex ring in the bulk. '

III. GIBSS FREE ENERGY
GF A CYLINDER VVITH A HELICAL VGRTKX

To study the problem of an energy barrier against the
helical magnetic vortex entry into the current-carrying
superconductor or the problem of instable vortex exit out
of specimen one should evaluate the change in the Gibbs
free energy of the system, AG, arising due to the vortex
motion when an external magnetic field and transport
current are applied. The quantity 46 may be calculated,
as in the spirit of Ref. 11, as

(20)

where I" is the self-energy contribution, h8'I is the work
done by the source of transport current I, and 58'H is
the work done by the source of external magnetic field H.

The position-dependent self-energy contribution to the

free energy may be found using the conventional
definition '

f [h'+A, (curlh)']d V+ f h d V
8m p&z 8m p)z

with the help of the vector identity

(curlh) =hcurl[curl(h)]+div[hXcurl(h)] .

Finally (see Appendix A),

F= f dVh@

C'o r
h, (p=r, O)+ —h (p=r, O)

8~
(22)

Although strictly speaking the field components diverge
logarithmically at the vortex core in the London approxi-
mation, the actual field saturates at p =r within the scale
of g, SC correlation length. ' Hence, the values of field
components in the rhs of Eq. (22) may be evaluated as

(r, O)=g b&(r —g), h, (r,O)= g c&(r —g) .
k k
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Approximate calculation of the free energy by summation of the above expressions yields, for a wide range of r except
for r ((R,A,,L,

No

4m',

Io(r /A, )
[Io(R /A, )Eo(r /1, ) —Io(r /A, )EO(R /A, ) ]Io(R /A, )

I, (r/A, )

I i(R /A, )
[I&(R/A, )X&(r/A) —I&(r/A, )K, (R /A)]

+~1+ q L21 1 —exp[2[y(r/L ) y(R—/L )]j
(g/L)[L/r+(r/L)(1++1+r /L ) ]

(23)

where qr(x )=+1+x —ln( 1/x +V1+ 1/x 2). This ap
proximation is quite valid for the vortex entry problem.
For the helical instability problem, though, it is the
small-r region that is essential. The latter will be studied
in the next section. The details of the free-energy calcula-
tion are presented in Appendix B.

In a cylinder configuration, the external field work (per
unit length along the z axis) may be simply found as

expression E'=c 'dN'/dt is the emf applied to the left
conductor by the source of the current when magnetic
Aux @' leaves the contour shown in Fig. 1 by a dashed
line, crossing the left edge of the cylinder, andE"=c 'dN" /dt is the emf arising in the right branch of
the circuit when the flux 4" enters the right edge of the
cylinder. Since 4"= —4' and moves in a direction oppo-

hWH = f hH dV=H4, (r)/4n,1

4m
(24)

6W~= fdt(E'I, +E"I2), (25)

where the two terms in the integrand stand for the work
done in the two branches of equivalent circuit, I, and I2
are the currents Qowing in the left and right branches of
the circuit, respectively, and integration is carried out
over the time of vortex motion from the edge of the
cylinder to the position with some radius r. In the above

where N, (r ) was already obtained in Eq. (18).
To find the work done by the source of the transport

current as the vortex is introduced, 68'~, let us note that
final result must be independent of the position of the
conductor returning to the source of the current I, which
is supplied to the specimen. Let us compute 68'z by sup-
posing that the return conductor has coordinates
(x,y ) =( —~,0) as is schematically shown in Fig. 1.

%'hen the helical FL moves toward the cylinder axis,
the flux N' flowing upward through a source circuit
(shown in Fig. 1 by a dashed line) changes with time, pro-
ducing a back emf of E; = —(1/c)(d@'/dt). Then the
source of the current Iwill have to provide the emf of the
same magnitude but opposite sign, E'= —E, , in order to
maintain the current I constant. "

This process in our geometry seems a bit complicated
for when the flux N', consisting of the array of flux spots,
enters from the left edge of a cylinder moving to the
right, from another edge of the cylinder the magnetic flux
of the same magnitude but of opposite sign, @"= —N',
moves to the left, as is shown in Fig. 1. Using the scheme
proposed iri Ref. 6, one can circumvent the difFiculty as
fo11ows.

