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Phase transitions in Ising ferromagnets with biquadratic exchange interactions
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Phase transitions of Ising ferromagnets with nearest-neighbor ferromagnetic exchange interactions
and competing biquadratic exchange interactions on a square lattice are investigated using a Monte Car-
lo method for spin values S=1, z, 2, and 2. We find that for all the spin values studied in this paper,
there always exists a transition line for each spin value in the high-temperature region. However, in the
lower-temperature region, different transition behavior may occur for different spin values. In the T-K
plane, a line running within the ordered phase, along the nonzero temperature region from T=O and
K /J 3 to T=0 and K /J= —1 .0 for spin S =

—,
' and from T=0 and K / J= ——„' to T=0 and

K/J = —
—,
' for spin S=2, separates the region of equal sublattice magnetizations from that of unequal

sublattice magnetizations. For spin value S = —', two low-temperature lines in the T-K plane separate the

region of equal sublattice magnetizations from that of unequal sublattice magnetizations with the one
line running in the nonzero temperature region from T=O and K/J = —0. 1 to T=O and K/J = —

6 and

the other line running from T=O and K/J = —
3 to T=O and K/J = —1.0. A comparison with other

approximate techniques is also made.

I. INTRODUCTION

The Ising model has been one of the most actively
studied systems. Besides the bilinear exchange interac-
tions in the magnetic insulators, the biquadratic exchange
interaction K has been proved both experimentally'
and theoretically ' to play a significant role in the
behavior of the Curie temperature, magnetization, and
other magnetization properties. In particular, the spin-1
Ising model with a biquadratic exchange interaction has
been already investigated by using a variety of
methods ' ' and found that the introduction of the
biquadratic exchange interaction E may have a strong
inAuence on the magnetic behavior of the model. In al-
most all of these investigations the discussion has been fo-
cused mostly on the spin-1 Ising ferromagnet with the bi-
quadratic exchange interaction. ' ' ' An extension of
this model is the possibility of inclusion of higher spin
values because the effects of the biquadratic exchange in-
teraction on the magnetic properties are expected to be
large for the ferromagnetic spin system with large spin as
pointed out by Iwashita et aI. ' This is also an extension
of the Blume-Emery-GriSth (BEG) model. ' Therefore it
is worthwhile to investigate the effects of the biquadratic
exchange interactions on the magnetic properties of fer-
romagnets with spins of various values. Higher spin
value problems' ' have received considerable attention
recently; particular interest has been focused on the S=

—,
'

Ising ferromagnet with a crystal-field interaction. ' '
Recently the phase transitions in the spin- —,

' BEG model
with nearest-neighbor interactions, both bilinear and bi-
quadratic and with a crystal-field interaction on a cubic

lattice, has been studied within the mean-field approxima-
tion" (MFA) and Monte Carlo simulations. " Reference
11 also performed Monte Carlo simulations on a 30X 30
square lattice. Besides a transition line occurring at high
temperatures, they locate two low-temperature lines. By
contrast Bake hie h, Bassir, and Berryoussef' have
used a position-space renormalization-group method
based on the Midal-Kadanoff recursion relations to study
this model with a very rich phase diagram, which exhib-
its a wide variety of transition of first and higher order.
This paper finds its inspiration in the work of Barreto and
Alcantara Bonfim" and Bakchich, Bassir, and Ber-
ryoussef. ' In this paper, the effects of the biquadratic
exchange interaction K on the Curie temperature of the
Ising ferromagnets with the spin S =1, —,', 2, and —,', re-
spectively, are investigated with the use of a Monte Carlo
(MC) method. The phase diagrams for various spin
values are presented, and some new transition lines are
found by MC. This magnetic system previously has been
studied by the cluster-variation method in pair approxi-
mation (CVPA) and by Oguchi pair approximation
(OPA) and phase diagrams have been obtained on the cu-
bic lattice for spin S=1, —,', 2, and —,'. The dramatic
difFerence between the phase diagrams obtained by
CVPA and OPA and ours is that besides a transition line
occurring at high temperatures, the phase diagrams ex-
hibit one or two low-temperature transition lines which
have not been predicted by CVPA and OP A. The
reasons for us to choose S = 1, which has been studied by
Monte Carlo methods, ' ' is to test our computer pro-
gram by comparing our results to those of Refs. 6, 17,
and 18. Although for S=—,

' the model has been studied
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by MFA and Monte Carlo simulations" both on a cubic
lattice and a square lattice, the simulational results re-
ported are for a cubic lattice. More importantly, the
nontrivial extension of the model for S =2 and S=—',
have not been studied previously, to our knowledge.

The outline of the paper is as follows. In Sec. II, we
define the model and various quantities we calculated in
our Monte Carlo computer simulations. The phase dia-
grams as we11 as some temperature dependence of the
sublattice magnetization curves are presented in Sec. III.
Finally, we summarize our results and draw our con-
clusion.

