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Ground-state properties of a spin-1 Heisenberg ferromagnet with an arbitrary crystal-field potential
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The ground-state properties of a spin-1 Heisenberg ferromagnet with an arbitrary crystal-field poten-
tial are studied using the linked-cluster series expansion. In the linked-cluster expansion method quan-
tum and spin-fluctuation correlations have been systematically included. We have obtained the magneti-
zation and susceptibility series at zero temperature for a general lattice. The quantum fluctuations play
an essential role in determining the magnetic ordering at T=0. The dependence of magnetic ordering
on the crystal-field potentials and the critical values of the crystal-field potential for which magnetic or-
dering exists are discussed. The observed values of magnetization from the linked-cluster series expan-
sion are appreciably depressed from its mean-field approximation values due to the quantum fluctua-

tions.

Crystal-field effects in magnetic systems have long been
recognized.! In real magnetic materials with localized
moments, the crystal-field anisotropy plays a major role
in determining the magnetic behavior of the system. The
influence of crystal field on the thermodynamical proper-
ties of spin systems has been an important theoretical
problem for many magnetic materials. Many models
have been proposed for study. In this paper, we investi-
gate the ground-state properties of the spin-1 quantum
Heisenberg model with arbitrary crystal-field potential
using the linked-cluster expansion method. The model
has been proposed to study the magnetic properties of
ferromagnetic Ni(2+) compounds with axial and rhom-
bic crystal fields.?

This spin system has a phase transition at zero temper-
ature. The mean-field approximation is generally used to
study the thermodynamic quantities because of the com-
plexities caused by the single-ion anisotropy term. How-
ever, in the mean-field approximation both quantum and
spin-fluctuation correlations have been neglected. The
works beyond the molecular-field approximation are a
study of thermodynamic properties in the random phase
approximation® and a more accurate study of the thermo-
dynamic quantities using the linked-cluster expansion.*
The linked-cluster expansion method has been the most
efficient theoretical method for the study of realistic mod-
els of magnetic materials. The method can solve the
many-body quantum spin systems with crystal-field
single-ion anisotropies treated exactly and provides the
most accurate results for the thermodynamic quantities
of the systems.>®

We obtain the first five coefficients of magnetization
and susceptibility series for a general lattice and for an
arbitrary range of exchange interaction. We, however,
present only the series for the fcc lattice.
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The Hamiltonian of the spin-1 ferromagnet with arbi-
trary crystal-field potential is given by

H=—D 3 (S*+E 3 [(S/)*—(S})?]

— X J;S:'S;—gugh X 87, (1)
(i,)) i

where D and E are positive parameters and measure the
strength of the uniaxial and biaxial anisotropy. The E
term describes fluctuation along the x axis and forces the
spins to lie in the y-z plane. A Zeeman energy term is in-
cluded in the Hamiltonian to find the magnetization and
susceptibility. We restrict to an ordering along the z axis.
The Hamiltonian is divided into an unperturbed Ham-

iltonian H, and a perturbation part as H,,

H=H,+H, . 2)

H, includes all single-ion potentials and a self-consistent
field term extracted from the two-ion interaction poten-
tial. The self-consistent field is characterized by a param-
eter ((S?)) which minimizes the free energy of the sys-
tem,

Hy=—D 3 (S?P?+E 3 [(SF2—(S7)?]
—h>, SF+NJz(S*)*. 3)

H, includes the effects of correlations of the fluctuations,
H1=—2Jij[(Sf—(Sz>)(Sf—(Sz))+S,-+Sj_] , (4)
(i,))
where z is the number of nearest neighbors and
hg=gugh+2Jz(S?).
H, can be diagonalized exactly to obtain the eigen-
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states
le)=l0) , (5)
le,» =sinf|1) +cosb| —1) , (6)
le;) =cosf|1) —sinf|—1) , (7)
and eigenenergies
€,=Jz{S?)?, (®)
=Jz{S?)?—D+(E*+h%;)"?, 9
€,=Jz(S?)2—D —(E?+h%:)""? . (10)

In Egs. (5)=(7), |[m ) (m ==1,0) denotes an eigenstate of
the S? operator with eigenvalue m. The mixing angle 0 is
given by
E
heg+(E2+h2)! 2

tanf= (11)
In the mean-field approximation, the zero-field
ground-state susceptibility per site in the paramagnetic

phase is
o_ &HE

Xo= 57, (12)

and the zero-field ground-state magnetization per site in
J

~ (—1)

ba lde'Tz de(T

where B=(kpT)~! and T, is the 7T-ordering operator
which orders operators in the product with 7 labels de-
creasing from left to right. The subscript ¢ denotes the
cumulant part of the 7-ordered product, or, in the dia-
gram analysis, the contribution of the connected dia-
grams.

