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Nonequilibrium in normal-conductor/superconductor microconstrictions
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By high-current injection from a point contact into bulk superconducting Ta a nonequilibrium state is
produced that may be described as a normal bubble within the superconductor half-space. In driving the
diameter of this bubble by the external bias we observe two different types of oscillatory behavior of the
conductance. At zero magnetic field the quasiparticle current across the droplet is modulated due to
geometrical resonances by multiple Andreev and normal reflections. At magnetic fields somewhat below
the critical field, the superconducting surrounding of the normal region forms a symmetric dc SQUID.
The magnetic flux through the normal region thus modulates a small supercurrent contribution. Equal
numerical values of the bubble diameter are obtained by quantitative evaluation of both effects.

I. INTRODUCTION

In previous papers' we reported nonequilibriurn prop-
erties of Ag/Ta point contacts under high-current injec-
tion conditions. Nonequilibriurn was established in a
bulk superconductor in this case. While similar phenom-
ena in whiskers, in films, and in several weak-link types
has found much attention in the past, there are only few
observations on bulk material by other groups. In partic-
ular, the quasiparticle interference effects in zero magnet-
ic field reported below have not been observed elsewhere,
while there are observations of oscillations in a magnetic
field reported by Yanson and co-workers. The most
interesting aspect of our experimental results was an os-
cillatory behavior of the conductance vs voltage charac-
teristics, examples of which will be found in subsequent
sections. We have attributed these oscillations to geome-
trical resonances of quasiparticle waves on the N' zone of
a N/c/X'/S structure, with Ã indicating the normal
electrode (Ag), c the contact constriction, X' a normal
zone in the tantalum half-space with the order parameter
being destroyed, and S the remaining superconductor
(Ta). Within this interpretation the oscillations were due
to a monotonic increase of the width of the N' zone with
applied bias, leading to quasiparticle geometrical reso-
nances.

As will be seen, this interpretation is, with minor
modifications, basically correct for experiments in zero
magnetic field, to which it had first been applied. Howev-
er, its extension to even more dramatic oscillations in a
finite field, although initially looking very promising,
subsequently broke down. In fact, despite a large
amount of unpublished experimental material we did not
succeed in understanding the phenomena until recently,
when we became aware of a certain misconception in our
formerly given discussion. This misconception consisted
in tacitly assuming all of our observed oscillations to have
the same physical origin.

In the following, we present evidence that only the os-
cillations in zero magnetic field are due to quasiparticle
resonances. In contrast to this, oscillations observed in a
magnetic field are due to a Josephson current contribu-

tion, phase modulated by the magnetic Aux in a some-
what unexpected topology.

While the foregoing outline was given in order to avoid
confusion about previously published results, the plan of
this paper is now as follows. Section II contains a short
description of sample preparation. In Sec. III we report
experimental results concerning the conductance vs volt-
age characteristics in zero magnetic field. Its nonequili-
brium features are discussed in Sec. IV B along the previ-
ously given lines. The theoretical basis for this discussion
is given in Sec. IV A in terms of a more general NcS'N'S
model which reduces to our previous NcN'S model as a
special case. The general solution, however, is needed in
Sec. VI.

In Sec. V the experimental results in a magnetic field
are reported and the questions are outlined following
from these results. In Sec. VI we present a proposal con-
cerning the topological and geometrical structure of the
nonequilibrium state which is suited to explain both types
of oscillations. Moreover, a quantitative test of this pro-
posal is possible giving good support to it. The picture
finally arrived at, leads to a rediscussion of the zero-field
oscillations in terms of the above-mentioned NcS'N'S
model. Finally, Sec. VII contains some concluding re-
marks.

In the Appendix, an analytical analysis of the general-
ized model is sketched by solving the Bogoljubov —de
Gennes equations and thus deriving the results given
without proof in Sec. IV A. A new "multiple-scattering
scheme" thereby applied not only simplifies calculations
but, moreover, is closely related to the physics of the in-
terference phenomena under question.

II. SAMPLES

The Ta electrode of our contacts is a high-purity single
crystal about 2.5 mm in diameter and well sphere shaped
on account of its preparation as a melting drop in ul-
trahigh vacuum. After oxidation in air for about half an
hour at room temperature, a 200-nrn Ag counterelectrode
was evaporated resulting in a tunneling junction with
well-developed gap and phonon structures in the electric
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characteristics measured at 1.5 K. With the sample still
in the helium bath, the tunneling junction was then des-
troyed by electric shortening applying a bias in the 1-V
regime. According to Jansen, Gelder, and Wyder, this
procedure is one of two standard ones applied to produce
point contacts. As a result, we obtained junctions of
0.2—1.5 0 resistance with current-voltage characteristics
showing the typical features of metallic microconstriction
contacts in the normal and, at low bias, in the supercon-
ducting state.

For a typical contact resistance of 0.3 Q, we obtain
from the Sharvin formula" typically 70 nm for the diam-
eter of the orifice connecting both metals. This is compa-
rable to the low-temperature coherence length of tan-
talum, /&=92 nm, ' and thus it seems quite natural to ex-
pect nonequilibrium effects even at moderate bias.