II. MODEL AND MONTE CARLO METHODS

The model Hamiltonian is given by

has been used to study the model for the square lattice us-
ing periodic boundary conditions in all lattice directions.
Each point in the phase diagram we obtained on a 30 X 30
lattice by analyzing the temperature dependence of the
sublattice magnetization, specific heat, and susceptibility
curves over sufficient Monte Carlo steps (MCS) after dis-
carding an appropriate number of MCS from the initial
perfectly ordered spin configuration. Typical observation
times were 3000—5000 MCS/spin with the first
1000—2000 MCS/spin discarded to perform the averages.
Our simulations show that increasing the number of
MCS's used to perform the averages or discarded does
not substantially change the observed values of the ther-
modynamic quantities.

The thermodynamic quantities calculated in our simu-
lations are the sublattice magnetization per spin

H= —JQSS —KISS
(1,j) (i j )

The spins S located at site i on a square lattice can take
the values —S, —S+1. . .S—1,S. The first term de-
scribes the ferromagnetic coupling (J&0) between the
spins at sites i and j. The second term describes the bi-
quadratic coupling. Both interactions are restricted to
the Z (Z =4) nearest-neighbor pairs of spins. The simu-
lations will be confined to the parameter space with
K/J(0 throughout this paper. Before discussing the
various quantities calculated in our simulations, it is
necessary to comprehend the ground state for various
spin values. By comparing the values of the ground-state
energy for each spin S, we find that as spin value S in-
creases, the possible configurations allowed for the
ground state increases. Since K/J (0 is studied in this
paper, we divided the total square lattice into two inter-
penetrating sublattices. For S =1 when K/J & —1 both
sublattices have S = 1 (or —1) at every site, when
K/J (—1 both sublattices have S =0 at every site. So
for S =1 the phase diagram contains two regions with
different ground states (T=0), namely (1,1) and (0,0).
These regions in the phase diagram are separated by a
line K/J= —1.0. The notation (i,j) (Ref. 11) stands for
one sublattice having sites occupied by S=i and the oth-
er sublattice having S=j. For S=—'„ three configurations
are allowed for the ground state. The configuration (—,', —,')
and (—'„—,') are separated by the value K/J= —

—,', the
configurations (—'„—,') and ( —,', —,

'
) are separated by

K/J = —1.0. For S =2, four configurations are allowed.
The configurations (2, 2) and (2, 1) are separated by
K/J = —

—,', the configurations (2, 1) and (1,1) are
separated by K /J = —

—,', and the configurations (1,1) and
(0,0) are separated by K/J= —1.0. For S=—,', five
configurations are allowed, the configurations ( —'„—', ) and
( —,', —,') are separated by K/J= —0. 1, the configurations
( —'„—,') and ( —'„—', ) are separated by K/J= —

—,', and the
configurations ( —,', —', ) and ( —', , —,

'
) are separated by

K /J = —
—,', the configurations (—,', —,') and ( —,', —,

' ) are
separated by K /J= —1.0.

The standard Monte Carlo single-spin-flip technique'

and the susceptibility y& (Ref. 11) is defined as

y, =P~(& Q'& —
& Q &'),

where Q is defined as

where X is the total number of sites of the lattice and 3
and B designate the sublattice. The specific heat per spin
is determined from the fluctuation dissipation relation:

C/K, =P'(«'& &E &')/~ .—

III. SIMULATION RESULTS

In order to test our computer program, we first choose
S= 1 by fixing the biquadratic exchange interaction to a
certain value, we then increase K&T/J from the 1ow-
temperature region to the high-temperature region with
an increment temperature of 0.2. By analyzing the tem-
perature dependence of the specific heat we locate the
temperature at which a well pronounced peak appears to
be a transition temperature. The phase diagram for S=1
is presented in Fig. 1. For S =1 this model has been ex-
tensively studied by various treatments. ' ' Here we
compare our results with one of the two high statistics
Monte Carlo studies. ' Let us first take K=O. In this
case the model is reduced to the spin-1 Ising model with
only the bilinear pair interaction. Our result at K =0 for
E~ T, /J = 1.72 is roughly in agreement with the result of
a high statistics Monte Carlo study' ( zKT, J/= l. 96).

As the va1ue of E /J approaches —1, it has been suggest-
ed' that the critical temperature approaches zero linear-
ly given by

T, =3.8J(1+K/J) .

Our result near K/J = —1 indicates that this is valid for
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FIG. 1. The phase diagram for S=1 obtained by the MC
method.

FIG. 3. The phase diagram for S=2 obtained by the MC
method.

—1 ~If/J (—0.85. Our phase diagram is also in agree-
ment with an early Monte Carlo study and causes us to
conclude that our computer program is correct. In the
present Monte Carlo simulations, no hysteretic behavior
is found for any value of the driving parameters. This in-
dicates that the nature of the phase transition is of second
order.

