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Thermoelastic properties of perfect crystals with nonprimitive lattices. I. General theory
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Following general ideas proposed by C. Feldman et al. and extended by D. C. Wallace in his book on
the thermodynamic properties of crystals, we have derived detailed expressions for both external and
internal strain derivatives of the Helmholtz free energy of a perfect crystal. The thermodynamic func-
tions are calculated in the quasiharmonic approximation though the present theory can be straightfor-
wardly extended for an arbitrary order of anharmonicity. The formalism developed in this paper is simi-

lar, but not equal, to those proposed by previous authors. We have made several important generaliza-
tions of the existing theory and, besides, have obtained equations which are much simpler. It makes it
possible to consider an arbitrary shell-model crystal with nonprimitive lattice (including piezoelectric
crystals) and to pay special attention to the numerical implementation of the formulas obtained. More-
over, by careful consideration, we have corrected a physically doubtful conclusion existing in a particu-
lar piece of the literature, namely that microscopic and macroscopic expressions for the crystal energy
may not coincide. We prove rigorously that a proper microscopic consideration does lead to the same
macroscopic expression. In the second part of this work the theory developed here will be applied to
KC1 and NaC1 crystals.

I. INTRODUCTION

Thermoelastic properties of perfect crystals are of
great value in studying general thermal properties of
solids. ' Experimental information concerning equa-
tions of states of a solid, its elastic, dielectric, and (if any)
piezoelectric properties over a wide range of tempera-
tures and stress conditions (pressure, for example), allows
one to find realistic interatomic potentials which should
work well over a wide range of interatomic distances.
The latter property is of great importance, particularly in
studying polymorphic phase transitions, therma1 ex-
pansion, elastic behavior, etc.

There exists a detailed literature concerning theoretical
calculations of zero-temperature dielectric and elastic
constants of general nonprimitive crystal lattices when
arbitrary external stress is applied to the crystal. '

However, there are only a few papers which are devoted
to theoretical calculation of these properties at nonzero
temperatures, although the corresponding experimental
information is available for many crystals. Nevertheless,
a number of methods have been developed by different
workers for calculating temperature dependencies of elas-
tic and dielectric constants of crystals subjected to arbi-
trary stress.

In the simplest static approach' ' the vibrational con-
tribution to the elastic constants is neglected, whereas the
quasiharmonic approximation ' was used in optimiz-
ing the crystal structure. In the method proposed in Ref.
l (see also Ref. 6) the crystal free energy is considered as
a direct function of the elastic strains and temperature.
This method was successfully used for NaC1, ' NaI,
KBr, and SrTi03. ' However, this method does not
take directly into account the dependence of the phonon
frequencies on the strains resulting in a rather slow con-
vergency of the thermodynamic perturbation theory.

The direct dependence of phonon frequencies on the
strains was approximately considered in the Einstein
model ' (see also Ref. 22), as well as in the anisotropic-
continuum ' and finite-mode models (see also Ref.
26). A more consistent method based on the numerical
differentiation of the free energy calculated in the
quasiharmonic approximation, was developed and tested
for alkali halides in Ref. 22. The same numerical
method was used in Refs. 27—29 within the self-consistent
phonon formalism. ' ' The Monte Carlo method has
also been developed to study elastic properties of NaC1-
type crystals in Ref. 29.

However, the numerical differentiation approaches
suffer from some important drawbacks. First of all, they
cannot be easily automatized in order to be used for an
arbitrary crystal: a special analysis is necessary in every
case to avoid time-consuming calculations of the whole
Hessian matrix of the second-order free-energy deriva-
tives. '" Besides, as our experience shows, the numerica1
differentiation of complicated functions is both a very ex-
pensive and a very delicate problem which generally
yields rather large and heavy controlled numerical errors
even if special numerical algorithms are implemented.