III. CONDUCTIVITY AT ZERO MAGNETIC FIELD

Figure 1 represents an experimental result at zero mag-
netic field. The measured differential resistance of a me-
tallic contact is displayed along the negative ordinate axis
as a function of applied voltage. Apart from a small non-
linearity, the positive ordinate scale thus represents the
differential conductance. A S%%uo variation in conductance
is indicated by the arrows. The figure represents one ex-
ample of many similar ones obtained for different sam-
ples.

At small bias the characteristics approximately follow

the standard theory of the XcS microconstriction contact
as formulated by Blonder, Tinkham, and Klapwijk'
(BTK), with a Z parameter close to 0.5 in most cases. In
Fig. 1, the uppermost curve represents the BTK result for
this Z value, the tantalum energy gap value, 62=0.72
meV, and for the actual measuring temperature of 1.40
K. While this theoretical result describes in a satisfacto-
ry way the experiment at low energies eU of the quasipar-
ticles injected into the superconductor, say up to about
0.8 h2, marked deviations occur at higher energies. Nev-
ertheless the experimentally observed characteristics are
continuous, rather smooth, and reversible up to a hys-
teretic transition to what may be termed the "high-
current branch" of the characteristics. The jumps to the
high-current branch and back from it are indicated in
Fig. 1 by vertical arrows. These transitions represent
themselves even more pronounced in the current than in
the conductance characteristics and the reader may
recognize this by taking a glance at Fig. 4. Within the
high-current branch, the characteristic is smooth and re-
versible again. Further one may notice that the voltage
scale of the high-current branch is roughly an order of
magnitude above the gap voltage.

While we are solely interested in the high-current
branch in what follows, we here give a few additional
comments on observations of the lower-current branch.
In fact, deviations from the BTK theory are often much
smaller than those represented in Fig. 1. In particular,
the extra structure slightly above the gap voltage is often

Z =0.50 "

.25- T=1.40 K

FIG. 1. Differential resistance vs voltage in
zero magnetic field for a Ag/Ta microconstric-
tion contact with Ta in the normal and in the
superconducting state. BTK theoretical result.
High-current branch observable down to 3.5
meV. Gap voltage marked by arrows.
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missing, leading to a closer resemblance between theoreti-
cal and experimental result not only concerning quantita-
tive but also qualitative aspects. On the other hand,
there is no doubt that there is some destruction of the or-
der parameter at low voltage, even within the gap region,
as one would expect from the rather large orifice diame-
ters given in Sec. II.

As a main experimental result on the high-current
branch of the characteristics we find oscillatory behavior
of conductance with up to 3—,

' periods of oscillation. For
the sample represented in Fig. 1 two periods are ob-
served. According to our previously given interpretation
these oscillations are due to quasiparticle resonances on
an X' zone of destroyed superconductivity below the con-
tact with the width of this zone monotonically increasing
with bias. In order to evaluate Fig. 1 numerically, we
give a short report on the corresponding one-dimensional
(1D) model and of its generalization used in subsequent
sections, the generalized results being new.

IV. QUASIPARTICLE RESONANCES

z
coso, = = c,

J J

E
with 0&+.& —for &1, in )0 for )1,

2 J J

and the normalized lengths,

A, =L /g', A,
' =L '/g',

(4)

with g'=(m. /2)gz, and gz=hUF I(rrbz) (5)

this surface sheet, and b, , ( ~ hz) the value of the pair po-
tential within this sheet, the ¹X'Smodel corresponds to
the special case L'=0.

Direct extension of the previously applied wave-
function matching procedure to the ¹S'X'Scase proved
difficult leading to rather involved formulas. Therefore a
new multiple-scattering scheme was applied to derive re-
sults closely related to both the internal structure of the
analytical problem and the interference physics. The
method is described in the Appendix and the results are
given here by Eqs. (4)—(9).

We introduce abbreviations az (j= 1,2) by

A. Theoretical model

The 1D model is based on the standard BTK treat-
ment' of ballistic transport through an ¹Sinterface on
the basis of the time-independent Bogoljubov —de Gennes
equations. Extension of this model to a ¹N'Sstructure
was given in Ref. 1. Within these models, the bias-
dependent normalized excess current is given by

I ( U) I„(U) —eU/6& t(e)
I„(b,z/e ) 0

—1 dc. ,

with b, z the gap value in the bulk superconductor (S re-

gion), I, ( U) the current with the contact in the supercon-
ducting state, I„(U) = U/R„ the current with the contact
in the normal state, at the same bias, c=E!hz the nor-
malized quasiparticle energy,

(2)

the current transmission coefficient as defined by BTK,
and

its value with the contact in the normal state.
The dimensionless parameter Z is the normalized

strength of the 5 function barrier localized in the con-
striction (c). B(e) and A(e) are the energy-dependent
reAection amplitudes of the electron and hole waves, re-
spectively, in the N region resulting from an incoming
electron entering the contact from the N side.

