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Magnetization of S = 1 antiferromagnetic Heisenberg chains
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Full magnetization curves of S = 1 antiferromagnetic Heisenberg chains with periodic and open
boundaries are investigated by a quantum Monte Carlo method. The boundary condition has a
signi6cant efFect on the magnetization process especially in the Beld range where the Zeeman energy
is less than the Haldane gap. The magnetization of the periodic chain in the range is strongly
suppressed at low temperatures because the ground state is nonmagnetic. On the other hand, the
magnetic ground states of the open chain bring about finite magnetization. The difFerence between
both the magnetization curves is also investigated in detail by subtracting the magnetization of the
periodic chain with L spins from one of the open chains with L+ 1 spins. It agrees well with the
double of the Brillouin function for S = —,rather than the Brillouin function for S = 1.

I. INTRODUCTION

Antiferromagnetic quantum spin chains have been
of great interest in recent years due to the Haldane
conjecture. Following this conjecture, the linear-chain
Heisenberg antiferromagnet described by the Hamilto-
nian

'R= J) S, . S+g

should exhibit an energy gap between the ground state
and the first excited state for integer spin cases, while
it has a gapless excitation spectrum for half-odd-integer
spin cases. In the case of S = 1, the existence of the
gap LE has been confirmed by various numerical meth-
ods, such as an exact diagonalization method, quan-
tum Monte Carlo methods, a quantum transfer matrix
method, and a density-matrix renormalization group
method, and the estimation AE 0.41J now seems
to be widely accepted.

On the other hand, extensive experimental evidence of
the Haldane gap has also been shown. In particular, Re-
nard et al. have reported that Ni(C2HsN2)2NO2C104
(NENP) is a prototype of the S = 1 linear-chain
Heisenberg anti ferromagnet. High-field magnetization
measurements for NENP are one of the most successful
experiments in demonstrating the Haldane gap, where a
transition &om the nonmagnetic to the magnetic state
has been observed at a finite magnetic field. These pi-
oneering experiments have stimulated not only experi-
mentalists but also theoreticians to study properties of
the so-called Haldane antiferromagnet in a magnetic field.
So far calculations of the magnetization curves have been
performed for the model (1.1) with the periodic boundary
condition. Parkinson and Bonner performed numerical
diagonalizations and obtained the magnetization process
at T = 0 as a step function. Hodgson and Parkinson

further discussed the form of the magnetization curve
in the vicinity of the saturation field employing a Bethe
ansatz approach. Sakai and Takahashi applied a Gnite-
size scaling based on conformal field theory to their nu-
merical diagonalization data and derived the T = 0 full
magnetization curve in the thermodynamic limit. Their
numerical study strongly supported the critical behav-
ior of the magnetization at the saturation field suggested
by the Bethe ansatz approach. Delica et al. calculated
the magnetization process at finite temperatures by a
quantum transfer matrix method. Although the calcu-
lated temperatures (kIBT/J ) 0.12) are not very much
less than the corresponding Haldane gap, their results
strongly suggest a nonmagnetic ground state separated
&om the excitation spectrum by a finite energy gap. All
these theoretical results explain well the magnetization
measurements although the measurements have been
performed for open chains rather than periodic chains.

Recently, heavily doped Haldane antiferromagnets
have been extensively synthesized and impurity efI'ects on
the magnetization process ' have been reported. Re-
nard et al. carried out magnetization measurements for
copper-doped NENP and observed paramagnetic compo-
nents consisting of S = 1/2 moments. More fascinating
results have been obtained &om magnetization measure-
ments for nonmagnetic impurity zinc-doped samples,
where observed paramagnetic components have still been
explained well by the double of the Brillouin function for
S = 1/2 as in the case of copper doping. All these exper-
iments can be regarded as evidence of S = 1/2 effective
moments induced at chain ends.

