
PHYSICAL REVIEW B VOLUME 51, NUMBER 6 1 FEBRUARY 1995-II

Thermoelastic properties of perfect crystals with nonprimitive lattices.
II. Application to KC1 and NaC1

L. N. Kantorovich*
Departarnento de Quimica Fisica y Analitica, Uniuersidad de Ouiedo, 33006 Ouiedo, Spain

(Received 18 April 1994; revised manuscript received 9 August 1994)

In Part I, the theory for external and internal strain derivatives of the Helmholtz free energy of a per-
fect crystal was developed in the quasiharmonic approximation. The theory allows us to consider arbi-
trary piezoelectric shell-model-like crystals at any temperature and under general external stress condi-
tions. In the present part of this work we show how these derivatives can be utilized in the simplest way
in order to calculate a wide range of macroscopic thermoelastic properties of the crystals. The method
was realized in a computer code written without additional artificial constraints concerning crystal sym-

metry and structure. Special attention is paid to the numerical implementation of the formulas obtained.
Using different types of pair potentials including ab initio ones, various elastic, dielectric, and general
thermodynamic properties of KC1 and NaC1 crystals are calculated here for a wide range of tempera-
tures and pressures (only for NaC1). Our calculations in the vicinity of the melting point demonstrate
that the free energy has a minimum which disappears at some critical temperature, and the transition is
controlled only by the isothermal elastic constant C». It decreases so catastrophically rapidly with in-

crease of temperature that it leads to an immediate violation of the stability condition C» )C12 before
the isothermal bulk modulus reaches zero. The calculations also clearly show that the empirical pair po-
tentials of Catlow et al. are in reasonably good agreement with most of the experimental data. In addi-
tion, we show, in accord with other authors, that the quasiharmonic approximation can be successfully
used almost up to half of the crystal melting temperature, although physically correct qualitative results
could be expected even near the melting point.

I. INTRODUCTIQN

In part I of this work' (referred to hereafter as I), we
have developed a general theory for the Helmholtz free-
energy derivatives with respect to both external and
internal strains within the quasiharmonic approximation
when only the first (major) term in the thermodynamic
perturbation theory ' is left. An arbitrary piezoelectric
crystal was considered no matter what structure and
symmetry it has. The crystal potential energy used in the
derivation was chosen from the theory of deformable di-
poles developed by Tolpygo et al. The method incorpo-
rates electronic coordinates of the crystal in the form of
shells allowing for account to be taken of both the elec-
tronic polarization and correct behavior of the optical
phonon branches. It is worthwhile to mention here that
this model, although physically equivalent and similar to
the widely applied shell models, is not identical to
them.

The theory has been implemented in a computer code
written in a general way allowing for arbitrary crystal
structure and symmetry as well as a sufficiently general
form of the pair potential between cores and shells of
atoms. In this paper we report our 6rst numerical results
calculated using this computer code. So, the main objec-
tives of the present paper are (i) to pay special attention
to the most efficient numerical implementation of the for-
mulas for the free-energy derivatives obtained in I; (ii) to
consider a wide range of thermodynamic, dielectric, and
elastic properties of KC1 and Nacl crystals, using several

well-known pair potentials over a wide range of tempera-
tures and pressures and to make a thorough comparison
of the results with available experimental data; (iii) to
study crystal stability near the melting point and the
mechanism which leads crystals to melt.

These alkali halides were chosen pursuing several pur-
poses. First of all, a lot of experimental information on
the temperature and pressure dependencies of their elas-
tic and dielectric properties obtained by different experi-
mental techniques is available. On the other hand, be-
cause of their simplicity, these alkali halides have always
been a preferred model system on which theoreticians
could check and polish their theories. For that reason, a
number of theoretical works on the subject performed by
various methods are also available '" for comparison
with our numerical results.

The plan of the paper is the following. In Sec. II the
usage of the crystal symmetry while performing the Bril-
louin zone (BZ) integration by the special points
method' is considered. In Sec. III, we give a short out-
line of properties which are calculated from the free-
energy derivatives. Several details of our calculations are
described in Sec. IV. Various zero-pressure thermoelastic
are dielectric properties of Nacl and KC1 rock-salt crys-
tals for a wide range of temperatures are considered in
Sec. V. For the Nacl crystal we also study the pressure
dependence of its several mechanical properties. Special
attention in this section is also paid to the mechanism of
melting observed in our numerical simulations. The main
conclusions are made in Sec. VI. For the reader's con-
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venience we have preserved all notations used in I. Every
reference to the equation (N ) presented in I is made here
as (IX).

II. INTEGRATION OVER THE BRILLOUIN ZONK

The contributions to the Helmholtz free-energy deriva-
tives considered in I should be calculated independently
for every vector kEBZ. In this section we shall perform
a proper symmetry analysis in order to show how to
reduce all k points to the irreducible part of the BZ in
our case.

Let us consider a sublattice s with a vector X(s ) in the
0th unit cell (UC). Under some element
g = [f lr&+R(l ) ] of the space group S of the crystal this
sublattice is transformed to another one or to the same
sublattice. This target sublattice will be marked hereafter
as s(g ). In addition, the following notation will be used
in this section: f is an element of the crystal point group
(so-called crystal class) corresponding to some g PS,
while ~& is the accompanying fractional translation. We
shall not use here the direct lattice translations R(l ) since
they do not a6'ect the properties in question. Thus, we
can restrict ourselves to considering a set of elements
[(f lr&)]. We shall use the same symbol S for this set as
for the space group. For symmorphic crystals s(g)—:s,
though for nonsymmorphic ones there is always at least
one such element g H S that produces a sublattice
s(g }As.

If we examine carefully the definition of the dynamical
matrix, Q" (k) [see equations which follow after Eq.
(I.10) in Sec. IIB of I], we can recognize that it is the
Fourier transform [shown explicitly by Eq. (I.l 1), for in-
stance] of a matrix Q" (R} defined in the direct space.
This matrix behaves as a product of vectors R R . That
is why for any point-group operation f (except those for
which f 'k=k) the matrix Q(f k)=llQ~~(f 'k)ll is
transformed by means of the following similarity trans-
formation:

@" (g)=C (f)5, ,(s) . (2)

It contains a matrix C(f ) = llC .(j")ll of the three-
dimensional point-group operation, f. As the result of
the transformation (1), the eigenvalues A, i, . =co), of the
dynamical matrix are not changed while the correspond-
ing eigenvectors are transformed as

e(f 'k, j)=@(gp)e(kj),

Q(f 'k) =N(g )Q(k)@(g )t,
where g = (f l ~& ) C S. The transformation matrix
@(g ) = ll@" (g ) ll (cf. Ref. 7) is given by

g f(k)=g W, g f(f 'k, ),
k g &(N

where lSl =dimS and f(k) is any smooth-enough func-
tion defined in the BZ, and the index a runs over the spe-
cial points k, lying in the irreducible part of the BZ, 8',
are the corresponding weighting factors. The second
summation in Eq. (4) is carried out over all operations of
the set S, i.e., over all the point-group operations.

In practice, we encounter two major problems in trying
to implement Eq. (4). First of all, every function f(k)
staying under the summation sign should be smooth
enough to be easily integrated by means of this finite term
quadrature. Examining carefully all derivatives given by
Eqs. (I.54) and (I.55), we showed that it is so in our case.

The second problem deals with the second summation
(over the point-group elements) in Eq. (4). We are going
to show that we can restrict ourselves to the calculation
of the free-energy derivatives exclusively at a limited
number of special points [k, I, distributed over the irre-
ducible part of the BZ.