Imagine the cylinder to be divided in two equal parts
and present the source circuit in the equivalent form
shown in Fig. 1(a). Then the work done by the source of
current is

(
J

I

1

)

(a)

(b)

FIG. 1. (a) Schematic view of magnetic helical vortex inside
the infinitely long superconducting cylinder with axis z. The
spiral vortex core lies on the cylinder of radius r and has a pitch
length of 2m.L. The current source circuit is indicated by a
dashed line. The conductor returning back to the current
source has coordinates (x,y ) =(—~,0). The transport current
I as well as external magnetic field H are in the positive direc-
tion of the z axis. The array of dashed spots shows the cross
sections of the spiral magnetic lux by the x-z plane. (b)
Sketches of the equivalent circuit obtained by imaginary
division of the cylinder into two symmetrical parts. N' mea-
sures the magnetic flux leaving the source circuit by entering the
left edge of cylinder x= —R. @"=—N' is the flux entering
simultaneously the right edge of the cylinder x =R from out-
side. I

&
and I2 are the currents flowing in the branches of

equivalent circuit.
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where the quantity 4t(r) measures the magnetic fiux
leaving the source circuit when the helical vortex moves
from the edge of the cylinder to a position with radius r.
The latter formula reduces the problem of finding the
Gibbs free energy to finding the magnetic Aux leaving the
source circuit in the course of vortex motion.

The value of Nt(r ) can be defined as the change in the
total magnetic Aux Aowing through the source circuit.
The latter is equal to the integral of the magnetic field
over the left half-plane

@,(r)= f dx f dz h~(p, z)~ = g Adl, (27)

where the A is vector potential connected to h by
definition h= curl A. The integration of the rhs of (27) is
over the path shown by the dashed line in Fig. 1.

As we are interested in the change of @, only, the
infinite constant contribution to the integral (27) from the
transport current field may be omitted. Then one can
substitute into (27) the vector potential induced by the
vortex presence only. The vector potential A is connect-
ed to the current j by a generalized London equation

j= (S—A),
4+A,

(28)

where S is a source function defined in such a way that
curlS=@. Taking into account that A vanishes as p
goes to infinity, the path of integration in (27) reduces to
the left edge of cylinder x = —R. The S function in (28)
does not contribute to the integral in (27) since the corre-
sponding 5 function on the rhs of Eq. (1) is centered
beyond the contour of integration. Finally, one finds

@,(r)= — f dz j,(p=R, z) . (29)

site to that of @', it is obvious that E'=E". Taking into
account that I& +I2 =I, one gets

b, I/t/t = fE'Idt = I—@t(r),1

Note that the change in @, or N~ after the helix
motion from the edge of cylinder to the final position on
the z axis does not equal Np. Nevertheless, the Aux leav-
ing the source circuit during this process, @t(0), equals
4p. Thus, the entry of a single FL into the cylinder
means, at any R and L„an escape of strictly one Aux

quantum from the contour shown by the dashed line in
Fig. 1. One can also see that the quantities 4t(r ) and 4&i

are quite different.
Finally, the Gibbs free energy, resulting from the above

consideration is

H@c Io(r /A, )1—
4m. Io(R /A, )

I@o rI, (r/A, )+ 1—
2mcL . RI i (R /A, )

where the upper sign corresponds to the left-handed and
the lower sign to the right-handed helices.

IV. CRITICAL CURRENT OF A HELIX ENTRY
AGAINST A SURFACE BARRIER

The dependence of G on spiral vortex radius r exhibits
the edge barrier for vortex entry for any fixed L (see Fig.
2). The barrier width and height depend on the current
and field applied. When the current I (or, alternatively,
field H) exceeds some field-dependent critical value I,(H )

[respectively, H, (I)] the barrier vanishes and spontane-
ous nucleation of helical vortex on the surface occurs.

One can estimate the critical parameters for spontane-
ous entry of a vortex, using the criterion dG/dr ~, ~ =0,
corresponding to the vanishing of the edge barrier. Be-
cause of the logarithmic divergency of free energy (23) at
the edge of the cylinder (where the vortex merges with its
image) the derivative should be taken at r=R —g/2,
where the free energy (23) vanishes.