Let L be the thickness of the X' layer. Then the ¹S
(i.e., BTK) model is a special case (L =0) of the NcN'S
model of Ref. 1. Moreover, we shall need in Sec. VI a
more general ¹S'X'Sversion of the model taking into
account a surface sheet of nonvanishing pair potential on
top of the tantalum half-space. With L' the thickness of

the tantalum coherence length. Moreover we define a pa-
rameter 5 by

5= A, 'sinn& .
2

r=1 —to

the reAection probability of the 6 function normal poten-
tial barrier and

a(e)=
mAc 2sin5 —sin(5+ a, )e

(NcS'N'S model),
sin(5 —a, ) —sin5e

the Andreev r

exsection

amplitude of the tantalum
(S'N'S) half-space. Obviously, a(e) and t(e) depend on
the model parameters A, , A, ', and 6, /Az. In particular,
the interference effects under question are due to the
dependence on A, . This should be kept in mind although
for brevity this dependence is not explicitly indicated in
the notation with the exception of Eq. (12) below where
t(e) is replaced by t(e, i, ).

By specializing in two steps to L ' =0 and L =0, respec-
tively, we have

a(c, ) =e 'e' ', (NcN'S model) (10)

and

a(e)=e ' (NcS, i.e. , BTK model) .

Inserting (10) or (11) into (7) yields formulas which apart

Then, the final result for t(e) may be brought to the form

[1+ a(e)I'][1—ala(e)I']
(1—r[a(e)] [

with
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from notation are equivalent to those given in a less con-
cise form in Refs. 1 and 10, respectively.

Formulas (7) and (9) are new. A sketch of their deriva-
tion is given in the Appendix. According to this deriva-
tion, (7) holds for any 1D model with a 6-function normal
barrier on top of a superconducting half-space x )0 re-
gardless of how b,(x ) varies for x )0. a ( c, ) has then to be
identified with the Andreev reAection amplitude of the S
half-space. (7) was used, without derivation, in a previ-
ous paper by one of the authors' to describe current
transmission into a periodic S half-space modeling the
layered structure of high-T, superconductors.

B. Modeling experiments by the NcN'S contact scheme

In this subsection we apply the NcN'S model to the
high-current branch of the characteristics represented in
Fig. 1. All necessary formulas were given in Sec. IVA.
We do not adjust the Z parameter of the model but in-
stead use its value as taken from the low-current branch
of the characteristics, i.e., Z=0. 5. Since the model pa-
rameter Az has to be identified with the bulk tantalum
low-temperature gap 0.72 meV, the only unknown pa-
rameter is the thickness of the N' region of destroyed su-
perconductivity, i.e., A, in reduced units. A, ( U) will be nu-
merically adjusted as a function of bias in the manner to
be described below. Before presenting numerical results,
we emphasize the following points: Throughout the
high-current regime, the voltage U is so far above the gap
voltage that contributions to the excess current integral
from energies near the upper limit of integration are
unimportant, the integrand t(E)/to —1 being very small
in this regime. In fact, the oscillations we are interested
in are due to contributions from the gap region, c near
unity, to the excess current, and these contributions oscil-
late with increasing A, . As a consequence, we may replace
the upper limit of the integral in (1) by infinity. The re-
sult is

Gi (A, ) =dI,„,(A, )/d A, , (13)

rather close to integer and half-integer values of A, , re-
spectively. According to (13) and (1), the normalized
differential conductance,

G( U) =R„dI, /d U, (14)

is given by

G( U) = G&(A, )(h/e )d A /dU+ 1,
and since X is assumed monotonically to increase with U,
the extrema of the experimentally observed conductivity
indicate integer and half-integer values of A, . Hence the
gross scale of variation of A, along the experimentally
determined characteristics is well defined from experi-
ment.

For a more detailed comparison with experiment we
assume, for simplicity, k to increase linearly with voltage
U,

k=c+dU, (16)

tegral come from the vicinity of a = 1, and A, varies with
U.

With c fixed to unity, the current transmission
coefficient t(1,A, ) is periodic in A, with period 1 as may be
seen from (7) and (10). This periodicity is also reffected in
the excess current (12). Numerical evaluation of the
theory now proceeds as follows: On the basis of the for-
mulas of subsection A we could immediately calculate the
normalized excess current I,„,( U) provided we know how
the normalized length A, of the N' zone varies with bias
U. In fact we do not.

We may, however, use the model to extract A, ( U) from
the experimental result in the following way: We numeri-
cally calculate the excess current as a function of A, . We
also calculate its derivative with respect to X. As a result
from numerics, we find the maxima and minima of the
derivative,

(12)

In contrast with (1), this equation does not only hold for
zero temperature but for finite temperature as well. Tem-
perature only enters via the temperature dependence of
the model parameter 62 which we neglect throughout.
The Fermi distributions of quasiparticle energy in the
electrodes do not enter the final result. We refer to Eq.
(19) of Ref. 10 which was derived for finite temperature
and, apart from notation, coincides with Eq. (12) above.

According to (12), the excess current depends on U
only through the U dependence of A, . The oscillations we
observe are therefore different in origin from the usual
type of Rowell-McMillan oscillations. ' In the latter case
the geometry is fixed and the oscillations occur by varia-
tion of energy eU, i.e., variation of the upper limit of the
current integral. Roughly speaking, oscillations come
about in any case by the phase mA, c in the Andreev
reffection coefficient as given in (10). However, while in
the Rowell-McMillan case A, is fixed and c varies, here the
most important contributions to the excess current in-

choosing the parameters c and d=dA, /dU such as ap-
proximately to reproduce the positions of the maxima
and minima of the experimentally determined dI/dU
curve. This leads to a scaling of the calculated normal-
ized conductance G( U) according to (15), allowing for a
direct comparison with experiment.