Actually, our task is to link g),J derivatives calculated
at diff'erent points k belonging to the same star, f 'k.
For that purpose, we must derive corresponding symme-
try properties of bjj„.(klx;) and bjj„(klx;,x; ) defined
and obtained in Sec. III C of I. Here x; and x;. mean ei-
ther external, (Py), or internal,

T

S

strains.
Let us consider first bj~ (klPy ) given by Eqs. (I.73) and

(I.75). It follows from Eqs. (I.77), (I.79), (I.80), and (I.89)
that the matrix 8" (klPy) =M" (k) j()upr behaves as a
fourfold product of vectors R~R~ R&Rr. Thus we get

B(f 'k IPy }

=@ (gp) g Cpp (fp)Crr (fo)B(klP, y, ) 4 (g()) .

Apparently, the same properties hold for the matrices
A(f 'klPy) and D(f 'klgy) constituting other com-
ponents of the dynamical matrix, see I for details. Using
these results we conclude that the vectors p(kj), Eq.
(I.71), are transformed in the same way as the vectors
e(kj), i.e., by means of Eq. (3), whereas the vectors
f (klPy ), Eq. (I.72), are transformed as

f, (f 'klPy)=@(go) g Cpp (fo)Cy~ (fo)f, (klP, y, )

P)rl

where go&8 is used instead of g because if k lies on the
BZ surface, it may happen that f 'k=k'+g, where g is
a reciprocal-lattice vector, k'K BZ. In the latter case
gp = (fp l rI ) gives just the vector k', i.e., fo k =k'. In
all other cases go =g.

The integrals over the BZ (over k) are calculated using
the special point method, i.e., employing the recipe'

= X Cpp, «o)C„«o)~"'(klP)yi) .
&)rI

(7)

Therefore, using Eqs. (I.73) and (I.75), we get the follow-
ing result:
~"(f 'kicky)
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In deriving the last equation, we have made use of the
identity 4 4= 1 since the matrix N(go ) is unitary.

All other symmetry properties can be established in the
same way. The internal strain derivatives of the matrices
A(k), B(k), and D(k) behave as a three-fold product
R R R and, therefore, are transformed adequately. As
a result, we get in this case

Note that in the last equation we have a symmetry-
related sublattice s(g) [instead of s as it was in Eq. (7)]
on the right-hand side. That is why, in the general case
of nonsymmorphic crystals, we must know the complete

set N of the space-group generators as pairs of the point-
group elements and accompanying fractional transla-
tions.

In order to find the bracket {Py[ z. given by Eqs. (I.50)
we must apply the recipe of Eq. (4) to the corresponding
functions in Eq. (I.54). Then we must express the first-
order derivatives of A,z~, (where k'=f 'k) with respect
to the external strains through those calculated at the
point k (for any f ). These derivatives are eigenvalues of
Eq. (I.69). Since the eigenvectors C„'&"'(0) in Eq. (I.69) do
not depend on the particular strain component (Py) in
question, the eigenvalues just repeat the transformation
suffered by the matrix KJ~(f 'k~Py) itself. Thus, we can
write down the following 6nal result making use of Eqs.
(I.50), (I.54), (4), and (7):

{Py]r=g W, P2(co„j) g
~

g Cps (fo)Cr~ (fo)1

sEN

(9)

We obtained for the internal strain brackets in the same manner:

S 1W' Pp(cog J ) g ~ 1 g C (fo )
T g

a

s(g)
BU

0

(10)

All second-order brackets represented by Eqs.
(I.51)—(I.53) can be considered analogously. Thus, actual
calculations should be carried out only in the irreducible
part of the BZ.

III. CALCULATION OF THERMODYNAMIC
PROPERTIES OF A CRYSTAL

FROM THE FREE-ENERGY DERIVATIVES

The theory presented so far allows one to calculate
dielectric and isothermal second-order elastic properties
of an arbitrary perfect crystal provided that pair poten-
tials between atoms are known. The following material
constants of any crystal can be evaluated for any given
configuration of the crystal [i.e., for any set of basic direct
lattice vectors a„ai, a3, and sublattice vectors X(s)]:
static dielectric tensor, from the static susceptibility,

y &(0), see Eq. (I.45); static direct (=converse) piezoelec-
tric tensor, Eq. (I.44) and isothermal elastic constants,

C~z~&, Eq. (I.47). The high-frequency constants can
also be obtained making use of Eqs. (I.44) and (I.45), ex-
cept all matrices are considered only on the subspace of
the shell coordinates (cf. Ref. 16).

The complete set of brackets

S S S

~ est ~ r
shows if the crystal is in equilibrium with respect to the
internal strains for the configurati. on under consideration.
Finally, the initial stress tensor r&~. Eq. (I.46), shows to
which external conditions (i.e., to which external

mechanical forces) this particular structure should corre-
spond.

The next step would be to compare the properties cal-
culated with those obtained experimentally. However, as
far as the elastic properties are concerned, we have to no-
tice that it is the adiabatic elastic constants or stiffnesses
that are usually available in the literature. It was shown
in Ref. 5 and 17, how that (as well as some other thermo-
dynamic properties) can be obtained from the isothermal
free-energy derivatives, and so we omit this point here.

IV. SOME DETAILS OF THE CALCULATIONS

First we point out that while making calculations at
different crystal spacings (for example, for a set of zero-
pressure equilibrium structures at different T) special
care should be taken to include a sufhcient number of
neighbors in the summations over the lattice and to avoid
possible discontinuities in the free energy. In other
words, the precision of the lattice summations should be
increased as the spacings become larger. This is especial-
ly important at rather high T.

We have used the Monkhorst-Pack homogeneous mesh
of points' in the whole BZ for generating a set of special
points. In order to avoid singularities in the summations
sets containing the k=0 point were disregarded. Then,
using symmetry operators of the space group of the crys-
tal, only k vectors lying in the irreducible part of the BZ
are evaluated, {k, J, and the corresponding weighting
factors, {W, ], are computed. In factthe fi, nal number of
special points, {k,], depends not only on the MP param-
eter, qM~,

' but also on the crystal point group. As fol-
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lows from Sec. II, all actual calculations are carried out
only for this set of k points, I k, I.

In Table I, our results for a set of KC1 properties
versus number of k points in the irreducible part of the
BZ for two diff'erent temperatures (200 and 800 K) are
given. These calculations were carried out using empiri-
cal pair potentials of Catlow et al. ' with parameters of
shells which will be described below. Note that in our
calculations these pair potentials act between cores of
atoms. It is seen that 10 special points are sufhcient for
almost all the properties studied and listed in Table I.
However, the elastic constants C,z and C I2 were found to
be much more sensitive to the number of k points in the
BZ used in the calculations, so that in these cases the er-
ror is larger and lies between 2 and 8%%uo. Note that the
error increases as the temperature goes up.

In this paper, we consider several types of the core-
core pairwise potentials for KC1 and NaC1 rock salts: (i)

empirical pair potentials of Catlow et al. ' fitted to ex-
perimental elastic and dielectric properties extrapolated
to zero temperature (their set 1 potentials); (ii) empirical
pair potentials of Tosi and Fumi developed while
analyzing the thermodynamic data; (iii) ab initio PI pair
potentials ' from ab initio perturbed ion (abPI) calcula-
tions of these crystals. %'e should stress that we could

not choose, for example, set 2 of the potentials of Catlow
et al. ' which lead to discontinuities' in the third- and
the fourth-order derivatives of the free energy used here
while calculating the derivatives of the phonon frequen-
cies.