In the vicinity of the cylinder surface R —r «R, I,, the
free energy (23) takes a simple form

Taking into account that, in cylindrical coordinates, I' =(4&o/4m. A, ) V 1+s in[2(R r)/g], — (34)

c a aa,j,(R,z) = (ph )— where s =R /L stands for the tangent of the tilt angle a
of the helix to the z axis. Substituting formula (34) into

(pbk )+ikak e'"',
4mR „Bp (30)

one obtains the N, (r) value per unit length along the z
axis:

@',(r ) =—A,
2 a

R Z
[Pbo(P)]R aq

C'p r I, (~,r/R )/Ii(~i) . —2' R
(31)

Nc rI,(r/A),
@t(r)= 1—

2mL RI i(R /A, )
(32)

Then the quantity of interest @t(r ) =4&I(R )
—@t(r ) that

yields

Flax. 2. The Ciibbs free energy per unit length [in units of
(@0/A, l ] of the SC cylinder of radius R =0.5X containing the
right-handed helical magnetic vortex with pitch length
L =0.5X, against the helix radius r. The applied parallel mag-
netic field H=H&. Transport current density is jul =0 (a),
0.2 (b ), 0.4 (c ), 0.97 (d ).
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depending on the current density on the sample surface j
and s, where H, =@~/2v 2rrk, g is the thermodynamical
critical field and jL =cH, /4m'. is the London value for
critical current density.

This dependence has a minimum in s that enables one
to find an optimal helix for which the least critical
current (or critical field) of entry is achieved and which,
hence, first enters the sample. Minimizing h„(j,s) with
respect to s one finds the optimal helix pitch length

L =RQ(jL /j) —1 . (36)

Then, upon substitution of the length (36) into Eq. (35),
one can see that the corresponding values of the critical
current j„and field H„ for the optimal helix entry satis-
fy a simple equation

(Ii(R /1, )/Io(R /A, )) (H„/H, ) +(j „/jL ) =1 (37)

that describes a ringlike nondissipative region in the
coordinates current-field (j-g).

The tilt of the optimal vortex to the z axis following
from Eqs. (36) and (37) equals

tga=R/L =v '(j/jL )/(H/H, ),
where the size-dependent number v stands for
I, (R /A, )/Io(R /k). At the same time the tilt of the full
magnetic field lines at the surface Ht /H =v(j /j L ) /
(H/H, ), where we used the transport current distribu-
tion over the cross section of the SC cylinder

j ( r ) =(I /2rrR A. )Io(R /A. ) /I, (R /1, )

and the value of a current self-field at the surface
Ht =2I/cR One can see. that, tga coincides with Ht/H
only for thick samples with R »A, when v —+1.

The latter notations allows one to rewrite Eq. (37) in a
rather clear form:

Eq. (33) and making use of the above-stated criterion, one
can find the value of a critical field

h „(j,s ) =H, [Io(R /A)/I , i (R /A, ) ]( t/I +s sj—/j I ),
(35)

periments of HTSC microbridges as was reported in Ref.
15. At low current the critical field of helix entry tends
to that of straight-line vortex. The account of the possi-
bility of vortex entry on the surface defects may, general-
ly speaking, decrease the critical parameters in the thick
sample case with R ))A, (Ref. 6) that will be discussed
below in Sec. VI.

V. SPIRAL INSTABILITY OF A HELICAL VORTEX
IN A LONGITUDINAL FIELD

As was shown in a previous section, when the current
density on the SC sample surface exceeds the critical
value j„(H}, the spontaneous entry of helical vortices
against the surface Bean-Livingston barrier may occur.
What follows then? One may assume that the vortex
spiral reaches the cylinder axis and rests there as a
straight FL for it seems to present the final stable posi-
tion for contracting right-handed helix (see Fig. 2}. But,
as was shown by Clem for a single FL case' and then by
Brandt for a FLL case, these FL configurations are un-
stable against the growth of left-handed helical perturba-
tions in the presence of sufficiently large current parallel
to the field. This instability, close in nature to spiral in-
stability in magnetohydrodynamics when the conducting
fluid is subjected to the longitudinal field, appears due to
the destabilizing inhuence of driving force per unit length
[jXCp]/c exerted by the applied current density upon
the FL element. Though the consideration in Refs. 1 and
2 did not account consistently for the inhuence of the FL
interaction with the surface on the FL stability, clearly,
this interaction gives rise to instability because of vortex
attraction to its image. As will be shown in this section,
the account of the surface inAuence changes the physical
picture essentially and, particularly, makes the vortex ab-
solutely unstable (i.e., at zero current) in a certain field
range.