Now we turn our study to S=—,', 2, and —,'. The phase
diagrams are shown in Figs. 2—4. For S=

—,
' as K

the model is equivalent to the spin- —, model and the criti-
cal temperature for K —+ —Do in Fig. 2 is equal to 0.5
which is close to exact result K~ T, /I =2.269/4=0. 565.
So for S=

—,
' the transition line can be extended to

E/J~ —~, while for S=2 the transition line will ter-
minate at IC/J= —1.0 exactly. The phase diagrams for
S=

—,', 2, and —,
' are very different from that of S =1. For

S =1 there is only a second-order transition line which
separates the ordered phase from the disordered phase.
However for S=—,', 2, and —'„besides a transition line
occurring at high temperatures for each spin S, the phase
diagrams may exhibit one (for S=—'„2) or two (for S=

—,')
low-temperature transition lines. The transition lines in
the high-temperature region are obtained by locating the
temperature at which the specific heat has a narrow peak.
The low-temperature transition lines are obtained by a
direct calculation of Mz and Mz or by locating the tem-
perature at which the susceptibility y& has a peak. For
S=

—,', we show in Figs. 5 and 6 the sublattice rnagnetiza-
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FIG. 5. The sublattice magnetizations M& and M& as a func-
tion of the temperature for S=

2 and E /J = —0.70.

FIG. 4. The phase diagram for S=
2

obtained by the MC
method.
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FIG. 2. The phase diagram for S=—obtained by the MC
method.

FIG. 6. The susceptibility y& as a function of temperature
for S=

2 and E /J = —0.70.
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FIG. 7. The sublattice magnetizations M& and M& as a func-
tion of the temperature for S =2 and K!J= —0.25.

FIG. 9. The sublattice magnetizations M& and M& as a func-
tion of the temperature for S= ~, K /J = —0. 13, and
K/J= —0.70.

tion M~ and Mz and y& as a function of the temperature
for K/J= —0.70 and T close to the low-temperature
phase transition line. The corresponding results for S=2
and S=—,

' are presented in Figs. 7—10, respectively. We
can see the transition when the sublattice magnetizations
become equal. We can also see in Fig. 6 there is a max-
imum susceptibility near the transition temperature. Al-
though the transition temperature read o6' from Figs. 5
and 6 may di8'er slightly, we think it is better to choose
the temperature at which there is a maximum susceptibil-
ity as the e6'ective transition temperature because the sus-
ceptibility y& is more sensitive to the phase transition.
So the low-temperature transition lines in the phase dia-
grams were determined by this method. However only
one, small lattice size is studied, thus only a rough esti-
mate of transition temperature can be given.

So for S=—', (S=2), the phase diagram presents a
disordered phase (M„=M~ =0), an ordered phase with
M~ =M~NO, and another ordered phase with
M&WM&%0. A transition line separates the disordered
phase from the ordered ones. A line running within the
ordered phase, along the nonzero temperature region
from T =0 and K/J= —

—,
'

(
—

—,') to T =0 and
K/J= —1.0 ( ——,'), separates the region of the unequal
sublattice magnetization from that of equal sublattice
magnetization.

The phase diagram for S=
—,
' is more interesting; some

14,
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outstanding features are found. In the low-temperature
region, the ordered phases are separated by two transi-
tion lines which have for start and end points, in the
ground state, the exact values E = —0. 1 and K = —

—,
' for

one line and IC/J ' —
—,
' and IC—/J= —1.0 for the other

transition line. These results have not been reported pre-
viously, to our knowledge.

It should be noted that our Monte Carlo study is not
very thorough: only one small lattice size is studied.
Thus no finite-size extrapolations are possible. One can
claim the order of a transition only after a finite-size
analysis. Thus our result is exploratory, not definitive.
The small statistics (3000—5000 MCS) can only be used as
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FIG. 8. The susceptibility g& as a function of temperature
for S =2 and K /J = —0.25.

FIG. 10. (a) The susceptibility y& as a function of tempera-
ture for S=

2 and K/J= —0. 13. (b) The susceptibility g& as a
function of temperature for S=

~ and K/J = —0.70.
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an exploratory study. Our study may stimulate further
work on this model to give a definitive conclusion.

A comparison with the results from CVPA and OPA
obviously leads us to the following conclusions: Both
CVPA and OPA cannot predict the low-temperature
transition lines, the phase diagram presented in Refs. 7—9
would thus appear to be incomplete at low temperature.

IV. CONCLUSION

In this publication we present an exploratory Monte
Carlo study on the spin-1, —,', 2, and —,

' Ising model with
bilinear interactions (J) and biquadratic interaction (K).
We found that for each spin value, there always exists a
transition line in the high-temperature region. This tran-
sition line has already been studied by CVPA and OPA.
However in the low-temperature region, some new transi-

tion lines are predicted by our Monte Carlo simulations.
In the T-K planes, a line running within the ordered
phase, along the nonzero temperature region from T =0
and K/J= —

—,
' to T =0 and K/J= —1.0 for spin S=

—,
'

and from T =0 and E /J= —
—,
' to T =0 and K/J=

3

for spin S=2, separates the region of equal sublattice
magnetizations from that of unequal sublattice magneti-
zations. For spin value S=—'„ two low-temperature lines
in the T-K plane separate the region of equal sublattice
magnetizations from that of unequal sublattice magneti-
zations with the one line running in the nonzero tempera-
ture region from T=O and K/J= —0. 1 to T=O and
K/J= —

—,
' and the other line running from T=O and

K/J= —
—,
' to T=O and K/J= —1.0. Previous stud-

ies seem to predict an incomplete phase diagram in
the low-temperature region.
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