In such circumstances, it is worth performing a system-
atic theoretical study on the finite-temperature magneti-
zation process of both periodic and open chains. In the
present paper, we carry out quantum Monte Carlo calcu-
lations of the magnetization process up to the saturation
field for both periodic and open chains in the tempera-
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ture range k~T/ J & 0.10. The obtained results support
the edge-state picture proposed for the AfHeck-Kennedy-
Lieb- Tasaki (AKLT) valence-bond-solid model. In Sec.
II we introduce the model Hamiltonian and briefly de-
scribe the calculation procedure. Results are presented
in Sec. III. Section IV is devoted to summary and dis-
cussionn.

II. MODEL AND METHOD

We treat an S = 1 linear-chain Heisenberg antifer-
romagnet in a uniform magnetic Geld described by the
Hamiltonian

L
'R= J) S, S+i —H) S;, (2.1)

where SL+i ——Si for the periodic chain. Here we have
taken I = 36, namely, the calculations have been carried
out for the periodic chain with 36 spins and for the open
chain with 37 spins.

The Monte Carlo method used is based on the Suzuki-
Trotter decomposition of checkerboard type. As
has been explained in Ref. 19, the transformed two-
dimensional Ising checkerboard in a magnetic field is
slightly modified in accordance with the boundary con-
dition.

Although the Trotter number N should, in principle,
be taken to be as large as possible, we have used sets
of smaller Trotter numbers than in the case without a
Geld. We list in Table I the sets of Trotter numbers
used and the maximum Monte Carlo steps performed for
each Trotter number at various temperatures. In order
to evaluate the magnetization of the system through a
Monte Carlo simulation, enough acceptance ratio should
be guaranteed for the global flips which let the total mag-
netization fluctuate. Therefore we cannot successfully
use such large Trotter numbers as used in the case with-
out a Geld. Furthermore, in comparison with thermody-
namic calculations in the nonGeld case, ' many more
Monte Carlo steps are needed to obtain reliable results.
The N dependence of the data is extrapolated into the
N ~ oo limit. The data precision, which strongly de-
pends on the magnitude of the magnetic Geld, is between
two and one digits for H/J & 0.4 and between three and
two digits for H/J & 0.4.

III. RESULTS

A. High-field properties

We show in Fig. 1 the full magnetization process at
various temperatures for the periodic chain (a) and for
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In this section we show the magnetization M
(P, i S;) as a function of magnetic field H and tem-
perature T, where (. . ) denotes a thermal average of the
quantity. For the periodic chain, calculations have been
carried out in the temperature range 0.1 & k~T/J & 1.0,
while for the open chain, calculations are in the range
0.1 & kIiT/J & 0.3. There is no significant difference
between the periodic-chain magnetization and the open-
chain one in the high-temperature range k~T & AE
0.4J, where the low-lying level structure is not relevant.
Although the actual magnetization measurements ' are
generally performed at 0.02 & k~T/ J & 0.05, we were
not able to obtain, with feasible Monte Carlo steps, re-
liable magnetization curves for k~T/J & 0.1, where the
global flip is hardly accepted, that is, the total magneti-
zation is very hard. to fluctuate.

k~T/ J

0.10

0.20
0.30
0.50
1.00

16, 12, 10, 8

12, 8, 6, 4
8, 6) 4, 2

8, 6, 4) 2

8, 6, 4, 2

MCS
5000000

(periodic chain)
3000000

(open chain)
1000000
700000
500000
500000

TABLE I. Sets of the Trotter numbers used (N) and the
maximum Monte Carlo steps (MCS) performed for each Trot-
ter number at given temperatures (T).
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FIG. 1. Full magnetization curves as a function of magnetic
field II at various temperatures for the periodic chain (a) and
for the open chain (b).
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the open chain (b). There is no qualitative difference be-
tween the periodic-chain magnetization curves and the
open-chain ones in the high-Beld range. As the temper-
ature goes to zero, the magnetization curves of both the
periodic and open chains tend toward the form which
agrees well with the exact diagonalization result at the
absolute zero temperature. Recently, magnetic satu-
ration has been in fact observed for (CHs)4NNi(NO/)3
(TMNIN)

I et us derive the saturation field. First we consider
the periodic chain with I spins. In the subspace with

i S; = L, the spin configuration is unique and the
energy E~~"(L) is given by

(3.1)

B. Lour-field properties

In order to investigate the low-field magnetization pro-
cess, we give in Fig. 2 more detailed plots of the magne-
tization in the range of H/ J ( 1.0 for the periodic-chain
(a) and for the open chain (b). The periodic-chain data
show good agreement with the previous results obtained.
by a quantum transfer matrix method. In contrast to
the high-field behavior, we here find a qualitative differ-
ence between the periodic-chain magnetization and the
open-chain one, which. gets clearer with decrease of tem-
perature.