There is not too much ambiguity in choosing the pa-
rameters c and d except the following: Sometimes there
remains some uncertainty in indexing the maxima and
minima by integer and half-integer A, values, two possibil-
ities of doing so just differing by unity. An example is
given by Fig. 2. Here curve 1 represents the experimen-
tally determined conductance along the high-current
branch of Fig. 1 with the ordinate normalized according
to (14). More precisely, to account for the slightly non-
Ohmic behavior of the normal-state characteristics, the
bias-dependent diff'erential resistance R ( U) was taken for
both the normal and superconducting state from Fig. 1,
and the resulting Rz(U)/Rs( U) was plotted as G( U) in

Fig. 2, curve 1.
Curves 2 and 3 were calculated with the parameters c

and d given in the figure caption and chosen such as to
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reproduce the positions on the U scale of the experimen-
tally observed extrema. Somewhat different values of the
parameter d resulted from adjusting parameters c and d
such as to reproduce the first maximum for 2 but not for
3. As mentioned before, once the abscissa scale adjusted
according to (16) the ordinate scale is fixed with no ad-
justable parameter left.

Not only the U scale is given as an abscissa common to
all the experimental and theoretical plots in Fig. 1 but the
A, scales for the theoretical curves are displayed as well,
illustrating different indexing of the extrema of the exper-
imental characteristics. In discussing the experimental
result one may note that A, is measured in units of
g'=(m /2)g2. In absolute units, g' is about five times the
coherence length or 0.45 pm.

Curves 4 and 5 will be explained in Sec. VI. Here we
restrict discussion to curves 2 and 3. Comparing experi-
mental and theoretical characteristics we do not expect
the model to describe the experimental background con-
ductance behavior well within the percentage range of
variation under question. However, the oscillation ampli-

tudes should be adequately represented. Apparently, the
order of magnitude is roughly accounted for by the
theoretical curves, although less satisfactorily by 2 as
compared with 3.

In detail, some systematic deviations between experi-
ment and theory are obvious. In the experimental curve,
the minima are more pronounced and are narrower on
voltage scale as compared with the broad Hat maxima.
This kind of anharmonicity was observed for all of our
samples and is in clear contrast to the theoretical curves.
However, the only conclusion to be drawn from this is
that A, does not vary linearly with U. Instead, dA, /dU
must be larger near half-integer than near integer values
of A, . This behavior must be looked upon as a hint indi-
cating that quasiparticle constructive or destructive in-
terference is involved in the determination of the bubble
diameter at a given bias. Although not just unexpected,
this feature must be taken here as a purely experimental
result since a theory of A, ( U) is not available at present.
Hence, in order to discuss oscillation amplitudes we
neglect this nonlinearity altogether replacing dA, /dU by
its mean value over, say, two periods.

While curve 3 satisfactorily reproduces the experimen-
tal amplitudes, another shortcoming is obvious in this
case. The first maximum in the experimental curve is not
obtained from curve 3. Taking this maximum serious
prevents the indexing of maxima and minima underlying
curve 3. Instead, the first maximum must be attributed
to X= 1. As a consequence, we obtain curve 2, which ob-
viously yields too small amplitudes for the low-order os-
cillations. Now, while there are many reasons for the ex-
perimental amplitudes to be smaller than theoretically ex-
pected, the reverse situation can hardly be accounted for.

Similar shortcomings are found for other samples and
can be found in Ref. 1 on closer examination. Conclud-
ing this section we therefore state that although an inter-
pretation of the experiments in terms of quasiparticle res-
onance phenomena seems possible, in principle, there
remain problems to be clarified. Particularly, an indepen-
dent investigation is highly desired of the main idea
presented in the foregoing, namely, the idea of an N'/S
phase boundary being driven into the superconductor
with its position being experimentally measurable in units
of f. Such an investigation is described in the following
section.

1.04 V. CONDUCTANCE OSCILLATIONS
IN MAGNETIC FIELDS

0.96
3

FIG. 2. Normalized conductance G( U) along the high-
current branch of Fig. 1. U scale common to all curves, A, scales
for theoretical curves. Curve 1: experimental result. Curves 2
and 3: ¹N'S model results with parameters c =0.058,
d =0.254 {mV) ' for 2, and c = —0.587, d =0.217 (mV) ' for 3.
Curve 4: NcS'N'S model result with 4&/4&=0. 5, A, '=0.2,
c= —0.974, d=0.435 (mV) '. Curve 5: same as 4 but with
+15%%ui distribution of A, (see text).

As mentioned before, oscillating contributions to the
conductance are observed in the high-current state in
magnetic fields somewhat below the critical field. We
present two examples in the following figures.