Another approach which is free from these deficiencies
was proposed as long as 25 years ago in Ref. 31. Analyti-
cal derivatives of the quasiharmonic phonon frequencies
over six external strains of fcc rare gas solids were de-
rived and expressed through the corresponding deriva-
tives of the dynamical matrix, i.e., through several lattice
sums which are a little more complicated than those used
for the dynamical matrix itself. This method appears to
be quite general and cheap because the whole Hessian
matrix is obtained from one calculation. This method has
been extended for the case of nonprimitive lattices by
Wallace in his book on the thermodynamic properties of
crystals. Unfortunately, the method used by Wallace to
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II. ELASTIC PROPERTIES OF PERFECT CRYSTALS:
A BRIEF OUTLINE OF THE RELEVANT RESULTS

A. Definition of strains

Let us define the positions of atoms in a crystal by
specifying the vector

l I
=R(l)+X(s)= RR

Here l numerates unit cells (UC) and R(l) is used for the
corresponding direct lattice vector connecting the 0-th
and the lth UC's. The index s = 1, . . . , n runs over
different atoms in the UC, n being the total number of
atoms in the UC. The relative vector linking any two
atoms

R

eliminate the internal strains appeared to be approximate
(static energy was used instead of free energy).

In the present paper we have made a further develop-
ment and generalization of the method of Feldman
et al. ' and of Wallace mainly in the following direc-
tions: (i) any ionic crystal, i.e., a careful treatment of the
Coulomb long-range interactions; (ii) an incorporation of
the electronic contribution to the lattice distortion via
further generalization of the shell model; (iii) arbitrary
non-primitive crystal including piezoelectric ones, i.e.,
the effect of internal strains (sublattice displacements) is
rigorously involved since from the beginning we use the
free energy; besides, our method in eliminating internal
strains leads to comparatively simple and well-observed
formulas which can be implemented in practice; (iv) final-
ly, special attention is paid to the numerical implementa-
tion of the formulas obtained in the general case of arbi-
trary structure and symmetry of a crystal.

The plan of the paper is the following. In the next sec-
tion we describe in some detail our model for the crystal
energy and set up our notations. In addition, we show
that the proper microscopic consideration leads to the
correct expression for the free-energy density of an arbi-
trary piezoelectric crystal which coincides with corre-
sponding macroscopic expression. Section III contains
the most important results of the present paper. The
derivatives of phonon frequencies over both external and
internal strains are derived in the general case. Then the
free energy is considered in the quasiharmonic approxi-
mation. Some final comments will be given in Sec. IV.
Details of the calculations as well as all our numerical re-
sults are considered in the following paper.

The atomic positions in the homogeneously deformed
lattice are given by'

I
(1)

I s
=(5 p+u p)Rp +u

where

is the so-called internal strain which (if nonzero) gives
rise to some additiona1 displacements of the crystal Bra-
vais lattices with respect to each other in order to main-
tain thermodynamic equilibrium of the crystal under
external stress. u p is the elastic tensor (or external
strain). Alternatively, we shall use the so-called Lagrang-
ian strain tensor

'g~p ~ ( u ~p + u p~ + u y~ u rp ) 'gp~ (2)

B. The Helmholtz free energy
and a model of the lattice dynamics

It is necessary to distinguish between adiabatic and iso-
thermal thermoelastic properties. Theoretical calcula-
tions appear to be more convenient in the latter case
since it is easier to work with the temperature, T, than
with the entropy. Transformation to the adiabatic quan-
tities can be done afterwards using well-established ther-
modynamic expressions. '

At any microscopic configuration (g, u) the free-energy
density (per UC) is as follows: ' ' ' '

1 18 ~ Uo+ ~ X@kj+@AH( I~kj }
kj

When symmetric, the elastic tensor I u p} appears to be
more convenient during algebraic derivations because of
the simple expression (1). However, final expressions
should be given in the rotational-invariant form, i.e.,
through the Lagrangian strains. This transformation is
easily done by solving Eq. (2) over u p for small q p.
We must stress here that the assumption of small strains
is quite general since there is one-to-one correspondence
between six independent components of [g p} and the
basic vectors a; of the direct lattice.