The temperature dependence of the periodic-chain
magnetization is attributed to a nonmagnetic ground
state separated &om the lowest excited state by a finite
energy gap. The gap in a field H is given by

Eg"(L —1) = (I, —4)J —(I. —1)H . (3.2)

The saturation field H, '~' is obtained by equalizing
Eg"(L) with Eg"(I —1) and is given by

In the subspace with g,. i S; = L —1, diagonalizing the
subspace Hamiltonian, we obtain the ground state energy
E~~"(L —1) as

AE(H) = AE —H, (3.8)

which vanishes at H/J = H, /J 0.4. Below the crit-
ical field H„ the ground state is nonmagnetic and the
magnetization monotonically decreases toward zero with
decrease of temperature. The magnetization curve at
k~T/J = 0.10 shows significant increase at H/J 0.3.

H, '=4J,
not depending on the chain length L. Next we consider
the open chain with L spins. The energy of the state
with a totally ferromagnetic align. ment, Eo (L), is given
by
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The ground state energy in the subspace with g,. i S;.
L —1, Eo (L —1), is obtained as
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which has been predicted by a Bethe ansatz approach.

The difference of the two saturation fields, which is ap-
proximately estimated as (m/L) 2 J, is now very small and
disappears into numerical errors. In fact both the mag-
netization curves in Fig. 1(a) and Fig. 1(b) show quanti-
tatively almost the same behavior. The temperature de-
pendence of the magnetization curves strongly suggests
the anomaly at the saturation field
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FIG. 2. Low-field magnetization versus magnetic field H
at various temperatures for the periodic chain (a) and for the
open chain (b).
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Taking the finite temperature k~T/J = 0.10 into ac-
count, the increase at H/J 0.3 H /J —k~T/J is
consistent with the nonmagnetic to magnetic transition
expected &om Eq. (3.8). However, unfortunately, the
temperature kriT/J = 0.10, which is the lowest temper-
ature in our calculation, is not low enough to suggest the
anomaly at H = LE,

M/I. - (H —~Z)'/', (3 9)

predicted by the Luttinger liquid theory.
The temperature dependence of the open-chain mag-

netization is attributed to the magnetic ground states.
The magnetization is not monotonic as a function of tem-
perature. In other words, the magnetization curves at
various temperatures cross in the low-Geld range. This
phenomenon leads us to the idea that the open-chain
magnetization curve is composed of two distinct terms,
namely, the bulk part and the edge contribution.

Now let us analyze quantitatively the contribution of
the S = 1/2 edge states to the open-chain magnetization.
We plot in Fig. 3 both the magnetizations (not per spin)
of the periodic chain (o) and the open chain (o) with
the difFerences between them b,M (x). Figure 3(a) and
Fig. 3(b) are for k&T/J = 0.10 and for k&T/J = 0.20,
respectively. The quantities LM can be regarded as the
contribution of an extra spin in the open chain. In order
to study how this extra moment contributes to the open-
chain magnetization, we have also indicated in I ig. 3
two types of Brillouin functions. One is the double of the
Brillouin function for S = 1/2,

AM = tanh[H/2k~T], (3.10)

IV. SUMMARY AND DISCUSSION
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We have investigated the temperature dependence of
the magnetization process of the S = 1 Haldane anti-
ferromagnet. It has been revealed that there is an es-
sential difference for the magnetization process between
the periodic chain and the open chain. This difference is
attributed to the ground state properties of the periodic
and open chains. The ground state of the periodic chain
is unique and nonmagnetic, while the open chain has
quasifourfold degenerate ground states including mag-
netic ones. The quantitative analysis of the magneti-
zation difference LM has made clearer the picture of the
edge moments inherent in the open chains.