For every potential we have obtained appropriate shell
parameters. This was done in the following way. First of
all, we have ignored short-range shell-shell potentials
Z" (R ) in our calculations since they turned out to be
not so important for the crystals studied. The polariza-
bilities of both cations and anions were chosen from
theoretical predictions made in Ref. 23. They match
quite well experimental high-frequency dielectric con-
stants e (Ref. 24) by means of the Clausius-Mosotti rela-
tion (Table II).

Here we have adopted a model in which only
I +(R )%0, i.e., when only the shell-core interaction be-
tween anions and cations is taken into account. This
model works quite well for alkali halides and simply
means that induced polarization on the cations is negligi-
bly small in comparison with that on the anions which
have much more flexible electronic shells. The short-
range potential I +(R) was chosen to be of a one-
exponential form I + (R ) = I e ~ . Its parameters I
and P were obtained in a special set of calculations.

TABLE I. Properties of KC1 crystal calculated using pair potentials (Ref. 19) with our shell parame-
ters (see text) for the spacing (the anion-cation nearest-neighbor distance) d =5.897 a.u. versus number
of special points in the BZ; T=200 (the first row) and T= 800 (the second row).

Property
Number of points in the irreducible part of the BZ

10 28 60 110 182

c(0) 4.639 17
5.1431

4.608 55
4.972 96

4.607 39
4.966 91

4.606 97
4.964 65

4.605 96
4.959 29

4.605 84
4.958 67

0.06
0.29

11.153 6
11.872 8
11.528 0
13.832 5

Heat capacities in
11.1592 11.164 1

11.873 2 11.873 6
11.483 5 11.487 8
13.524 5 13.515 6

cal K ' mol
11.164 3
11.873 6
11.486 7
13.503 9

11.162 2
11.873 4
11.481 6
13.483 8

11.162 3
11.873 4
11.481 3
13.480 9

0.03
0.00
0.02
0.32

P

&IzT

gS

&IzS

Bz-

Pressure, elastic constants,
0.258 12 0.232 40
1.547 68 1.444 16

45.615 5 45.175 6
39.880 9 38.1192
6.011 31 6.562 45
4.736 98 6.939 99
6.286 77 6.279 65
5.844 74 5.816 35

46.263 2 45.742 5
42.681 5 40.596 8
6.658 97 7.129 38
7.537 59 9.417 59

19.298 7 19.5110
16.967 5 17.8144
19.946 4 20.077 9
19.768 1 20.292 1

and bulk modulus in GPa
0.232 57 0.232 00
1.444 34 1.442 07

45.067 6 45.058 4
37.685 9 37.649 1

6.6S5 15 6.689 73
7.31103 7.449 29
6.277 16 6.276 38
5.806 59 S.803 57

45.634 0 45.623 1

40.163 8 40.120 2
7.221 54 7.254 42
9.788 92 9.920 33

19.536 8 19.556 6
17.9174 17.996 6
20.103 2 20.121 3
20.395 3 20.467 6

(1 GPa=10'
0.230 31
1.435 52

45.079 4
37.733 7
6.709 23
7.526 95
6.276 41
5.803 66

45.639 5
40.185 1

7.269 34
9.978 35

19.576 1

18.074 4
20.1362
20.525 8

dyn/cm )

0.230 21
1.435 1

45.076 2
37.720 8
6.71968
7.568 7
6.276 40
5.803 61

45.636 0
40.170 9
7.279 47

10.018 8
19.581 9
18.097 8
20.141 7
20.547 9

0.95
0.63
0.22
1.06
2.34
8.31
0.05
0.22
0.23
1.06
2.06
6.00
0.36
1.57
0.32
1.24

10.528 5
12.846 0

Thermal expansion in 10 K
9.74S 73 9.730 39 9.705 98 9.655 99

11.508 3 11.442 9 11.376 9 11.282 7
9.650 39

11.265 3
0.99
2.16

The relative error (in %) in calculations involving 10 points with respect to those involving 182 points.
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These were made for every crystal at zero temperature
for experimental crystal spacings in such a way as to fit
the experimental low-frequency dielectric constant Ep,
and the transverse-optical (TO) frequency, coo, ~, at the I
point (k=0) of the BZ. In this fitting, we have calculat-
ed the low-frequency dielectric constant, co, by using only
the static crystal energy since at T=0 the quasiharmonic
contribution is almost negligible and can be omitted (see
below).

The final set of shell parameters is presented in Table
II together with corresponding crystal properties, both
calculated and experimental. Note that our long-
wavelength optical frequencies are in quite good agree-
ment with the Lyddane-Sachs-Teller relation. It is seen
from Table II that the exponent P is almost unaffected by
the form of the core-core part of the total crystal poten-
tial and the main di6'erence lies in the value of I . Exam-
ining data in Table II we conclude that calculated and ex-
perimental values agree satisfactorily for all types of the
pair potentials except for the case of the Tosi-Fumi po-
tentials for which we could not achieve the experimental
TO frequency using this form of the shell-core potential.
The final potentials (with shells) obtained in this way will
be called in this paper as ppCDN, PIpp, and TFpp in the
cases of the pair potentials of Catlow et aI. ,

' PI, ' and of
Tosi and Fumi, respectively.

The formalism presented above was realized in a com-
puter code DYNAM which allows one to calculate a wide
range of thermoelastic and dielectric properties of any
shell-like-model crystal for both arbitrary temperature
and external mechanical stresses. Phonon curves in an
arbitrary direction in the BZ as well as corresponding
sound wave velocities can also be computed. All numeri-
cal results presented in this paper were obtained using
this computer code.

Our formulas allow one to calculate the thermoelastic
and dielectric properties of a crystal for some particular
configuration. This means that calculations such as "a
property versus pressure" for a set of desired tempera-
tures can be done immediately. However, one encounters

some difhculties if the temperature dependence of a prop-
erty is needed for a set of given pressures. This is so be-
cause it is not known a priori to which structure these
pressures and temperatures correspond.

In order to overcome this inconvenience and avoid
quite tedious minimizations of the Gibbs free energy in
every case, we made our calculations in the following
way. At every temperature of interest we made calcula-
tions for a range of spacings in order to cover the desired
range of pressures. Then, a linear interpolation was made
in order to obtain equilibrium spacings. These calcula-
tions have been done with 10 special points. Then we
have carried out a set of individual calculations with 28
special points for these particular structures in order to
obtain the whole spectrum of crystal properties with a
better precision.

V. RESULTS OF THE CALCULATIONS
FOR KCl AND NaCl CRYSTALS

A. Phonon dispersion curves

In order to check the validity of the pair potentials
used in the present study and verify whether our shell pa-
rameters are good enough, we have calculated for both
crystals phonon dispersion curves in three directions in
the BZ: [100] (I -Z), [110] (I'-X), and [111](I L). The-
calculations have been done for T=80 K for the corre-
sponding experimental spacings' d=5. 91 and 5.29 a.u.
for KC1 and NaC1, respectively. The results obtained for
KC1 and NaC1 were compared with available experimen-
tal inelastic neutron-scattering data ' at the same tem-
perature.

%'e found that the ppCDN and PIpp demonstrate
quite good agreement with the experimental phonon
dispersion curves in all symmetry directions in the BZ.
However, the results obtained using the TFpp are much
worse for the KC1 crystal and can even be considered as
unsatisfactory: the structure of the phonon curves is not
reproduced correctly especially for the [100] and [110]

TABLE II. Shell parameters, obtained by fitting to experimental static, co, and high-frequency, c„,
dielectric constants and to the TO phonon frequency, coo,pJ at k=O. The calculations were done using
the static energy at zero temperature for the experimental (extrapolated to 2 K) crystal spacing d (Ref.
25).