To study the stability of the left-handed helix one may
use the Gibbs energy expression (33) taken with the upper
sign in the last term. The set of curves for various values
of current (field) is shown in Fig. 3. The G(r) depen-
dence for unstable vortex (with BG/r)r &0) is monoto-

(vH) +(Ht/v) =H, . (3g)

Taking into account that, for R »A, , the terms on the
left-hand side form simply the squared full field at the
surface, one can see that, for the case of parallel field ap-
plied, the generalized Silsbees rule' for thick samples
with ideal surface (with surface defect size 5 «A, «R )
turns out to be valid in the following form: In a thick
ideal current-carrying superconductor, subjected to a lon-
gitudinal magnetic field, the breakdown of the nondissi-
pative state occurs when the full magnetic field at the sur-
face first attains the magnitude of the thermodynamic
critical field H, .

It is easy to see that at low fields the critical current of
the helix entry achieves the value of jr for an ideal sur-
face case coinciding with that of vortex ring entry.
Though the value jL is very high and achieves a magni-
tude of 10 A/cm, it seems to have been observed in ex-

FIG. 3. The Gibbs free energy per unit length [in units of
(@0/A, l j of the SC cylinder of radius R =0.5A, containing the
left-handed helical magnetic vortex with pitch length L =0.5A,

vs the helix radius r at j=0.5jL. Various plots correspond to
various magnitudes of the applied parallel magnetic field
H/H =0 (a), 1 (b), 2.6 (c), 4 (d).
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nous, so the study of stability of a straight FL at r =0 is
sufhcient.

Following the notations of Clem's work, ' we introduce
the force exerted upon the unit length of the FL as

f= —c}G/c}r=rK(r, L ). Then, making use of the Gibbs
energy approximation for small r «R,L, A, (see in the
Appendix B), one finds

K(r, L)= Hseo
4~L A.I, ( Kp)

2
4o+

4+A.

HC'o

8m', Ip(KQ)

H i4'o r2
1+

4+L L

—1/2

1 Ko(Ko) Ki( i) 2 Ko(K1)+ +
Ip(ICQ) Ii (ICi ) L IQ(Ki )

1 2I2(K, )[K,(s )/Ii(K, )+Ko(s )/Ip(K, )]
KiIi (ICi ) [Kp($ )I2 (Ki ) +K2($ )Io (Ki ) ]+ 2$IQ (ICi )I2 (Ki )K i ($ )

(39)

The unstable modes are defined by the condition
K(O, L) &0.

The terms in the first large square brackets reproduce
the Clem's result obtained without account of the surface
inhuence. In accordance with it, the instability begins
when the self-field first attains the critical value

K(O, L ) =
Sm.i,

Wo —H
mR

C'o
+ . 2Hy — y

Jg aR
(40)

Hi, = [2HH„I, (KQ)/Io(KQ)]'/

corresPonding to critical current I, —jz I, (KQ)/"i/Ip(KQ)
The optimal helix pitch length is then
Lp A (2H i/Hy )I I (Kp). Let us consider seParately the
cases of thick (R )&A, ) and thin (R « A, ) samples.

A. R»A,

In this case the I, value is exponentially large at
KQ=R/A, &)1 as well as the optimal helix pitch Lp
Thus, in the thick sample case the helical instability of a
single vortex does not take place. In fact, the instability
arises due to forces exerted on the FL by the transport
current that is exponentially small deep inside the thick
specimen. It is a1so apparent that the corrections due to
the surface inAuence in the second large square brackets
in Eq. (39) do not matter for the same reasons. More-
over, they are as small as [Ip(KQ)] ' even comparing to
the terms in the first brackets.

That does not mean, though, that the surface does not
affect the Aux distribution stability in thick samples. In
this case, the problem of FLL stability with respect to
helical perturbations should be considered, to say, as was
suggested by Brandt, but with a consistent account of
the surface inhuence.