Note that throughout this paper Greek indices will be
used to indicate the Cartesian components of vectors and
tensors, and, for the sake of simplicity of notation, the
Einstein convention wi11 be widely used, i.e., the summa-
tion over repeated Greek indices is implied unless other-
wise stated.

and
=1= ~ Uo+S. b. (3)

r

Il
R

will be denoted hereafter by

where X is the number of UC's in the main region of the
crystal, UQ is a static part of the energy, i.e., potential en-
ergy of the crystal. The second term in Eq. (3) represents
the quasiharmonic contribution

R, =R g„j= —,
' iri~i,j +ad T ln 1 —exp
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Here kz is Boltzmann's constant and A Plank's constant.
The last term, 5~H, in Eq. (3) represents anharmonic con-
tributions to the free-energy density resulting from third-,
fourth-, etc. , order force constants and obtained using the
thermodynamic perturbation theory. ' ' These terms
are quite cumbersome and will be omitted here for the
sake of simplicity. They do not affect the formal deriva-
tion which we are going to perform. We should note,
however, that these terms are some well-defined functions
of T, co&., phonon eigenvectors and interatomic distances
and therefore can be taken into account (at least in prin-
ciple} ~

In Eqs. (3) and (4), [co& ] are the quasiharmonic pho-
non frequencies (k the wave vector, j a phonon branch,
j = l, . . . , n) T.ogether with associated eigenvectors,
e(kj}=~~e,~(kj)~~, they are defined in solving the lattice
dynamics secular problem

QQ", (k)e, . (kj)=Xi, e, (kj),

where the prime on the lattice sums excludes the term
l =O from the summation to remove the self-action of the
atoms (if s =s'). The first term in Eq. (6) describes core-
core-type interactions between atoms, R being the rela-
tive position of displaced atoms

l

s

This term contains the usual Coulomb (q, is the charge of
the sth atom in the UC) and central short-range part,
V" (R). The second term in Eq. (6) is responsible for the
shell-shell-type of the interatomic potential,

l l

Uo = —g' V" (R)+
0'ss' R

+—gQ &" (R)Q ~

2 ll'ss' s

l
+g'Q

ll'ss '
I "(R)—

R

where Ak =coj, and fl(k)=~~0" (k)~~ is the dynamical
matrix. Although the theory of lattice dynamics is well
known, ' ' ' we must summarize it here since we need
detailed expressions for the dynamical matrix, Q(k),
which will be widely used throughout this paper.

It is well understood that in order to take into con-
sideration electronic polarization effects, obtain reason-
able phonon curves, and dielectric properties (especially
for ionic crystals), it is necessary to go beyond the sim-
plest rigid-ion model and account for atomic polariza-
tion. In this paper we use something similar to the usual
she11 model, namely the theory of deformable dipoles
developed by K. B. Tolpygo et al. ' ' ' (it was gen-
eralized for arbitrary multipole moments of atoms in Ref.
36 and the detailed discussion of the main physical as-
sumptions made there was provided in Ref. 37 from the
viewpoint of the theory of electronic separability ). This
lattice-dynamics model is attractive since it gives a con-
sistent quantum-mechanical justification of the shell-like
models. ' Note that the theory of deformable dipoles
was successfully applied to a wide range of atomic, ionic,
and covalent crystals (see Ref. 39 and references therein}.

It can be rigorously shown based on arguments of the
theory of electronic separability that in the strong ortho-
gonality approximation (keeping only first leading dia-
grams in the decomposition of the total crystal energy,
see Ref. 40 and references therein) and, assuming the
crystal atoms are spherically symmetric in the static non-
vibrating lattice (the model of spherical balls ), the total
potential energy of the crystal in the dipole approxima-
tion can be written as follows:

is the vector of the dipole moment on the atom

s

The following matrix is associated with this term:

D" ~ (R)=5ii.5„.5 — -+Z" (R) +Q .(R) (7)

where A, is the sth atom polarizability and

6 ~ 3R R ~

R RQ .(R)=

is the usual dipole tensor. ' We have also added some
general short-range terms,

Z" ~ (R)=5 Zi' (R)+R R Z2' (R)

in order to further generalize the model and allow for a
comparison with the usual shell model. This short-
range term was justified microscopically in Ref. 41. Note
that it is implied in Eq. (7) that both Z(R) and Q(R) are
zero, when s =s' and l = l'.