Crystal (a.u. ) a+
r p ~o,ops

(a.u. ) (a.u. ) E.o (10' sec ')

KCl
Experimental'
Potentials of Catlow et al. (ppCDN)
Tosi-Fumi potentials (TFpp)
ab initio PI potentials (PIpp)

5.8884 4.59 23.48 2.213
2.2 4.49

6.59 1.209 4.4896
10.98 1.2 4.5141
6.5752 1.2 4.4899

2.844
2.839
2.253
2.827

NaC1
Experimental'
Potentials of Catlow et al. (ppCDN)
Tosi-Fumi potentials (TFpp)
ab initio PI potentials (PIpp)

5.2704 0.918 22.202 2.483
2.35

677.91
810.5
675.5

5.45
2.32 5.4497
2.32 5.4511
2.32 5.449

3.353
3.271
3.066
3.332

'The experimental data used in fitting are 2-K values from Ref. 24.



3540 L. N. KANTOROVICH 51

directions. Besides, the slope of the acoustic branches de-
viates strongly from the experimental one which rejects
the well-known fact' that the elastic constants are repro-
duced badly by these potentials (see also a more detailed
discussion below). Lastly, the optical branches are shift-
ed down appreciably because of the unsuccessful fitting of
the shell parameters achieved in the case of KC1 for these
potentials (see Sec. IV and Table II).

Note, however, that peculiarities of the phonon eigen-
values appear not to be so important in calculating crys-
tal thermoelastic properties since all these deviations will
have no effect being integrated over the BZ. That is why
we can expect that any deviations in the results on the
thermodynamic properties displayed by different poten-
tials and discussed below, are the consequences entirely
of the corresponding static energies. Thus, on the whole,
quite reasonable results are obtained for the phonon fre-
quencies with the help of the shell-like model used in this
paper.

B. Zero-pressure
general thermodynamic properties

For every type of pair potential we have calculated a
number of general thermodynamic properties. We give
here in detail only the results for KC1 crystal since for
NaC1 we have obtained a very similar picture. Only the
case of zero pressure is considered here. The pressure
dependence of thermoelastic properties is discussed in
Sec. VG.

We start our consideration from the equation of state
of the crystals, i.e., from the dependence of the nearest-
neighbor anion-cation distance, d, on the temperature, T.
The results of the calculations are plotted in Fig. 1 to-
gether with available experimental data taken from Ref.
29. A11 curves are plotted up to the highest possible tem-
perature until the crystal becomes unstable under zero
pressure (for a more detailed discussion on the crystal
stability see Sec. VD). We note that the agreement for
a11 the potentials except the PIpp is rather promising

through the whole temperature range though at high
temperatures the thermal expansion is strongly overes-
timated. This behavior becomes much more evident if
we consider also the temperature derivative of the spac-
ing, i.e., the thermal expansion coefficient, PT, represent-
ed in Fig. 2 (the corresponding experimental data are tak-
en from Refs. 5, 30, and 31). Above T=300—400 K the
calculated spacing starts to rise too rapidly in comparison
with experimental values. This agrees with a conclusion
drawn in Ref. 11. We believe that this discrepancy can
be reasonably explained solely by the lack of an anhar-
monic correction in our calculations. In this respect it is
interesting to notice that inclusion of only quartic and
squared cubic terms in the Taylor expansion of the poten-
tial energy leads to substantially worse results for high T
as follows from Ref. 11. Our calculations, made entirely
within the simple quasiharmonic approximation appear
to be still qualitatively correct even at rather high tem-
peratures though the error becomes larger as the temper-
ature increases. Note that in the case of NaC1 crystal the
PIpp leads to a better agreement with experimental data
on the spacing ' and PT.

The large deviation for the crystal thermal expansion
predicted by the nonempirical PIpp in the case of KC1
crystal mainly originates from an overestimated zero-
temperature value (d=6. 125 a.u. ) because the general
behavior of the curves is reproduced in rather close
agreement with the experiment. Note that the original
ab initio PI method predicts an even worse values for
the crystal spacing than the pair potentials produced
from it. '

For the heat capacity at constant volume Cz, we found
very good agreement with available experimental
data for both crystals and for all types of the pair
potentials. We notice also that the theory is consistent
with the "classical" prediction Cz =6k at high tempera-
tures. Thus, Cz is too insensitive to the particular form
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FIG. 1. Anion-cation nearest-neighbor distance (in a.u. ) for a
KC1 crystal calculated for various models (see text). Experi-
mental data are shown by symbols: a (Ref. 29).
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FIG. 2. Thermal expansion coefficient (in units of 10 ' K ')
of a KC1 crystal calculated for various models (see text). Exper-
imental data represented by symbols are a (Ref. 31); b (Ref. 30);
c (Ref. 5).
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FIG. 3. Heat capacity at constant pressure (in units of
kcalmol ' K ') of a KC1 crystal calculated for various models
(see text). Experimental data represented by symbols are a (Ref.
34); b (Ref. 5).

C. Zero-pressure elastic properties

There are several sets of experimental data ' ' on
the temperature dependence of individual zero-pressure
adiabatic elastic constants of alkali halides. It is evident
that there is a substantial difference in experimental data
especially for KCl. Nevertheless, qualitative features of
the elastic constants are the same for both crystals.

Our theoretical curves for both crystals are similar and
we represent here in Figs. 4—6 our results only for KC1.
All three potentials give qualitatively correct dependence
on T. Both C» and C44 decrease with temperature. Un-
like C~, the constant C» tends to achieve a zero value at

of the pair potentials. On the contrary, the heat capacity
at constant pressure, C, plotted for KC1 crystal in Fig. 3
as an illustration, coincides with experiment ' only for
rather small T; at high T it increases too quickly with in-
creasing the temperature. Similarly to the case of the
crystal thermal expansion coefBcient plotted in Fig. 2, the
slope of the C is strongly overestimated in our calcula-
tions for all three potentials studied though the results for
the ppCDN are the best one. This behavior is of the
same nature as in the case of PT and could probably be
removed by a proper extension of the quasiharmonic ap-
proximation. Note that our results for the thermal ex-
pansion and C are in close agreement with other
quasiharmonic calculations quoted in Ref. 37.

Summing up, we can conclude that both empirical pair
potentials considered here, namely, ppCDN and TFpp,
demonstrate rather good behavior in comparison with
available experimental general thermodynamic data.
This is in spite of the fact (mentioned in Sec. VA) that
the TFpp fails to give correct phonon dispersion curves.
The nonempirical PIpp differ strongly from experiment
in thermal expansion data, although it appears to be qual-
itatively correct.
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FIG. 4. Adiabatic elastic constant C» (in GPa) of a KC1
crystal calculated for various models (see text). Experimental
data represented by symbols are a (Ref. 38); b (Ref. 40); c (Ref.
34); d (Ref. 41); e (Ref. 39).

the boundary of the crystal stability at high enough T (see
also Sec. V D). The slope for C» is very close the experi-
mental data in the case of KC1 but was found to be slight-
ly overestimated for NaC1 at high temperatures. The
agreement with experiment for C44 turned out to be al-
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FIG. 5. Adiabatic elastic constant C» (in GPa) of a KC1
crystal calculated for varoius models (see text). Notations are
the same as in Fig. 4.
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FIG. 6. Adiabatic elastic contant C44 (in GPa) of a KC1 crys-
tal calculated for various models (see text). Notations are the
same as in Fig. 4.

most excellent for the ppCDN for both crystals. The
PIpp give results which are close to experiment for KC1
but are strongly shifted upward with respect to the exper-
imental data in the case of NaCl. As was expected, ' the
agreement with the experiment for the TFpp is generally
poor especially for C~ in KC1.