K(O, L )=
8~A,

~'o ~'o J
' R4—H +

2 ~R 2 2j& 2/2/2
L

foryp=(mR H/@p 1)' . Thus, in—the range of field

0&H —@p/mR «4Q/mR —(X/R )2H,

(41)

the critical current of helical instability is

j,„—=jz '1/ m.R H/CIQ 1. —. 2v'ZXg
(42)

for y «1, where the variable y =A, /L is introduced. A
drastic difference between this result and that of Clem is
that at fields H & No/nR the vortex is absolutely unsta-
ble at any currents due to attraction to the surface, since
K(O, L ) &0. That seems quite natural for the presence of
a vortex inside the SC cylinder at H &@o/~R means
that magnetic induction inside the cylinder is higher than
outside, which looks unlike the usual SC behavior. Nev-
ertheless, that does not mean the absence of a paramag-
netic effect. The time-averaged value of the magnetic
moment over the cycle "entry of the right-handed helix,
exit of the unstable left-handed helix" may be large.

At the fields H & @o/mR the straight FL at r =0 is
stable at low transport currents. K(O, L ) reaches its max-
imum value,

B. R&A,

In this case the critical current of instability in Clem's
analysis becomes quite meaningful, j,„-jz (2HH, /
H, )'/ . The infiuence of the surface terms in (39) be-
comes essential as well. Let us suppose that at low fields
an unstable mode has large pitch length L »X as well as
in the case R » A.. Then K(O, L ) acquires the form

If j&j,„,K(O, L ) )0 for all helices with the pitch length
in the range L &L &L+ around the optimal value
Lp= A,(re H/No 1)—'/ &)A, , where—

2g(p/R)2[j+ + 2j2]1/2j 1 /2

When the field H »4o/mR, the assumption y « 1 is
no longer valid. Then, in supposition s »1, one finds the
approximation
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4o
K(O, I. ) =

Smk

@0 A, Jln ——H +. Ky —H y2~k2 R jL,

(43)

from which the result close to Clem's one immediately
follows:

@o

2mk2
HC

1/2

(44)

The first unstable mode is

yo=[(H —Coin(A, /R)/2nA, )/2H, ]' ))1
in accordance with the initial supposition.

VI. DISCUSSION

H, H,

FIG. 4. The sketch of the possible diagram of the resistive
state of the SC cylinder in a parallel magnetic field in the
current-field coordinates j-h discussed in detail in Sec. VI. The
plots describe the critical currents of right-handed helix entry
and left-handed helix exit. The characteristic fields

HI =4 p/wR and H2 = (2A /R )Hc ~

In this section, we discuss the possible diagram of the
resistive state of a current-carrying superconductor in a
longitudinal magnetic field with the account of the above
results.

As in this problem we consider the single FL behavior,
the results apply directly to the case of a thin specimen
with R & A, . The critical currents for vortex entry and in-
stability are shown in Fig. 4. Since the only characteris-
tic scale for space dependences is R, the surface defects of
a size 5«R cannot affect essentially the vortex motion
and the only characteristic value of the current is the jL,
as was emphasized in Ref. 6. jL is close to the depairing
current' and is usually much more than the pinning
current j~ that allows us to neglect the pinning in a wide
range of field.

Since the superconductivity vanishes completely when
the transport current j & jL due to direct pair-breaking
process, the resistive state may be realized at lower
currents j &jl . In this case, various dissipative regimes
may take place depending on the field applied.

Let us consider the increase of the field at some fixed
value of measuring current along the upper dashed line
on Fig. 4. To the left of point 1 the nondissipative regime

takes place, when the FL's cannot enter the specimen. If
the sample were cooled in the nonzero field the vortices
would be pushed out of it because of their instability. In
the region between points 1 and 2 the right-handed hel-
ices may enter the sample but, being instable against the
left-handed expansion they will leave it immediately.
Thus, in this region the oscillating regime of resistivity
may occur like that observed on the type-I SC sam-
ples. ' ' Note that though the vortex spiral moves in op-
posite directions during the two stages of the cycle
"entry-exit, " the sign of the induced emf is the same be-
cause of the change in the sign of the azimuthal com-
ponent of the field K when the right-handed spiral
orientation changes into the left-handed one (compare
with results of Ref. 1). To the right of point 2 the vortex
enters the sample and rests there preventing an extra vor-
tex from entry into the cylinder. Thus, while increasing
the field, in this region the reentrant nondissipative state
may appear and exist up to the highest fields of the order
of H, . Though the vortex rested at the axis of the