Finally, the third term in Eq. (6) describes interactions
between cores and shells and also contains both long-
range and short-range, I "(R), parts. The special form
of this contribution follows rigorously from the model
adopted [spherical structure elements (i.e., atoms), dipole
approximation, and the exchange interaction between
atoms up to the first order]. For the same reasons, all
the short-range potentials in all the terms considered
have central character and three-body forces are absent
(they appear, however, in the next, quadrupole, approxi-
mation). Note also that V" (R ) = V' '(R ), but
I "(R)WI' '(R) because in the latter case indices s, s' be-
long to different physical subsystems: the first and
second indices correspond to a shell and a core, respec-
tively.

By making use of the usual manipulations, the follow-
ing expression for the dynamical matrix Q(k) is obtained:

n(k) =M '~
[ A(k) —B(k)tD '(k)B(k)]M
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where M=]f5„,5,M, ff
is the diagonal matrix of atomic

masses, the dagger means Hermitian conjugate, and
Fourier transforms of the core-core, A(k), shell-core,
B(k), and shell-shell, D(k), matrices have been intro-
duced in the following way:

Dss' (k) yDss' (R) ikR

I

=5„5 ~ +Z" .(k) —Q",(k),

2" .(k)=5„.6A' —q, q, .Q" (k) —V" .(k), (12)

46Q" (k)=5 .5„, , +G'g'Q (p)e'
3&

where G is the Ewald parameter, the vector p= GR, and
v, is the UC volume. The second sum runs over the
nonzero reciprocal-lattice vectors g and sc =k —g;
X=X(s)—X(s') indicates the relative position of the s,s'
sublattices, and the function X(x)=(1/x) exp( —x/46 ).
Lastly, the function Q .(p) can be written as

B".., (k) =5„,6B'... —q, ,g..', (k) —r..',(k), (13) Q '(p) 5 'Ql(p)+pW 'Q2(p) (18)

where from now on

I 0
R=R

indicates the relative position of undisplaced atoms

I

where the functions Q, (p) are defined completely in the
same fashion as above, i.e., Q;(p) =(d/pdp)g;, (p) with

go(p) =erfc(p)/p.
The contributions b, J' and b,B', in Eqs. (12) and

(13) ensure correct behavior of the phonon curves in the
long-wavelength limit (k—'0) and are given by

hA' ~ =g[q, q, Q" (k=O)+ V~ (k=O)], (19)
S

bB' ~ =g[q, .g" .(k=O)+I" (k=O)] .
S

(20)

S

The following notations have been made:

V",(k)=g'e'"R[5 .Vi' (R)+R R ~ V'i' (R)]
I

ikR Vss'

1

(14)

In the quasiharmonic approximation the lattice dy-
namics problem, Eq. (5), is solved for every crystal
configuration given by the whole strain vector

In thermodynamic equilibrium, the following conditions
should be satisfied:

I" (k)=g'e'kR[5 I (R)+R R I "(R)]
I

ikRI ss' (R)
I

(15)

4~kk ~g", (k) = — exp —
2

+Q" .(k),k' 46

and Z" ~ (k) is the Fourier transform of Z~ ~ (R) given by
Eq. (9). The functions I', Z;" [see Eq. (9)], and V,

" can
be expressed quite usefully in the equivalent manner as
follows: X,"=(d/RdR)X;" i, where i =1,2, . . . , and

Zo' =Z" (R ) and Vo = V" (R). Note that we have used
only i =1,2 in the expressions given above. However, as
will be clear later, this more general definition appears to
be very convenient for further consideration.