In Fig. 3, the difFerential resistance is displayed for
several values of the external field for the sample the data
of which have been displayed in Figs. 1 and 2 for B=0.
The field was applied parallel to the %/S interface. Be-
cause of the demagnetization factor of —,', one has to mul-
tiply the denoted external field B, by 3/2 in order to ob-
tain the true field B at the interface. This holds because
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FIG. 3. Differential resistance vs voltage at different values

B, of the external magnetic field. Same sample as in Figs. 1 and
2. The smooth curves correspond to tantalum being brought
into the normal state by a high magnetic field of about 400 rnT.
Curves for different 8, have been displaced vertically, with the
ordinate scale corresponding to the uppermost pair of curves.
B, has to be multiplied by 2 to get the true field B at the con-

striction {see text).

the bulk sphere-shaped tantalum sample is in the Meiss-
ner state. The maximum field here thus is 8=60 mT
which corresponds to about 85% of the critical field 8, .

In Fig. 4 the current vs voltage characteristics are
shown for another sample. With respect to the normal-
state characteristics (NL ), the other curves represent the
bias-dependent excess current. For a somewhat more de-
tailed description see the figure caption.

Figures 3 and 4 represent two of numerous examples of
a new type of oscillatory behavior of characteristics in
the high-current state, with up to 50 periods in some
cases. These oscillations will be discussed in the follow-
ing and an explanation will be given. Moreover, there are
a number of additional aspects of the experimental re-
sults, the most important one being the strong decrease in
excess current in the discontinuous and hysteretic transi-
tion from the lower- to the high-current state. This
behavior is to be analyzed in a current investigation not
to be given here. Here we solely are concerned with the
oscillations.

As mentioned in the Introduction, these oscillations
constituted a puzzle and led to several misinterpretations
including the assumption of geometrical resonances of
the type described in Sec. IV. Finally, a key towards an
adequate understanding was the apparently nonanalytic
behavior often observed for the excess current near the
oscillation minima. Particularly at the highest fields the
minima get more and more cusped indicating a discon-
tinuity in the derivative. Figure 4 may serve as an exam-
ple. Upon closer examination the phenomenon is also
seen in the uppermost curve of Fig. 3. Here the transi-
tion from minimum to maximum values of dI/dU is

FIG. 4. Current vs voltage characteristics for different mag-
netic fields. Another contact with properties quite similar to
that presented up to now. The same ohmic current contribu-
tion, const .U, is subtracted from all of the curves including that
measured with Ta in the normal state {NL ). Thus the difference
between any of the curves and that labeled NL equals the bias-
dependent excess current. The maximum excess current ap-
pears for B=0 in the lower current branch of the characteris-
tics. Its value in reduced units {see Sec. IV) is 0.45 as indicated
in the figure.

nearly discontinuous. On the whole, the behavior is very
much reminiscent of the "Mercereau eff'ect, " i.e., the
~cos(n@l@o)~ dependence of the maximum current in a
symmetric superconducting quantum interferometer con-
taining two weak links with the quantum phase diff'erence
between them controlled by an enclosed magnetic flux P.
Since the oscillations are best pronounced at fixed exter-
nal field, see Figs. 3 and 4, Aux must be assumed in this
case to vary by variation of the area incorporated in the
interferometer.

VI. STRUCTURE OF THE NONEQUILIBRIUM STATE

The explanation we finally propose for the observed
effects is represented by the highly schematic sketch in
Fig. 5, upper part. According to this, the high-current
nonequilibrium state implies, in fact, a superconducting
quantum interference device (SQUID) topology when dis-
cussed in its 3D aspects. In three dimensions, the normal
N' region previously introduced must be a normal bubble
in the superconductor below the injection orifice. A new
idea schematically represented in Fig. 5 is the following:
There exists a thin sheet of nonvanishing pair potential
immediately below the contact. The structure of the con-
tact in the normal direction is thus given by the order
NcS'N'S as depicted in Fig. 5, lower part, instead of
NcN'S. The thickness of the S' sheet is assumed to be of
the order of magnitude of the coherence length, that is
rather small compared with the normal bubble diameter.
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is what we claim to see in the experiments.
If, moreover, we assume that the bubble or tube cross

section normal to the field direction does not deviate too
much from circular shape, and is nearly B independent,
i.e., equal for B=0 (spherical bubble) and for B=B,
(tube-shaped normal zone) then there is a straightforward
proof possible of the above given interpretation. While in
Sec. IV we determined at B=O the bubble diameter
L/g'=X in units of g'=(vr /2)(2, we may for the same
bias determine the tube diameter by counting along the
characteristics up to this bias the number of oscillations
in a Geld closely below B,. We thus obtain the number of
Aux quanta, Pl/0, at this bias as an experimentally deter-
mined quantity. B has to be taken close to B, because
only near B=B, the field through the normal region is
expected to be approximately homogeneous and to take
its full value, whereas for 8 (B, the field is at least par-
tially expelled on account of the Meissner effect. ' Set-
ting

LaB—/Qo=(t /Po

FIG. 5. (Upper part) N, N', and S regions, schematically, in-

dicating topological and geometrical aspects of quasiparticle
and supercurrent distribution. Io, I3. quasiparticle currents, I„
I2.. Josephson currents. {Lower part) 10 pair potential model.
A quasiparticle injected through the orifice (c) in forward direc-
tion meets an N/c/S'/N'/S structure along its path. This
model finally leads to the conductance/voltage characteristics
displayed as curves 4 and 5 of Fig. 2 (see text).