2

cylinder cannot prevent the entry of the vortex rings at
sufficiently large currents and, in principle, the dissipative
scenario may be realized like that in the absence of field
as was discussed in Refs. 4—6 and 19. Note that the dissi-
pation processes due to helix and ring entry are quite
different. Really, when the helical vortex enters the
specimen the coherent voltage signal from different
Aights of the spiral may induce quite a large single-
voltage impulse or periodical oscillations. On the con-
trary, the stochastic incoherent entry of the vortex rings
may induce only a white voltage noise without any
characteristic frequencies as was discussed in Ref. 20.

Let us emphasize that in the region to the right of
point 2 the nonzero time-averaged paramagnetic moment
may be observed with the induction 8 & H+4&, (0)/nR,
where N, (0) is taken from Eq. (18).

When measuring at lower transport currents (the lower
dashed line in Fig. 4) the nondissipative state may take
place in the region to the left of point 4. In the region be-
tween points 3 and 4 the permanent magnetic moment
determined by the equation M =4, (0)/4m R may be
realized, if the specimen is cooled in the field. The zero-
field-cooled specimen should not exhibit the magnetic
moment in this region. While increasing the field to the
right of point 4, the vortex may enter and be stable inside
the sample. Then the nondissipative state may take place
up to the highest field of order of H, . Thus, at small

2

measuring currents the oscillating regime of dissipation
cannot take place.

In the case of the thick samples with R »A, the picture
becomes much more complicated. A sharp dependence
of the surface barrier width on the current and field pro-
vides that at the currents j)j, -=jl /~ &&jI (x.=A, /g is

the Crinzburg-Landau parameter) the entry of FL frag-
rnents becomes possible on the surface defects of the size
of A, . The pinning also may essentially affect the vortex
motion when j -j, . Though, the critical current of

1

single-vortex instability is exponentially large, the critical
current of a helical instability of the FLL may be rather
small and even equal to zero, as was stated by Brandt.
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Also, in addition to the barrier and instability reasons
considered here, other and more subtle mechanisms of
resistivity may be realized ' in type-II SC's. Anyway, the
variety of resistive regimes may take place, since the pin-
ning may prohibit either contracting or expanding vor-
tices. Particularly, if the j,„,j &j, &j« jI the oscillat-

1

ing regime of dissipation may arise.
It would be also interesting to study the samples of in-

termediate size of some A, 's which permit the entry of a
few vortices but are characterized by not so large critical
current of single-vortex instability. In such a case the
dissipative cycle conditioned by the oscillation of a pair
of helical vortices of different vorticity may arise, as was
suggested by Clem. '

VII. CONCLUSIONS

A problem of a helical magnetic vortex in a current-
carrying superconducting cylinder subjected to a longitu-
dinal magnetic field was solved exactly in the London ap-
proximation. Gibbs free energy of the superconducting
cylinder containing the vortex was calculated with regard
to the work done by the sources of the constant transport
current and external magnetic field. It allowed us to
evaluate a critical current and field of the spontaneous
entry of right-handed helical Aux line into the sample
against the surface Bean-Livingston barrier, using the cri-
terion of the barrier vanishing. An optimal helix was
found for which the barrier was the least and which,
hence, was the first to enter the sample. In the thick sam-
ple case (with radius R »A, ) this helix turned out to fol-
low the pattern of the full magnetic field on the surface
including the external field and transport current self-
field. In this case, the breakdown of the nondissipative
state was shown to occur when the full field at the surface
Grst attained the magnitude of the thermodynamical crit-
ical field H, . The latter statement extends the validity of
Silsbee's rule' to the case of the longitudinal magnetic
Geld applied to the specimen.