The Coulomb part, Q" (k), is defined analogously as
the Fourier transform of ( —Q (R)) and, as is well
known, may be calculated by means of the Ewald
method' leading to the result

a . =0 for every s =2, . . . , n,
5

BU

ag
v 0'g p

(21)

C. De6nition of the material properties of crystals in terms
of the free-energy derivatives over strains

where the first equation simply means that the free-
energy density Q is at a minimum with respect to the
internal coordinates of the crystal (internal strains). The
second equation says that the crystal structure should be
balanced with external mechanical forces imposed on the
crystal; r &

is the corresponding (initial) external stress
tensor. Equations (21) give the complete description of
the equation of state of the crystal in the general case of
arbitrary external stress and temperature ' and, there-
fore, are much more general than those derived under the
usual requirement that "Gibbs energy shall be the
minimum. "

where we have separated out the well-recognized macro-
scopic field part which is irregular in the macroscopic
(k -0) limit, and the regular part, distinguished by the
tilde,

In order to consider thermoelastic and dielectric (ma-
terial) properties of a crystal, we have to start from the
isothermal case and expand the free-energy density, g, in
power series over both external„g &, and internal,
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U a

strains about the equilibrium configuration for every
desired temperature. Since the free energy consists of two
parts, namely, the static part, Uo/N, and the vibrational
part [see Eq. (3)], we evidently get two contributions to
the corresponding coeKcients of the decomposition. In
order to simplify the whole picture and avoid cumber-
some derivations and notations, it is convenient to con-
sider these two parts separately. In this subsection we
give a short survey of the elastic, piezoelectric, and
dielectric properties of an arbitrary crystal, considering
only the static part of the free-energy density. Our
method of separating out the macroscopic field is similar,
but not identical, to those existing in the literature (see
especially Refs. 9, 13, and 16). However, while we ob-
tained the same expressions for the elastic, dielectric, and
piezoelectric constants, we have found a different result
for the microscopic energy density of the deformed
piezoelectric crystal from that found in Ref. 13. Our ex-
pression leads to the correct macroscopic limit.

Let us start again from Eq. (6). We shall use the
method of homogeneous deformation. ' ' ' In order to
eliminate the surface effect, ' we should notice that the
I' summation in Eq. (6) counts equivalent terms due to
the periodic symmetry of the crystal. Therefore, we can
put I'=0 and introduce instead the factor N. Then,

l
Q. , —Q. (s)

since under a homogeneous deformation all UC's are
identical. Besides, we substitute the vector R of relative
position of two atoms

I

s

by the vector

~'

I
R=R

L

0 l 0—R, =R
s s s

0 a

up to the second-order terms (the higher-order terms re-
sult in higher-order properties which are outside the
scope of the present paper though they may be con-
sidered analogously). We thus get the following result for
the change of the crystal potential energy (per UC)
caused by the elastic deformation:

[see Eq. (1)] in the deformed lattice and decompose the
expression for Uo= Uo(IR] ) thus obtained into a power
series over both u & and

AU s s= japju ~++ ' 'u +
$

s 1
Q (s) +—[aP y5ju pu s

s s s
+g u '

Py '+Q (s) Py
'

u&

1 s
+—g u a

s s
g Ua a

s +Q() s s
Q (s') +2Q (s)

s s s
I Ua a' a' (22)

where the brackets defined above have transparent physical meaning which will be clarified later on. All the brackets
except the last three have no singularities and can be easily calculated. After some simple though long algebra they can
be expressed through lattice sums over the interatomic potentials:

[aa'j =—g —q, q, .S" .+g'R R, V", (R) (23)

s —q, q, S"+g'R V (R)
$ 1

(24)

—
q, .S" + g'R I", (R)

$ I

[aPy5] =—g q, q, S"r ps++'RpRs V" (R)
$$ 1

(25)

(26)

s
Py '=g q, q, S"p r+g'Ry V"p(R)
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s
Py '=g q, I"pr+g'R~I "p(R)