I et us consider again the Geld dependence of AM. We
show in Fig. 4 the full process of LM as a function of
H at k~T/J = 0.10. Here we find three distinct field
ranges. In the low-Geld range H & H 0.3, the in-
crease of AM is well attributed to the two S = 1/2 mo-

which is represented by the solid line, and the other is
the Brillouin function for S = 1,
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which is represented by the broken line. We Gnd that
in both Figs. 3(a) and 3(b) the low-field magnetization
coming from the extra moment b, M(H) is better fitted
by the double of the S = 1/2 Brillouin function, rather
than the single S = 1 Brillouin function. This is strong
evidence of the appearance of two effective moments of
S = 1/2 in the chain boundaries. is is However, more
careful observation of Fig. 3 shows that AM(H) devi-
ates less &om the solid line at k~T/J = 0.10 than at
kriT/ J = 0.20. This fact can be understood by recogniz-
ing that the edge state is well formed at suKciently low
temperatures k~T (( AE We note tha. t the S = 1/2
moment induced in the boundary is not owing to a single
spin but is an effective moment composed of many cor-
related spins. i According to Eq. (3.10), AM should
be saturated toward unity at H/2kriT 2. Actually,
at k~T/J = 0.1, AM grows considerably However, .at
finite temperatures, LM once decreases above the effec-
tive critical Geld H + 0.4J—k~T due to the delocaliza-
tion of the edge moments, which is further discussed in
the final section. If we could study the magnetization at
lower temperatures, saturation should be realized below
the Geld H
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FIG. 3. Comparison of the periodic-chain magnetization
and the open-chain magnetization in the low-Beld range at
kIiT/ J = 0.10 (a) and at ksT/ J = 0.20 (b), where the inag-
netization difference AM obtained by subtracting the peri-
odic-chain magnetization from the open-chain magnetization
is also represented by x. The solid line describes the dou-
ble of the Brillouin function for S = 1/2 and the broken line
describes the Brillouin function for S = 1.
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FIG. 4. Full process of the magnetization difference AM
as a function of magnetic field H (x) at k~T/J = 0.10. The
solid and broken lines represent the double of the Brillouin
function for S = 1/2 and the per-spin magnetization curve
for the periodic chain, respectively.

ments at the chain ends, as has been discussed already
in the last section. In Fig. 4 we have again indicated. the
double of the Brillouin function for S = 1/2 by the solid
line. The behavior of LM in this region is therefore
inherent in the Haldane phase. In the high-Geld range
H/ J ) 1.0, the system is not in the Haldane phase any
more and the localized moments at the chain ends do
not exist. Therefore the boundary condition is not rel-
evant and LM is simply attributed to the difference of
the numbers of spins. We have also indicated in Fig. 4
the per-spin magnetization curve for the periodic chain
at kt3T/J = 0.10 by the broken line, which shows good
agreement with LM. The field range between the above

two, 0.3 ( H/J ( 1.0, is a transitional range. Due to
the collapse of the edge states, LM once decreases. It
should be noted that the inQuence of the Haldane phase
remains far beyond the critical Beld. According to the
observation of the magnetization, the system is free &om
the Haldane phase only above a field twice or more as
much as the critical field.

In previous papers, the present authors have in-
vestigated in detail the temperature dependence of the
magnetic susceptibility of the present model and demon-
strated that with decrease of temperature, the open-
chain susceptibility diverges, while the periodic-chain
one vanishes. They have further shown that the di-
verging part which is obtained by subtracting the sus-
ceptibility of the periodic chain with L spins from that
of the open chain with L + 1 spins is well explained
as a form 2(1/3)[S(S + 1)J/k~T]s i/z, rather than a
form (1/3)[S(S + 1)J/k~T]s —i. From all these results,
we could say that the magnetic behavior of the present
model with open boundaries is generally explained by a
sum of two distinct contributions coming &om the bulk
and the chain ends.
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