As follows from the experimental data quoted above, at
low temperatures the elastic constant C,2 must have a
positive slope with a peak near 600 K (NaC1) and 800 K
(KC1); this slope in the case of NaC1 is smaller than in the
case of KC1. Qualitatively both these features are repro-
duced well in our theoretical curves especially for the
ppCDN, see Fig. 5 as an illustration. The quantitative
agreement for the TFpp and PIpp with the experiment is
generally worse.

We should emphasize that our results for the TFpp are
quantitatively different from those originally published in
Ref. 13. We think that this discrepancy is explained, first
of all, by an insufhcient precision of the calculations
made in Ref. 13, i.e., by a small number of k points in the
BZ used in calculating the free energy. Indeed, as was
pointed out above in Sec. IV, the shear elastic constant
C,2 turns out to be very sensitive to the number of special
points used in the BZ summation, especially at high tem-
peratures. Our calculations show that the right (high-
temperature) tail of the Ctz curve tends upwards while
further increasing the precision in the BZ summation in
comparison with that used in the present calculations (28
special points). Besides, in comparison with Ref. 13, we
have used equilibrium spacings obtained entirely within
the quasiharmonic approximation.

In spite of the fact that our calculations were done
within the model of central pairwise forces, the phonon
contribution used in calculating the free energy and its

derivatives is of a many-body nature. This term is only
one which has a T dependence and thus leads to the crys-
tal thermal expansion. However, it was found to be im-
portant for the elastic properties as well. In order to clar-
ify this point let us consider a special model for the KC1
crystal in which static elastic constants are calculated for
the crystal geometries found in our full quasiharmonic
calculations. The elastic constants calculated in this way
for the ppCDN are plotted in Figs. 4—6. We shall refer
this model as to the static ppCDN (SppCDN). Let us
compare results obtained with (ppCDN) and without
(SppCDN) the phonon contributions to the elastic con-
stants. It is seen that this contribution is a small positive
slowly increasing function of T in the case of CI& and C44
and does not change their qualitative behavior. On the
contrary, in the case of C&2 the thermal contribution is
found to be very large positive function of T with a non-
trivial behavior and is uniquely responsible for the posi-
tive slope of the shear constant C I2 observed in the exper-
iment at small and intermediate T. Thus, the thermal
contribution to the elastic constants (i.e., the phonon part
of the free energy) turned out to be very important in
contrast to the conclusion drawn in Ref. 13.

It is well known that the Cauchy condition C~ =C Iz is
violated in the case of alkali halides throughout the
whole range of the stability of the crystals. In particular,
at small T the shear constant C,2 is less than C44 whereas
at some temperature (about 200 K for KC1 and 300 K for
NaC1) this inequality is reversed. Then C44 continues to
decrease whereas C,2 continues to rise until it reaches a
maximum and then decreases at higher T. Although our
calculations fairly yield diff'erent C,2 and C~ (because of
the quasiharmonic approximation), we do not observe at
all this property for KC1 no matter what type of poten-
tials has been used, i.e., we have C&2 & C~ for the whole
range of T. In the case of NaC1 C,2 (C~ is only slightly
evident for very small T. Indeed, for this crystal we have
obtained a very small positive difference C44 —C,2 for
T=O K (about 0.1 —0.2 GPa) instead of a value of the or-
der of several GPa's observed experimentally. Note that
our difference at this temperature follows entirely from
the contribution of zero phonons to the Helmholtz free
energy which appears to be very small. Besides, anhar-
monic corrections can also be disregarded at small T. So,
as was fairly mentioned in Ref. 12, the large positive
difference between C44 and CIz must originate from
three-body forces which are absent in the present calcula-
tions. Thus, our analysis argues once more that the
three-body forces must be quite important for KC1 and
NaC1 crystals in order to explain the correct sign of the
violation of the Cauchy relation.

In contrast to other general thermodynamic properties,
the elastic constants appear to be very sensitive to the
particular potentials used in the calculations. This is be-
cause of specific anisotropic distortions from which the
crystals suffer in every case: the symmetrical neighbor-
hood of every atom is changed substantially during such
deformations. Some examples of such deformations were
considered in Refs. 13, 44, and 45. The point that the
elastic constants require anisotropic strain derivatives of
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FICx. 7. Isothermal bulk modulus (in GPa) of a KC1 crystal
calculated for various models (see text). Experimental data
represented by symbols are a (Ref. 5).

D. An analysis of the crystal stability
at high temperatures near the melting point

the free energy has been repeatedly stated in the litera-
ture (see, for instance, Refs. 13 and 14). That is why sim-
ple models which do not take this circumstance into ac-
count are not able to explain such a nontrivial elastic
behavior of the crystals. In particular, within the
effective one-frequency Einstein model this is not possi-
ble because of the crystal anisotropy which is not repro-
duced correctly by this approximation. Besides, the sym-
metric Einstein' model made in the framework of the
self-consistent phonon formalism also fails to explain the
violation of the Cauchy condition as well as the positive
slope for the C,2 observed at not very high T.

The isothermal, BT, and adiabatic, Bz, bulk modulus
re6ect overall behavior of the corresponding elastic con-
stants. The isothermal bulk modulus of KC1 crystal is
plotted in Fig. 7 as an example. Both properties have a
tendency to decrease with increasing temperature be-
cause the crystal gradually loses its stability. For both
crystals and for both constants all the potentials result in
almost similar slopes. However, they appear to be
overestimated if we compare with the experiment, '

especially in the case of the Sz. As in the previous cases,
the agreement with the experiment is rather good for all
models under question except the case of the PIpp for the
KCl crystal when the agreement is poor. Generally,
overall accord with the experiment for the isothermal
bulk modulus is substantially better than for the adiabatic
one.
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happens when C» —Ct2=2C44 (both for adiabatic and
isothermal waves). We have checked this equality in our
case. We found that for all potentials and for both crys-
tals the ratio of C» —

C&2 and 2C44. is positive for small
T, but at some specific T this inequality changes its sign.
This crucial temperature is greater for KC1 than for
NaC1 by an amount of 100—200 K but depends strongly
on the type of the potentials. Thus, in agreement with
other calculations, both crystals do not behave as iso-
tropic media while T tends to the melting temperature.

Moreover, we have obtained a very fast decrease to
zero of the isothermal C» and C, 2 (and therefore, the
same trend for BT) with increasing T whereas the elastic
constant C44 does not display this behavior. Note that
adiabatic elastic constants do not decrease so sharply be-
cause of the large thermal contribution which increases
with T. %'e have found that at some critical temperature
which is close (but not equal) to the point where C„=O,
the crystals show some kind of a catastrophic behavior.
In order to illustrate this point, let us consider a KC1
crystal with ppCDN as an example.

As is known, a cubic crystal is stable, i.e., the corre-
sponding Hessian matrix of the free-energy second-order
derivatives is positive definite, when the following condi-
tions are fulfilled simultaneously: C~~+2C~2) 0,
C» & C&2 and C44&0. Note that the first inequality can
be replaced by C» &0 because of the second one. The
typical behavior of the KCl crystal free energy is shown
in Fig. 8 by the first curve which corresponds to T=880
K (similar behavior was obtained also in Ref. 9). The free
energy has a minima at some spacing do. The corre-
sponding Hessian matrix is positive definite so that the
isothermal elastic constants listed in Table III in detail
satisfy the stability conditions given above. When d & do
the free energy increases rather quickly. The region
d (do belongs to the case of higher (nonzero) pressures.
However, when d )do, the free energy at first increases
(an unphysical region of negative pressures), then it

Let us discuss now how a crystal approaches a point
where it loses its stability, presumably because of melt-
ing. In this respect it would seem to be reasonable first to
study the question of crystal isotropy. It is known that a
substance becomes isotropic when the speed of sound is
independent of the direction of the propagation. This

-2.0x10 4

6.1 6.15 6.2 6.25 6.3 6.35 6.4
Spacing (a.u.)