The 7 dependence of S%(7) is complicated. To facili-
tate the calculation, we use the standard basis operators:

L, =le, ) (e,l, n=1,2,3, (16)

where g, ),
tonian H,.

These operators satisfy the multiplication rule and the
commutation relation:

Ie,,) are eigenstates of mean-field Hamil-

LigLi, =8pL:, (17)

[Lig, L} (18)

) 1=8,,(85,L iy —8,aL'5) .

The standard basis operators in the interaction picture
have the simple 7 dependence,

L, (r)=e"

m )L (0) . (19)

Spin operators can be written as a linear combination
of the standard basis operators,
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the ordered phase is

21172
Md=gup [1— Fl ] , E<E,=2Jz

c

=0, otherwise . (13)

Thus there exists a critical value E, above which long-
range ordering disappears. This behavior of the system is
due to the quantum-mechanical nature of spin and does
not occur if one considers the ground state in the classi-
cal spin systems. Since the mean-field approximation has
ignored entirely the correlations of quantum and spin
fluctuations which play an important role in the deter-
mination of E,, the mean-field prediction for the critical
E, is independent of the uniaxial crystal-field potential D.

To improve the theory, terms describing the interac-
tions of spin fluctuations, H, of Eq. (4), should be incor-
porated in the calculation. The brief outline of the
linked-cluster expansion follows. The free energy F can
be written as

F=F,+AF , (14)
where F, is the free-energy term corresponding to the
mean-field Hamiltonian H,,. AF, the corrections of free
energy to F, due to the quantum and thermal fluctuation
correlations, is expressed as’

Tl)H (7'2) 'Hl(Tn)]>c ’ (15)

S*=7 [e,, ) (e, 15%e, ) (e,l

m,n

=3 (&, |S%e, )L, -

m,n

(20)

It is convenient to represent the terms in the series ex-
pansion by diagrams. Diagrams involving up to four in-
teraction lines are shown in Table I, where a line denotes
a longitudinal interaction (S7— (SZ) Si—(S?)). Simi-
larly, a solid line with an arrow denotes a transverse in-
teraction S;*S i

The contribution of an nth-order graph to the free en-
ergy is given by the following rules.

(1) Associate a 7 label with each arrow or line and a
site label with each vertex.

(2) Associate a J;; with each arrow or line.

(3) Associate a spin operator product with each vertex.
An arrow pointing into a vertex contributes S;" and an
arrow pointing out of the vertex contributes S;”. A ver-
tex for a line contributes (S7—(.S?)). Assign the 7 label
of each arrow or line to the corresponding operators.
Form the cumulant of the 7-ordered product associated
with each vertex.

(4) Form the product of cumulant and J;; associated
with the graph.

(5) Integrate over d 7 variable from O to 3.

(6) Sum the lattice labels over all lattice sites.

(7) Multiply the contribution by the weight of the
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graph.

(8) Multiply the result by (—1)"/n!.

Summation over the lattice sites is obtained by taking
the appropriate free multiplicity as the lattice constant®
and multiplying the term by J”. The free multiplicity can
be expressed in terms of weak embedded lattice constants
used in the conventional high-temperature series expan-
sion.” The weight factors of the graphs and the lattice
constants (weak embedded lattice constant) of the graphs

KOK-KWEI PAN AND YUNG-LI WANG S1

are shown in Table 1.

Each diagram represents a term in the expansion of
—BAF. The first step in the calculation of the 7 integrals
implied by each graph is to express the cumulants or the
semi-invariants in terms of moments or thermal averages.
Next the spin operators in each product are replaced by
standard basis operators. Finally, the integrals contain-
ing a product of standard basis operators are calculated
by using the multiple-site Wick reduction theorem.