S 1

(28)

where 5",6" ., etc. are Coulomb lattice sums of different types. They can be calculated by means of the Ewald method
in the usual way'" and are given by

S"= —6 g'p Q, (p)+ g'g y(g ) sin(gX),
I C g

I"p= —Gg'p~pQ, (p)+ g'[5 ~(g )+2g gpss'(g2)) cos(gX),
I C g

(29)

(30)

I"p,r=G'Q'PrQ p(p)+ g'[(5 rgp+5prg )y(g')+2g gpgry'(g')] sin(gX),
1 C g

@"p,rs=Gr. 'PyPsQ p(P)+ y'[(5.y5ps+5py5. 5)x(g')
1 C g

+2(5 gpgs+5p g gs+5 sgpg +55pg g +5 Bg gp)X(g )'
+4g gpgrgsX (g )] cos(gX) .

(31)

(32)

Here y' and y" are the first- and second-order derivatives of the function g(x) [it was introduced earlier, see Eq. (17)]
viax =g .

In contrast, the remaining three brackets in Eq. (22) do not contain summations over indices of the sublattices s, s .
That is why they do have special divergent contributions in their Coulomb parts. They result from the g=0 terms in
the corresponding reciprocal-lattice sums, arising while using the Ewald method:

r

s s',
, 4~ k k ~

, '=[5„5A' —q, q, Q" (k=O) —V" ~ (k=O)]+ q, q, (33)

'=[5„.68' ~
—q, Q" (k=O) —I" (k=O)]+ q,

v,
(34)

s s
ss' aa' g

=~5 .5
S

4~k k—Q".(k=O)+Z~ .(k=O)]+
C

(35)

where the limit k =-0 is implied in the last term of each
of the expressions. Evidently these divergent terms lead
to the well-known macroscopic electric field and, hence,
to a description of macroscopic dielectric and piezoelec-
tric properties. ' Note that some brackets satisfy a
number of identities which reAect the invariance of the
crystal energy under an arbitrary rigid displacement of
the lattice as a whole

Q (s)+q, u=1
C S

s
(37)

and the corresponding macroscopic electric field, '

have the complete Voigt symmetry since we did not as-
sume zero stresses here (cf. Refs. 1 and 11).

Then, following the method developed in Refs. 9, 11,
13, and 15, we introduce the dipole moment per UC,

s s s
a a' k k ~8= 4~, p— (38)

=X
S

s s =0. (36)

s s
I

Eq. (34), for the latter case]. It should be stressed also
that the bracket [aP y5] given by Eq. (26) does not

In addition, the brackets (33), (34), and (35) are sym-
metric with respect to the permutation of o,', a' and of s,s'
[except

where k — = 0, which satisfies the condition
div(S+4mp) =0. Starting from this point, our derivation
differs from that published in Ref. 13.

In order to find expressions for the elastic, dielectric,
and piezoelectric tensors of the crystal as well as for the
crystal energy density, we substitute the brackets given
by Eqs. (33), (34), and (35) into the expression for the
crystal energy, Eq. (22), considering separately their regu-
lar and irregular parts. The same notations will be used
for the regular part of these brackets. In order to
proceed, let us collect all the internal variables together
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into one vector of internal coordinates,

m U

q (39)

where m =(s,p) and @=1,2 corresponds to

and Q (s), respectively. By the same fashion, we can
gather all other brackets: those given by Eqs. (24) and
(25), into a vector Y= ~) F( )~~; the brackets (27) and (28),
into a matrix

mL= L Py

Since the 6rst three rows and columns of S are linearly

Lastly, the regular parts of the brackets (33), (34), and
(35) are compiled into a square symmetric matrix

m m'
S= S

dependent [see Eq. (36)], we adopt the same method for
the calculation of its inverse, S, as in Ref. 1. The con-
vention of summing over the repeated indices m, m will
be adopted throughout this section.