FIG. 8. Relative Helmholtz free energies of a KC1 crystal (in
a.u. ) calculated using ppCDN for 880, 890, and 900 K.
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TABLE III. Elastic properties of a KCl crystal calculated by
means of the ppCDN at the temperatures which are close to our
prediction of the melting temperature.

Property

d, a.u.
Cll, GPa
Cl2, GPa
Cg4, GPa
Cli, GPa
Cl2, GPa
8~, GPa
Bq, GPa

T=880 K

6.187 73
3.036 5
3.029 35
4.757 76
7.786 83
7.779 68
3.042 57
7.792 9

T=890 K

6.205 10
1.226 34
2.090 24
4.692 14
6.181 92
7.045 83
1.806 38
6.761 97

T=900 K

6.228 83
—2.631 6

2.044 91
4.558 95
2.879 12
7.332 35
0.498 82
5.860 11

'The nearest anion-cation distance corresponding to the free-
energy minima.

passes through a maximum and abruptly decreases until,
at some critical spacing, d„ the phonon frequencies be-
come imaginary and therefore the crystal ceases to exist.
As the temperature decreases, the minima becomes
deeper and the barrier higher. However, as is clear from
other curves plotted in Fig. 8, as the temperature in-
creases, the minima becomes more shallow and the bar-
rier gradually disappears.

Let us consider now what happens with the crystal sta-
bility as the temperature increases from 880 to 900 K
(Fig. 8). Corresponding elastic constants are listed in
Table III. It is seen that the isothermal elastic constant
C» changes catastrophically quickly while the tempera-
ture increases by only 20 . So, already at T=890 K the
stability condition C» &C,2 is violated. It means that
the Hessian matrix in the minima is negative definite and
we have here actually a saddle point. At somewhat
higher T (near 900 K) the first condition is also violated
(i.e., C» becomes negative) and the saddle point almost
disappears. So, at some critical temperature (the critical
temperature of the catastrophe), which is close to 890 K
in our calculations for the particular case considered, the
crysta1 becomes completely unstable under zero pressure
and undergoes a transition to the region where its energy
tends to large negative values. In other words, the crystal
transforms to another structure which has substantially
higher spacing and imaginary phonon frequencies. It is
reasonable to expect that the crystal starts to melt and
that this critical T can be thought of as the melting tem-
perature. It is worthwhile mentioning here that the adia-
batic elastic constants are still quite large even at 900 K.
However, as is seen from Table III, they generally also do
not satisfy the stability condition C» & C,2, starting from
the same T=890 K.

Thus, we see from our calculations that the KC1 crys-
tal becomes unstable due to the failure of the condition
C» & C,z (or Cf, & Cf2). The real critical behavior
displays only one elastic constant, namely, C i i, which ac-
tually controls the transition process and plays a major
role in the melting. In this respect we would like to em-
phasize, as follows from our calculations, that Bz- reaches
zero after the difFerence C&&

—
C&z becomes zero. Note

that this is in contrast to a conclusion drawn in Ref. 9
where the author insisted that the condition B&=0
occurs first as T increases.

Another important consequence is that the catastrophe
begins its work of destroying the crystal even earlier than
the minimum in the free energy versus spacing (i.e, versus
volume) disappears completely. This means, that in or-
der to estimate the melting temperature, a detailed
analysis of the dependence of the Hessian matrix on the
path of the transition is necessary, and an analysis based
only on the volume dependence of the free energy may
be insufficient and may lead to a somewhat overestimated
transition temperature.

However, the corresponding critical temperatures pre-
dicted in our calculations [about 900, 700, 850 K (KC1)
and 700, 650, 700 (NaCl) for the ppCDN, TFpp, and
PIpp, respectively] turned out to be far below the experi-
mental melting temperatures (1077 K for NaC1 and 1045
K for KC1). Moreover, we found an incorrect trend for
both crystals. We expect this is the consequence of the
quasiharmonic approximation which likely does not work
properly at T greater than half of the melting tempera-
ture. " Nevertheless, it is highly satisfactory to note that
this approximation is able to give a reasonable qualitative
physical picture even up to very high temperatures.

E. Rigid-ion model

It is known ' ' that in the case of such centrosym-
metric crystals as alkali halides, shells do not contribute
to the elastic properties of the static lattice. However, as
far as quasiharmonic theory based on the she11-like model
is concerned, the shells affect the crystal phonons, and, in
this way, indirectly inhuence all the crystal thermo-
dynamic properties.

In order to check the role of the shells in crystal ther-
moelastic properties, we have also considered a rigid-ion
KC1 crystal with the ppCDN. We shall call this mode
RIppCDN in that which follows. We found that the
acoustic branches of the phonon dispersion curves calcu-
lated in this model are reproduced rather well in the
long-wavelength region. This is because of the fact, al-
ready mentioned above, that the shells do not contribute
to static elastic constants for centrosymmetric crystals.
At the same time, the optical branches turn out to be
completely wrong because of the failure of the model to
give correct long-wavelength optical frequencies. Never-
theless, as follows from the results of the calculations
presented in Figs. 1 —7, except very high T, all the general
thermodynamic properties are revealed to be practically
indistinguishable in both models when the shells are in-
cluded (solid lines) and are not included (dotted lines).
This happens because in calculating the integral over the
BZ all the peculiarities of the phonon frequencies become
unimportant. So, the role of the shells appear to be
insignificant in calculating crystal thermodynamics, as
was expected.

F. Crystal dielectric properties

It is known that alkali halides are centrosymmetric
crystals and therefore do not show piezoelectric proper-
ties. In Figs. 9 and 10 we have plotted calculated and ex-
perimental low- (static) and high-frequency dielectric
constants of KC1 crystal under zero pressure against T.
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the static dielectric constant has some contribution from
the phonons through the second-order internal strain
derivatives (see I). From the curves plotted in Fig. 9 we
observe a well-known result that the rigid-ion model
strongly underestimates co. At the same time, the static
energy calculations give surprisingly good results. This
indicates that there is quite a small contribution to the
internal strain derivatives from the phonons, and co is
defined almost exclusively by the static energy calculated
for the correct crystal structure.

The results obtained for the dielectric properties show
that our core-shell potentials (see Sec. IV) are able to
reproduce correctly the dielectric properties of the crys-
tals throughout the wide range of T. Another conclusion
that can be drawn from our calculations is that the
quasiharmonic approximation is found to be valid up to
very high T.

FIG. 9. Low-frequency dielectric constant of a KCl crystal
calculated for various models. Experimental data represented
by symbols are a (Ref. 24).
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FIG. 10. High-frequency dielectric constant of a KCl crystal
calculated for various models. Experimental data represented
by symbols are a (Ref. 24).

Our results for all three potentials are given there.
First of all we would like to stress that in all cases con-

sidered, we have obtained correct qualitative behavior of
both co and c . Namely, the static constant grows to-
gether with T, while c„decreases. Moreover, the agree-
ment for the ppCDN and TFpp for KC1 is almost perfect
whereas the PIpp show a large constant shift (about 10%%uo

for E„and 20% for Eo) from the experimental points. In
the case of NaC1 the quantitative agreement of co with ex-
perirnent ' is worse for all the potentials examined
here; however, deviations for c„ from the experiment
are rather small (about 2.5 —6%%uo). Generally, we can say
that the results obtained with the ppCDN are the best.