According to Sec. IV the latter increases along the high-
current characteristics from 1 to 3 times g', that is from 5

to 15 coherence lengths. A minor fraction of the low-
energy injected quasiparticle current is transformed to su-
percurrent by Andreev reAection within the S' region,
while the major rest is transformed to supercurrent deep
in the S half-space. This distribution of supercurrents is
schematically indicated in Fig. 5. At the end of this sec-
tion we shall give an argument to explain the existence of
the S' sheet. With a magnetic Geld applied and increased
from 0 to near B„we expect the topology of the normal
bubble to change from that of an imbedded sphere to that
of a tube parallel to 8 and intersecting the superconduc-
tor surface in some distance. ' Apparently, this is just
the topological situation of a symmetric SQUID. More-
over, the widths of the paths of supercurrents I, and I2
(see Fig. 5) are geometrically restricted near the injection
orifice by the dimensions of the orifice itself and by the
thickness of the S' sheet. Hence the immediate vicinity
of the injection orifice is expected to have weak-link char-
acter, the supercurrents I, and I2 being controlled by the
pair condensate phase differences across these regions,
and these phase differences again controlled by the mag-
netic tlux P through the normal region. As a conse-
quence we expect a maximum Josephson current

hII+I2 —I cosmic/&OI, &0=
2e

according to the standard textbook formula. In fact this

we get the magnetically determined bubble diameter I.~
and the same quantity in reduced units

which should approximately coincide with the quantity I,
obtained from quasiparticle resonances at B=0.

The correlation between A, and A,z is displayed in Fig. 6
for a total of 12 samples, in fact, all those for which ex-
perimental data were available. The A, values chosen cor-
respond to maxima and minima in the B=O conduc-
tance. The A,~ values were taken for the same bias values
at maximum field below B,. Correlation along the line

FIG. 6. Linear dimensions of the N' zone: k from quasiparti-
cle wave resonances at B=0, A,& from counting the number of
flux quanta at B closely below B,. Circles: X evaluated within
the NcN'S model; filled circles: sample of Figs. 1, 2, and 3; filled
squares: same sample but k evaluated within the NcS'N'S mod-
el (see text). Connected points correspond to the same sample.
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A, =kz could not have been expected to be better in view
of the underlying assumptions. Hence we have got a
second independent confirmation of the N' zone spatial
extent, which we obtained in Sec. IV from the B=0 in-
terference phenomena.

Reviewing the preceding discussion it becomes clear
that the XcN'S model of Sec. IV may be looked upon as
an approximation in the case of very small thickness L'
of the S' sheet in Fig. 5. In the one-dimensional model it
is, however, not difficult to incorporate this sheet. As-
suming some reduction of the pair potential, say, to
6, & b, 2 and, for simplicity, abrupt transitions in b, (x), we
obtain the NcS'N'S model given by the lower graph in
Fig. 5. The Andreev reliection amplitude a(E) from the
half-space x )0 was given already by formula (9). As-
suming fixed values of the parameters b, , /b, 2 and
A, '=L'/g, we may numerically calculate the normalized
excess current as a function of A, =L /f' in the manner
previously applied for the NcN'S model. Again assuming
A, to increase linearly with bias U according to (16), we
calculate the normalized differential conductance analo-
gously to Sec. IV B. Curve 4 of Fig. 2 gives the numerical
result for the parameters A, ', 5, /b, z, c, and d given in the
figure caption.

As expected, this result is richer in structure and less
regular than that given by curves 2 or 3, see for example
the shallow extra minimum. Such extra structure includ-
ing fiat shoulders not expected from the simpler (A, '=0)
model are often observed for other samples not displayed
here. Curve 5 is to show that the shallow minimum does
not survive the assumption of a distribution of A, values.
Such a distribution must be assumed if one takes into ac-
count a spatial distribution of quasiparticle injection
directions, i.e., deviations from normal direction. Curve
5 was calculated under the assumption of a rectangular
distribution of A, values by 15%%uo. More precisely, in (15)
Gi (A, ) was replaced by the mean value
(1/0. 3) josI&G„(p)dp. While a more detailed analysis
of experiments in terms of the XcS'X'S model was not
yet performed, the example given here shows that under
reasonable assumptions concerning the parameters A,

' and
6& /k2 the modeling of experimental curves is clearly im-
proved.

Finally, the diagram in Fig. 6 has to be slightly
modified. For the sample represented in Figs. 1, 2, and 3,
and by the filled circles in Fig. 5 we get in the extended
model new A, values for the maxima and minima of the
dI/dU characteristics. As may be seen from Fig. 2,
curves 4 and 5, these values are no longer integer and
half-integer. The modified A, vs A,z correlation is
represented by the squares in Fig. 6 with the result that
altogether the correlation is neither better nor worse than
in the simpler XcN'S model.

After having obtained this interpretation scheme we
argue that its main assumption is reasonable. This as-
sumption postulates immediately below the contact a
finite S' sheet separating the normal bubble from the sur-
face and hence allowing for a Josephson current in a dou-
bly connected topology. However, such a situation is just
what must be expected if the breakdown of pair potential
is mainly due to exceeding a critical supercurrent and not

to a thermal effect. ' Immediately below the contact,
namely, all injected current is quasiparticle current. The
supercurrent is generated by Andreev refIection of quasi-
particles from the energy range E & Az in a finite depth of
order of magnitude given by the coherence length.
Hence the assumption is quite plausible of a critical su-
percurrent not immediately below the contact but in
some finite depth.