The obtained Gibbs free energy enabled us to also cal-
culate the critical current of instability of a linear vortex
lying on the cylinder axis with respect to the left-handed
helical distortions that was first considered by Clem. ' Be-
ing, in principle, the same for the case of thick sample
our results turned out to be quite different in the thin
sample case, R &A, , where the absolute instability of the
vortex was established.

Based on the above results the diagram of the resistive
state of the current-carrying superconductor subjected to
a parallel magnetic field was evaluated and the possible
inhuence of the surface defects and pinning was dis-
cussed. The variety of the resistive regimes might be ex-
pected depending on the field and current values, pinning
strength, and quality of the surface, particularly the re-
gime with oscillating dissipation, like that observed in ex-
periments on the type-I superconductors. ' ' In the latter
case the value of the paramagnetic effect was estimated.
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APPENDIX A

f h(h+A, curlcurlh)dV
1

8m p(z

+ f A, div[hxcurlh]dV
1

877 p&R

+ f (uf) dV. (A 1)

First integral in (Al) transforms to formula (22) due to
Eq. (1). The rest of the RHS of (Al) forms the energy
correction that reads

In the simplest linear or ring FL configurations the
vortex-induced magnetic field vanishes at the sample sur-
face. In contrast to this, helical FL creates the nonzero
field at the surface and in the outer space. Here we evalu-
ate the free energy correction following from this fact.

Let us transform expression (21) making use of the vec-
tor identity following it

Bh i Bh Bh Bh,AF=, f dq) f dz A,
' —h'+h ——h — —h, —h,

p ~ ~ ap p + 9y Qz Bp Bp
(A2)

Making use of Fourier representation of field components [see after formula (6)] we transform (A2) to

b,F= g. A, bk~I. k

b k Eka

R
+b'

k + ikcka

I. +CkC k QkQ k (A3)
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The expression for the derivative bk may be found
thanks to Maxwell Eq. (16) and Eq. (7)

summation in formulas

bk R ak
bk = — +—ck+ (k +tr )

R L " ikR
(A4)

g (r, O)=bp+2 g bk(r —g),
k=1

(B1)

Then upon substitution of Eq. (A4) and boundary condi-
tions (11) into Eq. (A3) one finds

AI' =0 .

This result is in contrast to that of Ref. 11 obtained for
type-I SC's where the contribution to the free energy of
the field outside the sample is responsible for the unusual
field dependence of critical current.

APPENDIX 8: FRKK-ENERGY CAI.CUI.ATION

In a wide range of radius values r & R, except
r «R,L, A, , the corrections following from dk terms in
Eqs. (12), (13), and (15) are small as s at s «1 and as
exp[ —2s(1 r/R )] a—t s »1, where s=R/L. Omitting
dk in expressions (12), (13), and (15) one can carry out the

g, ( r, O) =c p+ g c„(r —g),
k=1

taking into account the slow convergence of these series.
The latter allows us to use for the modified Bessel func-

tions the asymptotic representation

exp[k y(xs ) ]
Irk X

&2~k (1++'s')""
and

exp [ —k (p(xs ) ]i/n.
v'2k (1+ )'

where y(s)=(l+s )'~ —in[1/s+(1+1/s )'~ ] The
values trp=R /A, and t~„=ks at —k &&L /k were used
above. Then the free energy F reads

+0
4m',

2

Pp(r, r)+ Pi(r, r)+Vl+r /L ln
L 2

1 —e xp[2[y( 1/L) tp(R /L )—]]
( g/L ) [L /r + ( r /L )( 1++1+r /L ) ]

from which expression (23) follows.
In the case r «R,L, A, , the corrections from dk are no longer small. Though it appears that the terms with k )2 in

sums (Bl) are as small as (r/A, ) ", (r/L ) ", or (r/R ) ". Then, restricting ourselves in sums (Bl) to the terms with

k=0, 1, we find
2

ICp(tcp)

Ip(Kp)

„2 Kp(tr, )

Ip(zi)
. 't/1+r /L ln ——2 2 p

2 Ep(Kp) E, (Ic, )+
Ip(trp) I&(«i)

+
2

r Iz(tr, )[K,(s )/I, (tr, )+Kp(s)/Ip(ai)]
a'iIi (tr, ) [Kp(s )I2(x', )+F2(s )Ip(ai ) ]+2sIp(tr, )I2(tr, )IC, (s )
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