In the case of KC1 crystal and for the ppCDN two ad-
ditional models have been also examined (Fig. 9): (a) the
rigid-ion approximation (RIppCDN) and (b) the model in
which the co was calculated from the static energy for
correct quasiharmonic spacings (SppCDN). Since there
is no thermal contribution to c, , we have obtained c. = 1

in the former case and the same result for it as in the
quasiharmonic approximation in latter case. However,

G. Pressure dependence
of thermoelastic and dielectric properties

TABLE IV. Pressure derivatives of adiabatic stiffnesses of
NaCl crystal at T=293 K calculated by means of different pair
potentials.

Experimental data (Ref. 48)
ppCDN
TFpp
PIpp

BB
aI

11.11
9.6
8.0

11~ 1

aB'„

1.67
1.65
2.05
1.40

~B44

0.42
—0.56

0.12
—0.43

So far we have considered crystal properties only under
zero pressure. However, the pressure dependence of
therrnoelastic properties is also of great interest, since the
role of anharmonicity becomes less important as the crys-
tal is compressed. ' This is because of atomic displace-
ments which are smaller in the crystal under pressure.
Thus, the pressure dependence of thermoelastic proper-
ties calculated in the quasiharmonic approximation
would be an excellent test of the validity of the pair po-
tentials.

Two types of experimental data are verified in this sec-
tion: (i) room-temperature (293 K) measurements of the
elastic constants of NaC1 for pressures up to 10 GPa,
and (ii) high-temperature (300, 550, and 800 K) measure-
ments of the elastic constants and of the thermal expan-
sion coefticient for a comparatively narrow range of pres-
sures (up to only 1 GPa) published in Ref. 43. Note that
in both cases we should calculate the adiabatic sti6'neses
B," instead of the adiabatic elastic constants since it is the
former that actually define the speed of the sound in the
compressed crystal. This point has been extensively
clarified in the literature.

We have made a special set of calculations for NaC1 at
293 K over a wide range of crystal spacings in order to
cover a range of pressures up to 10 GPa. Generally, for
the adiabatic stiFnesses B&&, B&2, and B~ we have ob-
tained almost linear pressure dependencies with the
slopes summarized in Table IV. The experimental
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curves are also linear and their slopes are also given in
Table IV. We see that except for B44 our results obtained
with all three potentials are in reasonable agreement with
the experiment. Moreover, the PIpp give slopes which
are very close to experiment. Unfortunately, the slopes
for B~ are of an opposite sign for the ppCDN and PIpp.
The slope obtained with the TFpp is positive (as in the
experiment) but is underestimated by more than a factor
of 3.

Some of our high-temperature results for pressures up
to 4 GPa are represented in Figs. 11—14 together with ex-
perimental data (up to 1 CxPa) taken from Ref 4. 3.
Analyzing the results of the calculations, we would like
to notice the following.

(1) The thermal expansion coefficient (Fig. 11) de-
creases with P for each of the pair potentials; besides,
there is some appreciable shift up of every curve as the
temperature increases. These qualitative features are also
observed in the experiment.

(2) For every potential there is a linear growth of 8 f&

(Fig. 12) with P which is almost the same for all three T
studied; the curves are shifted down as the temperature
increases in accord with the experimental data although
this shift is overestimated. Note that we have obtained
similar curves for BT and Bz as well.

(3) 8,2 (Fig. 13) displays a positive slope with P for
every T. For small pressures

8,~(T=800) &8f2(T=550) &8,2(T =300)

in the cases of the ppCDN and PIpp. However, as P in-
creases, these inequalities are changed to

8 i2(T =300)(8f2(T= 550) &8f2( T=800) .
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FIG. 12. Pressure dependence of the adiabatic stiffness B»
(in GPa) of a NaC1 crystal calculated with the help of different
potentials for 300, 550, and 800 K. Notations are the same as in
Fig. 11.

In the case of the TFpp the latter inequality is not broken
throughout the whole pressure range. On the other hand,
according to the experiment, we have

8f (2T= 300)(8, (2T = 8 00) &8,2 ( T=550)

for small P and the inequality
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FIG. 11. Pressure dependence of the NaC1 thermal expan-
sion coefficient (in units of 10 ' K ') calculated with the help
of different potentials for 300, 550, and 800 K. Experimental
data from Ref. 43 are shown by symbols.

FIG. 13. Pressure dependence of the adiabatic stiffness B»
(in GPa) of a NaC1 crystal calculated with the help of different
potentials for 300, 550, and 800 K. Notations are the same as in
Fig. 11.
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FIG. 14. Pressure dependence of the adiabatic stiffness 844
(in GPa) of a NaCl crystal calculated with the help of different
potentials for 300, 550, and 800 K. Notations are the same as in
Fig. 11.
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for large P. Thus, the pair potentials studied in this work
do not give correct qualitative behavior with T for this
shear elastic property. This is because of the complex
character of the shear elastic constants with T which has
been discussed already in Sec. V C: all the pair potentials
do not reproduce quantitatively experimental data for
C&z even for zero pressure. We should point out, howev-
er, that for small pressures our results should be correct-
ed by proper inclusion of the anharmonic contributions,
especially in the T=800 K case.

(4) B~ (Fig. 14) decreases with temperature
throughout the whole range of pressures in accord with
experiment; however, as was already mentioned above in
this section, we have obtained negative slopes with pres-
sure for all potentials except the TFpp which disagrees
with the experiment.

Generally, the results of our calculations presented in
this section dealing with the simultaneous pressure and
temperature dependence of the elastic properties of NaCl
crystal provide us with additional information about the
existing pair potentials. We have shown that even the
ppCDN which were found to be the most successful for
both crystals for the zero-pressure properties (i.e., for
larger spacings), show several disagreements with the ex-
periment in the shear elastic constants as the pressure in-
creases (i.e., the spacing becomes smaller).

crystal symmetry and structure. If the space group and a
set of pair potentials between atoms in the crystal are
known, it is possible to fit corresponding core-shell and (if
it is necessary) shell-shell short-range potentials to proper
experimental data and then calculate a number of desired
crystal properties under any conditions of stress and tem-
perature.

The temperature dependence of a number of thermoe-
lastic and dielectric properties of perfect KC1 and NaC1
ionic crystals studied in this paper have been calculated
from several pair potentials. The empirical potentials of
Catlow et al. ' demonstrate on average an overall agree-
ment with available experimental data on the tempera-
ture dependence under zero pressure for all properties
considered. The potentials of Tosi and Fumi allow one
to reproduce closely only general thermodynamic and
dielectric data, but they fail to give good elastic constants
(cf. Ref. 13). The ab initi'o PI pair potentials ' demon-
strate reasonable quantitative thermal contributions and
result in a qualitatively correct physical picture for al-
most all properties studied. However, these potentials
display poor static properties and therefore their final re-
sults are usually far from the experimental data.

In agreement with other calculations "' we found
that the quasiharmonic approximation is able to give
correct qualitative results throughout the whole tempera-
ture range, even up to the melting point. However, in or-
der to explain existing experimental data at rather high
T, greater than about half of the melting temperature,
one needs to include proper anharmonic corrections
which were found to be large in KC1 and NaC1 crystals in
contrast to the results of Ref. 13. Otherwise, the results
of the calculations may be far from those observed exper-
imentally.