Nevertheless, Fig. 5 should not be taken too literally.
It might well be appreciably modified by a microscopic
description of Josephson and quasiparticle current distri-
butions but we expect the main idea to remain unaffected,
namely, that we are able to measure the cross section of
the nonequilibrium region by counting fl.ux quanta at
B=B, along the conductance vs voltage characteristics.

VII. CONCLUDING REMARKS

In the foregoing, discussion was restricted to two ex-
perimental results concerning geometrical dimensions of
a nonequilibrium structure which was termed a "normal
bubble" below the superconductor surface. While the
quasiparticle resonances at B=0 allowed for the deter-
mination of a linear dimension of this bubble, X in re-
duced units, a Josephson current contribution periodical-
ly modulated by the magnetic Aux allowed for determin-
ing its cross sectional area. Assuming the cross section
not to deviate too much from circular shape both results
are found to agree. The bubble diameter is thus experi-
mentally measured and, along the experimental charac-
teristics, is found to increase up to about A. =3 corre-
sponding to L = 1.4 pm in absolute units.

In spite of this clear result an adequate description can-
not be given at present of what may be termed the "inter-
nal structure" of the bubble. Any improved description
of this structure would have to incorporate the space-
dependent phase of the complex pair potential and the
corresponding Joseph son current densities with pair
breaking being expected above some critical value of the
external current. The experimentally observed high-
current state would then correspond to this pair-breaking
regime. A corresponding approach from theory would be
highly desirable but lies beyond the scope of this investi-
gation.
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APPENDIX

Results for the NeS'N'S scattering model were given in
Sec. IV A. Rather than giving formal derivations we here
report on the structure of the analysis leading to these re-
sults omitting all details. ' The model and its analysis are
illustrated by Fig. 7, the subdiagrams (a, )—(f2) of which
will be referred to in what follows without repeating the
figure number.

With the interface between the two metals normal to
the x axis and localized at x =0, subfigures (a& ) and (e&)
represent the pair and normal potentials entering the
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FICi. 7. (a) —(d): Andreev scattering by di6'erent pair potentials. Incoming quasiparticle amplitudes normalized to unity. Scat-
tered quasiparticle amplitudes indicated in the figure. In intervals where 4=0, full arrows indicate electron, dashed arrows indicate
hole excitations with the arrow direction indicating the group velocity. The multiple-scattering process in (dz) is summed up in the
text. (e) Normal scattering by a 5-function barrier. (f) combined normal and Andreev scattering. The amplitudes 8(c) and A(c) for
normal and Andreev reQection are obtained from the multiple-scattering process (f2) by summing the outgoing electron and hole am-
plitudes, respectively (see text).
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Bogoljubov —de Gennes equations in the NcS model of
Ref. 10 (BTK). Replacing (a, ) by (b&) or (d&) yields the¹X'Smodel of Ref. 1 or, finally, the KcS'X'S model un-
der question.

Solving the 1D scattering problem means to determine
the electron and hole refiection amplitudes B(e) and
A(E) in the N region as introduced in Sec. IV A. This is
done by solving the time-independent Bogoljubov —de
Gennes equations for the two-component wave function
g(x ) suitably composed of plane-wave contributions in
the di8'erent intervals of constant potentials V and A.
The plane-wave amplitudes in all of the intervals [includ-
ing the amplitudes B(e) and A(e) in the N regime] are
uniquely determined by the matching conditions at the
potential discontinuities and the boundary conditions at
x =+~. One obtains an inhomogeneous linear algebraic
(4 X4) or (8 X 8) or (12X 12) equation system for the NcS
or NcN'S or XcS'N'S model, respectively.

Now in the latter case, instead of directly solving the
(12X 12) system in a rather tedious way, we make use of
the internal structure of the problem by composing the
final solution from the solutions of more elementary
scattering problems. In doing so we obtain the solution
in a well-structured analytical form. Moreover the final
formulas are more directly related to the physics in terms
of a multiple-scattering scheme with constructive and
destructive interference of quasiparticle waves determin-
ing the final result in a very transparent way.

1. Andreev scattering

First of all, consider the special case Z =0, or,
equivalently, V(x)—:0. Then, as usual, neglecting in the
matching conditions small terms of order (k~gz) ', one
obtains pure Andreev scattering or, in terms of Ref. 10,
"no scattering across the Fermi surface. " That means
that for the incoming electron problem under question, in
any of the x intervals only the plane waves with wave
vectors close to +kF appear in the solution, with the am-
plitudes of the "near ( —kF )" plane waves vanishing. On
the other hand, the matching conditions (postulating con-
tinuity of f and g') are pairwise identical for solutions of
this type. Thus, both the number of amplitudes to be
determined and equations to be satisfied are smaller than
in the ZAO case by a factor of two.