TABLE I. List of free-energy connected graphs (cumulants).

lattice lattice lattice
graph  weight constant graph  weight constant graph  weight constant
N 1 z p— ,
48
T¢ z A 48 6p
o | = > :
TT 24 22
H 2 z 48 6p3
i 2
(11 A A,
3
z <
TT 6 fT 12 2 A a2 op,
[ Y I P
fT 6 z 48 6p,
> 3
N o+ o= =
3
T 12 22 A 96 693
& 6 6p p—
3 —_>
—>> 2 A >
12 z 24 8p, +2z°.7
8 6p3 > 4
- -« \
T*H 24 z TT 3 22 e 6 8p4+222-2
T = -
¢ 3 ,2 12 8p+22°
M o e <
4 z I 2 \
TTT¢ | e z ’y 6 804+22 2-2
MM 1 z é
48 6p
' | I | 48 8p4+222-z
8 z
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The replacement of the product of spin operators by
standard basis operators in the thermal average expres-
sion is done using a symbolic manipulation program. All
nonzero contributions are found and- regrouped with

terms of the same 7 by the program. The multiple-
J
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integrals containing 7-ordered products of standard basis
operators are calculated by using the multiple-site Wick
reduction theorem.® A computer can be used to handle
the integration procedure,

B B B
JJar [ldn o [Pdn, (T [04(r) - Oulri) - 0,(r,)])

_ 1 B B
=< Jodn s [Jan(T(10,0,1, -+ 0,(r)) o

+<T7‘{01(Tl)[02’0k]72 © Oy (1,)} )0+ AT O () -+ [On’ok]rn} Yol - 21
[
We have obtained the first five coefficients in the sus- 0 1. 3*F g} - o »
ceptibility series and the magnetization series. The series X= [}L":o - oh:? E 20 a,(D,E,heg){2Jz/E}" ,
flpu

obtained have been checked in (i) the E =0 limit and (ii)
the D =0 and E =0 limit. In the E =0 limit, the result of
the current calculation agrees completely with Went-
worth and Wang.6 In the D=0 and E =0 limit, the
series reduced to the well-known result found for the iso-
tropic Heisenberg system.!° Furthermore we calculate
the free energy and susceptibility by the two point cluster
method. The results of this calculation of the free energy
and susceptibility series agree with the series calculated
by the linked-cluster expansion by taking z=1 and
p4=0.

We then obtained the zero temperature susceptibility
series and the zero temperature magnetization series by
calculating the finite temperature series in the limit that
temperature T approaches zero or 8 approaches infinity,

MO= lim _a_FzgﬂB S mA(D,E,hg){2Jz/E}" (22)
n=0

B— o dh
and
1.10 -
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MFA
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N
~
~
o
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FIG. 1. The critical point for the magnetic ordering at zero
temperature E,. /2Jz as a function of D /2Jz. The solid line gives
results of the linked-cluster series expansion for a fcc lattice.
The dashed line gives mean-field approximation.

(23)

where hg=gugh-+2JzM°/guy,. In the Appendix we
list the polynomials of a,? for x%(h =0) for the fcc lattice.
The coefficients m!° are too long to be presented here.
The coefficients are available upon request.

The standard ratio test method!? is employed to ana-
lyze the series. At T=0, the critical value of E /2Jz is es-
timated (in the disordered phase) by the extrapolation:

E. _ 1

7 n_m[nv‘,),(D,Ec)—mv‘,)n(D,Ec)], 24)
where v)=a?/a?_,. With the values of D /2Jz fixed,
E, /2Jz is found by solving Eq. (24) self-consistently. The
values of E, /2Jz as a function of D /2Jz found with n =4
and m =3 for a fcc lattice are shown in Fig. 1. The
mean-field result is also plotted (dashed line) for compar-
ison. The easy-axis anisotropy D /2Jz favors the magnet-

0.8
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D/2J2=0.9 ———

0.2 D/2Jz — = oo

0.0 0.2 0.4 0.6 0.8 1.0
E/2Jz
FIG. 2. Magnetization at zero temperature as a function
E/2Jz for D/2Jz=0.9 and D /2Jz= o at zero external field.
The solid line gives results of the linked-cluster expansion for a
fcc lattice. The dashed line gives mean-field approximation.
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TABLE II. Coefficients for Eq. (A1).