First we notice that all the irregular contributions to
the brackets represented by the second terms on the
right-hand sides of Eqs. (33), (34), and (35) can be gath-
ered together in the energy (22) leading to the following
contribution: 2vrv, ( k)ji) /k =v, S /8n Equation (38)
has been used in the last step here. Then, the change of
the energy given by (22) can be rewritten as

DUO g2
=[aPIu p+ —,'IaP y51u pu s+v,' 8m.

m m m m
+~~ Y +g L Py upr

J.

r

m m m' m'
(40)

and is found to be a quadratic form over the internal vari-
ables, ~~. The search for a minimum with respect to these
internal variables yields the unknown vector ~ in a closed
form:

m m'
= —S a o, '

r r r

m' m
' Y', +L, Py u&

—q(m')5 (41)

where q (m) is the vector of charges (the unit charge is attached to shells), i.e., q (s, 1 ) =q, while q (s, 2) =1. Note that
the electrostatic energy 6 /8m in Eq. (40) must be differentiated also with the help, successively, of Eqs. (38) and (37).

Now, let us express the elastic strain tensor, u &, through the Lagrangian strain tensor, g &. Employing the solution
for

found above and the definition of the total UC polarization, Eq. (37), we can calculate the change of the dipole moment
of the UC because of the deformation as

m
q(m)~

C r

=e "p' (0)rIpr+y p(0)Sp (42)

and the elastic energy density of the crystal, Eq. (40). The following result was obtained for the latter in the general
case of an arbitrary (piezoelectric) crystal:

0 @2

I, =4.&or+ lcI'r, r r &jr&I'+ l&-n(0)@-@a+ Sa
(43)

where V =Xv, is the volume of unstrained crystal. In Eq. (42), e "& (0) is the direct (static) piezoelectric tensor, given
microscopically by

e'" (0)=-a,Py
1 m m m

q (m)S ', L ~ Py
C L

(44)

The static dielectric susceptibility tensor which appeared in Eqs. (42) and (43) is given as

=1 m m'
.(0)= q(m)S ', q(m') .

C

The initial stress tensor is found to be
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T

m1 BbU 1 m
[Pyl -l'

a a
m m

py
S

(46)

and the Brugger-type elastic constants are

=1 m m m'
cpp, = [py p'y'Js L—~ py

C

m
p'y'

S

«pr ~rp+r-~pp+~pp~r'+r'. p~p. ) (47)

The subscript S on some brackets related to the external
strains means their symmetrization over their indices fol-
lowing the recipe: [pyIs= —,'([pyj+[ypI), etc. This
circumstance provides that the elastic constants, Eq. (47),
have the complete Voigt symmetry, i.e.,
C&z && =C&z. &z =C&z z.&. At last, completing our mac-T = T = T

roscopic relations, we can calculate the instantaneous
stress in the deformed crystal as

1 BEU
V Bripr

=~p +Cpr p, .~p, e."pr(—0)e. (48)

where the converse (static) piezoelectric tensor, e' &r(0),
has been introduced. It was found to be the same as the
direct one, Eq. (44).

Equations (42) —(48) complete the macroscopic descrip-
tion of the elastic and dielectric properties of arbitrary
crystal. Our derivation generalizes the result of Refs. 12
and 13 because we did not assume that the crystal is un-
stressed (i.e., that the initial stress rp&=0) and, in addi-
tion, the electronic polarization has also been included.
The latter was also considered in Refs. 11 and 16 by
means of the method of long waves and in Ref. 15 by us-
ing a formal approach based on (numerical) energy
derivatives with respect to strains. However, in the pa-
pers quoted above the corresponding energy expression
was not derived.