In contrast to a conclusion drawn in Ref. 13 we have
shown that the violation of the Cauchy relation at small
temperatures can be attributed only to the three-body-
like interactions in the crystals. This is also in agreement
with other theoretical works. '

However, our study of the simultaneous pressure and
temperature behavior of the elastic properties of NaC1
crystal demonstrates large deviations between experimen-
tal and theoretical elastic constants (stiffnesses). This
shows that further work has to be done in order to im-
prove existing pair potentials especially in the region of
small spacings. We think that this can be done by a
least-squares-fit method based on a wider set of experi-
mental information than it is usually done, i.e., taking
into account also data for nonzero temperatures and
especially for nonzero pressures. We hope that our corn-
puter code could be helpful and useful in treating this
routine problem.

VI. CONCLUSIONS

A general theory proposed in I and discussed in detail
here gives a unified method for studying a wide range of
thermoelastic and dielectric properties of perfect shell-
like-model crystals governing by pairwise forces. A nu-
merical method elaborated by us has been implemented
in a computer code DYNAM which is written for arbitrary

ACKNOWLEDGMENTS

I would like to express my warmest thanks to all my
colleagues in the quantum-chemistry group of the Uni-
versity of Oveido, led by Prof. L. Pueyo, for their con-
stant interest in this work, a number of useful discus-
sions, and also for the whole encouraging atmosphere



3548 L. N. KANTOROVICH 51

which has helped me to work on this problem. The au-
thor is grateful to the Centro de Calculo Cientifico,
Universidad de Oveido, for the CONVEX facility in
which all the calculations have been done. I would like

also to express my gratitude to the Direccion General de
Investigacion Cientifica y Tecnica (Spain) for Grants
Nos. SAB92-0226 and SAB94-0064 allowing me to finish
this work.

*On leave from Physical-Chemical Institute, University of
Latvia, Riga, Latvia. Present address: Department of Phys-
ics, University of Keele, Newcastle-under-Lyme,
Staffordshire, ST5 5BG, UK.

L. N. Kantorovich, preceding paper, Phys. Rev. B 51, 3520
(1995).

D. C. Wallace, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic, New York, 1970), Vol. 25, p. 301.

3J. A. Reissland, The Physics ofPhonons (Wiley, London, 1973).
4K. B.Tolpygo, Izv. Acad. Nauk SSSR Ser. Fiz. 24, 177 (1960);

K. B. Tolpygo, Usp. Fiz. Nauk 74, 269 (1961) [Sov. Phys.
Usp. 4, 485 (1961)];K. B. Tolpygo, Phys. Status Solidi B 56,
591(1973).

sD. C. Wallace, Thermodynamics of Crystals (Wiley, New York,
1972).

sA. M. Stoneham, Theory of Defects in Solids (Clarendon, Ox-
ford, 1975).

7A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipa-
tova, Theory ofLattice Dynamics in the Harmonic Approxima
tion (Academic, New York, 1969).

A. D. B. Woods, W. Cochran, and B. N. Brockhouse, Phys.
Rev. 119,980 (1960).

L. L. Boyer, Phys. Rev. B 23, 3673 (1981).
S. Nambu and M. Oiji, J. Phys. Soc. Jpn. 59, 4366 (1990).

~~Z. Gong, G. K. Horton, and E. R. Cowley, Phys. Rev. B 38,
10 820 (1988).

E. R. Cowley, Z. Gong, and G. K. Horton, Phys. Rev. B 41,
2150 (1990).

I F. H. Ree and A. C. Holt, Phys. Rev. B 8, 826 (1973).
V. V. Mitskevich, Sov. Phys. Solid State 3, 2202 (1962); 3,
2211 (1962).

I5R. A. Evarestov and V. P. Smirnov, Phys. Status Solidi B 119,
9 (1983).

~6C. R. A. Catlow and W. C. Mackrodt, in Computer Simula-
tion of Solids, edited by C. R. A. Catlow and W. C. Mackrodt,
Lecture Notes in Physics, Vol. 166 (Springer-Verlag, Berlin,
1982), p. 3.

~7A. G. McLellan, The Classical Thermodynamics of Deform
able Material (Cambridge University Press, Cambridge,
1980).

H. I. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
C. R. C. Catlow, K. M. Diller, and M. J. Norgett, J. Phys. C
10, 1395 (1977).
F. H. Fumi and M P. Tosi, J. Phys. Chem. Solids 25, 31
(1964); 25, 45 (1964).

~J. M. Recio, E. Francisco, M. Florez, and A. Martin Pendas,
J. Phys. Condens. Matter 5, 4975 (1993).
V. Luaria and L. Pueyo, Phys. Rev. B 41, 3800 (1990).

~ G. D. Mahan, Phys. Rev. B 34, 4235 (1986).
R. P. Lowndes and D. H. Martin, Proc. R. Soc. London Ser.
A 308, 473 (1969).
P. B.Ghate, Phys. Rev. 139, A1666 (1965).

6R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 73
(1941).
G. Raunio and L. Alrnqvist, Phys. Status Solidi 33, 209 (1969).
G. Raunio, L. Almqvist, and R. Stedman, Phys. Rev. 178,
1496 (1969).

See, for example, Ref. 10.
OP. P. Meincke and G. M. Graham, Can. J. Phys. 43, 1853

(1965).
A. J. Leadbeter and D. M. T. Newsham, J. Phys. C 2, 210
(1969).
J. T. Lewis, A. Lehoczky, and C. V. Briscoe, Phys. Rev. 161,
877 (1967).

33American Institute of Physics Handbook, edited by D. E. Gray,
3rd ed. (McGraw-Hill, New York, 1972).
F. D. Enck, Phys. Rev. 119, 1873 (1960).
W. T. Berg and J. A. Morrison, Proc. R. Soc. London Ser. A
242, 467 (1957).
Clusius, Goldman and Perlick, Z. Naturforsch Teil A 4, 424
(1949).

H. R. Glyde and M. L. Klein, CRC Critical Rev. Solid State
Sci. 1, 181 (1971).
R. A. Bartels and D. E. Schuele, J. Phys. Chem. Solids 26, 537
(1965).

39Q. D. Slagle and H. A. McKinstry, J. Appl. Phys. 38, 437
(1967).

~M. A. Durand, Phys. Rev. 50, 449 (1936).
4~M. H. Norwood and C. V. Briscoe, Phys. Rev. 112, 45 (1958).

W. C. Overton and R. T. Swim, Phys. Rev. 84, 758 (1951).
H. Spetzler, C. G. Sammis, and R. J. O'Connel, J. Phys.
Chem. Solids 33, 1727 (1972).

~T. H. Kwon, Solid State Commun. 82, 1001 (1992); S. C. Kim
and T. H. Kwon, Phys. Rev. B 45, 2105 (1992); T. H. Kwon,
S. D. Kwon, Z. H. Yoon, Y. K. Sohn, and S. C. Kim, Physi-
ca B 183, 75 (1993); S. C. Kim and T. H. Kwon, J. Phys.
Chem. Solids 53, 539 (1992).

4~M. Catti, R. Dovesi, A. Pavese, and V. R. Saunders, J. Phys.
Condens. Matter 3, 4151 (1991).
G. Leibfried and W. Ludwig, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic, New York, 1961), Vol.
12, p. 276; R. A. Cowley, Adv. Phys. 12, 421 (1963).

47J. C. Owens, Phys. Rev. 181, 1228 (1969).
H. Kinoshita, N. Hamaya, and H. Fujisawa, J. Phys. Earth 27,
337 (1979).

'