ctikim d? i J Kk ) m ctikim d* i J k l m
91 4 0 o 3 o0 o0 f168 41472 4 —1 o 2 o

—6 24 0 0 12 0 +94 41472 4 0 1 0o 0

—4 24 0 -1 2 2 o +74 4472 4 —2 3 0 0
—168 41472 4 —1 2 0 o0

rein e ; i X I om —188 41472 4 o -1 2 0
+148 41472 4 —2 12 0

—128 41472 4 —3 2 2 o0

_ 9o DO Yooy Y 30 awm 0 -1 o 6 0
2 OO 2 2 Y~ aum o o -1 6 0
—5472 41472 0 -3 2 6 0

0% oG 0 a0 0 —osmas awm 0 -2 1 6 o0
I oS S8 Y st 4um2 0 0 5 0 0
e oS SO —698 41472 0 2 3 0 o0
187 oo > 2 42112 4472 2 —1 o 4 0

0 +1512 41472 0 1 4 0 0

_j’g ;gg (2’ 8 (2) ; g —117507 41472 0 0 3 2 0
—3786 41472 2 0 3 0 o0

—13473 41472 0  —2 3 4 0

—22 4472 0 2 1 2 0

4 4 . .

CiljioLm d i j k I m 972 a4 0 —1 4 2 0
—45182 41472 0  —1 2 4 0

+2880 41472 0 2 10 2 +592 41472 0 1 2 2 o0
+7200 41472 0  —1 o 4 2 +3168 41472 2 —1 4 0 o
—5760 41472 0 1 o 2 2 +6426 41472 2 0 1 2 0
+1440 41472 0 1 2 0 2 +2480 41472 2 o -1 4 0
+2880 41472 0 o -1 4 2 —4302 41472 2 —2 3 2 o0
—8640 41472 O 0 1 2 2 —1744 41472 2 —2 1 4 0
—2880 41472 0  —1 2 2 2 —1376 41472 2 —3 2 4 0
+5760 41472 0  —2 1 4 2 —348 41472 0 1 o 4 0
+1440 41472 0  —3 2 4 2 —32057 41472 0 0 1 4 0

ic ordering. When D /2Jz is small comparable to quan-
tum fluctuation from E /2Jz, the effects of zero point fluc-
tuation are important. Consequently, the value of
E./2Jz is small in order to destroy the magnetic order-
ing. As D /2Jz increases, the effect of correlation of spin
fluctuation is suppressed. Therefore, the value of E, /2Jz
must be large enough to destroy the magnetic ordering.
Since the model being studied is the quantum spin sys-
tem, the critical value for the magnetic ordering in
D /2Jz — o limit (Ising limit) is different from the mean-
field approximation.

Similarly, at T=0, we obtain the magnetization as a
function of E /2Jz by using the ratio method. If the self-
consistently determined value of M°/gup has been
chosen then the equation

3 mA(D,E,h4){2Jz /E}"
M°/guy= =9 25)

M°/gug— S md(D,E,h4){2Jz/E}"

n=0

should diverge as the order of the series M®/guy goes to
infinity. The magnetization as a function of crystal-field
potential E /2Jz for a fcc lattice is shown in Fig. 2 for a
certain value of D /2Jz. The corresponding mean-field re-
sult is plotted (dashed line) for comparison. It is clear

that the quantum spin fluctuations have substantially re-
duced the critical value of E from the mean field value
2Jz.

In summary, we have studied the ground-state proper-
ties of a spin-1 ferromagnet with arbitrary crystal-field
potentials using the linked-cluster expansion. We have
shown that the quantum fluctuations play a major role in
determining the magnetic ordering of the quantum spin
systems at T=0. Higher-order terms are desirable for an
in-depth study of this system.
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APPENDIX

The coefficients of the susceptibility series in the
paramagnetic phase are polynomials in the variables x, z,
D> q, and u as
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dn
“F o

Ljk,,m

kol . m

n i ] .
ci’j_k’,,qufzpu ; n=2,

(A1)
ad=1/E ; a0=2/E ,

where ¢q=1/(E—D), x=1/D, z=1/E, p=1/(E+D),
and u=1/(2E+D). d" is a common denominator for
nth-order series. The coefficients in Eq. (A1) are listed in
Table II for the fcc lattice.
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