For Z =0, the incoming electron solutions for the NcS
and ¹X'Smodels are symbolized in an obvious way by
figures (a2) and (b2), respectively. The scattering solution
is composed in any of the x intervals from electronlike
and holelike quasiparticle waves symbolized by full and
dotted arrows, respectively. The arrow directions indi-
cate group velocities dE/dk along the corresponding
branch of the dispersion relation. Remember that an
electron and a hole with a wave vector close to +k~ have
positive or negative group velocity, respectively. The
corresponding amplitudes are also represented in the
figures with the amplitude of the incoming electron nor-
malized to unity. The Andreev reAection amplitudes
a(e) indicated in (a2) and (b2) have already been denoted
by formulas (10) and (11) of the main text. They are easi-
ly obtained from the corresponding formulas of Refs. 10

and 1 (the abbreviation y introduced in b2 is also used in
what follows).

On account of electron-hole symmetry, any incoming
electron-scattering solution implies an incoming hole
solution for the same energy with each plane-wave corn-
ponent

ibkxe e
V

in any of the x intervals replaced by
r

V ' p i5kxe e
Q

in the same interval and with the same amplitude.
Subfigure (a3) gives an example. Both incoming electron
and incoming hole solutions are finally needed to con-
struct the solution in the ZAO case.

Next, again for Z=O, consider the pair potential bar-
rier of height b.

&
displayed in (c&) and representing the¹S'X'part of the structure with the S half-space re-

placed by the X' zone extending to x = ~. The corre-
sponding Andreev scattering of an incoming electron
constitutes another type of elementary problem finally
entering the general solution. We are not only interested
in the Andreev backscattering amplitude denoted by R in
this case but also in the transmission amplitude T. Ex-
plicitly solving the corresponding (4X4) linear equation
system we obtain formulas for R and T. These are given
here without detailed derivation. We obtain

—sina,T=
sin(5 —a, )

(A 1)

sin5
sin(5 —a&)

(A2)

a(E) =R + T e'~+ T Re 'r+ T R e 'r+

T e

1 —Re'~
(A3)

Using (Al) and (A2) and performing some elementary
transformations yields

a(e)=
sin5 —sin(5+ a, )e'r

sin(5 —a& ) —sin5e'~
(A4)

This is just Eq. (9) of the main text which is thereby de-
rived.

with e, and 5 given in Sec. IV A. Note T and R depend
on c,.

Finally, the Andreev backscattering amplitude a(E)
produced by the pair potential of the subdiagram (d&)
may be constructed as an infinite series. The multiple-
scattering series to be summed over is indicated in subdi-
agram (d2). The results of the elementary scattering
problems above are incorporated in the amplitudes given
in (d2) in an obvious way. In summing the outgoing hole
amplitudes we obtain
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2. Normal scattering

Assume h(x)—:0 and V(x) =fiU~Z5(x). According to
standard textbooks, for an electron with wave number
k~ =mvz/A, transmission and reflection amplitudes for
the 5-function barrier are given by

lZ
j+iZ 1+)Z (A5)

IToi + Roi =1; TDRO = —TQRo . (A6)

3. Combined normal and Andreev scattering

We are interested in the case of combined normal and
Andreev scattering. Without normal scattering, i.e., for
Z=O, Andreev reflection from the half-space x )0 is
completely described by the energy-dependent Andreev
reliection coeKcient a(E). For nonvanishing Z, the
rejected electron and hole amplitudes, 8(E) and A(e),
have to be calculated, which were introduced in context
with Eq. (2) of the main text.

Figure 7(f) illustrates the situation. In order to apply a
multiple-scattering scheme very similar to that used
above we introduce instead of the given A(x), a pair po-
tential which is identical to b,(x) everywhere except for
0 (x (5+ where h(x) is set zero. 5+ is a positive
infinitesimal introduced solely to define plane-wave am-
plitudes in this interval. With 5 —+0 the problem is

This scattering solution is symbolically displayed in
(e2). Again small deviations 5k from kF may be neglect-
ed in To and Ro. With other words, we neglect the ener-
gy dependence of To Ro for excitation energies small
compared with EF. As indicated in subdiagram (e2), the
corresponding amplitudes for a hole excitation are To
and Ro. (A5) implies the properties

(A7)

Here use was made of (A6). For the reAected hole ampli-
tude we obtain

A «) =
I
Tol'« I+ IRQ I'a'+ IR o I'a'+

I
TOI'a

1 —IR, I'a' (AS)

After some straightforward calculation, not to be given
here, we obtain from this the current transmission
coeKcient in the form

r(E) =I —I& I'+
I
A I'

(1+ Ia )(1—R Ia I )

il —IR i'a'I' (A9)

With the previously introduced notation to=
I To and

r =
I
R c I for the normal barrier transmission and

reQection probabilities, (A9) is identical to formula (7) of
the main text which thereby is proven.

identical to the original one. In subdiagram (f2) the
right-hand plane-wave amplitudes are defined in this
infinitely small interval.

The multiple-scattering scheme is now straightforward,
all partial wave amplitudes being denoted in the diagram.
Summing all of the outgoing electron contributions
yields, with a (E) replaced by a for brevity,

8(e)=R0+TORoa (1+IRci a + Ro a + . .
)

oa Rc+(TDR* —ROIRci )a

1 —IR, I'a' 1 —IR, I'a'
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