Let us now discuss our expression for the elastic crystal
energy, Eq. (43). Using the macroscopic relations given
by Eqs. (42) and (48), it can be shown easily by simple
comparison that the microscopic result (43) is the same as
that which follows directly from purely macroscopic con-
siderations. A somewhat similar, but not identical,
derivation made in Ref. 13 led the authors to another ex-
pression for the microscopic energy. The explanation for
this disagreement lies in the fact that in Ref. 13 the irreg-
ular part of the bracket

s s
a a

was separated out only in finding the dipole moment, but
not while deriving the energy expression. This is why
their energy results in the correct macroscopic limit, Eq.
(43), only under some special assumptions. This fact al-
lowed the authors of Ref. 13 to afBrm that "there is not
an a priori guarantee for the agreement between the mi-
croscopic and macroscopic expressions. " Our result

clearly demonstrates, however, that their conclusion is
incorrect, and that correct microscopic considerations do
lead to the same result as the macroscopic one, as should
be so.

Now we are quite prepared to consider the vibrational
part of the free energy. For this purpose we have to ob-
tain corresponding contributions to the brackets
[py py'I.

s s
a a

s
py

s

and

Note that all other brackets are una8'ected by the vibra-
tional part since the latter (being directly expressed only
through the frequencies) depends on the external and
internal strains but does not depend on the shell coordi-
nates. It is important to emphasize that the final expres-
sions for elastic, piezoelectric, and dielectric constants
obtained above as well as for the energy (the Helmholtz
free energy in this case) would be still valid.

III. CALCULATION
OF THE FREE-ENERGY DERIVATIVES

OVER EXTERNAL AND INTERNAL STRAINS

A. General expressions for the brackets

In order to calculate the temperature-dependent part
of the brackets [py p'y'I,

s s
a

s
py ',

and [py J (which will be indicted by the subscript T), we
have to calculate the following derivatives of the vibra-
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tional part g„;b, of the free energy, Eq. (3), over strains:
1 ~~kj

y, (~kj)= ——, —+nkj 1+ ' (1+nkj)
4Q)g . 2

a s
Bu a

0

1 akj

s
BU a

0

~@AH

s
BU a

0

(49)

(56)

In Eqs. (54) and (55) the variable x means either external,
u&, or internal,

s
U

1 ~skj
IPrI T= ~g1V ij BuPy .0

T

(50)

(51)

and all other brackets are expressed in the same manner.
We shall omit the anharmonic part in what follows. We
shall make, however, one additional comment concerning
the g~H contribution later. Thus, we have

strains. Note also that it appears to be more convenient
to use the derivatives of A,I, =conj- than those of the usua1
frequencies, co&, since, as will be clarified below in detail,
the former can be directly related to the corresponding
derivatives of the dynamical matrix, Q(k). The latter idea
is of major importance for the present derivation and was
developed for the first time (although for a simple partic-
ular case) in Ref. 31 and then it was further extended in
Ref. 5 in order to cover the case of an arbitrary lattice.

)
s

Bup BUr a

(52)

s s
a a

@k

s s
BU BUa a

(53)

where the subscript zero means that all these derivatives
should be calculated at zero strains (when both

s
U

, a

~@kj

BX p 2COg~
ni, . +—

BX p
(54)

8

BXBX

BA,kj

0 X 0

where

A k)
+q»(~k, )

X X p
(55)

%COD j
n& = exp —1

B

is the average number of the kj phonons, and

and u&r are equal to zero). Making use of the detailed
expression, Eq. (4), for the quasiharmonic term, gkj, we
have for the first- and second-order derivatives the fol-
lowing general expression (cf. Ref. 31):

B. Formal general expressions for the derivatives
of the eigenvaines over external parameter (strains)

It was suggested in Refs. 5 and 31 to apply the first-
and second-order perturbation theory for deriving ex-
pressions for the first- and second-order derivatives of A.&

over x, respectively. At the same time, their derivation
cannot be considered as sufhcient because of several
reasons which should be clarified.

First of all, we found the method of Wallace for elim-
inating internal strains, to be approximate. Indeed, this
elimination was proposed to be done before the applica-
tion of the perturbation method, i.e., before the deriva-
tives of the frequencies over strains are calculated. How-
ever, the phonon frequencies depend both on the external
and internal strains, being together just geometrical pa-
rameters of the lattice. Thus, the Wallace method violates
the first condition of thermodynamic equilibrium, Eq.
(21): the unknown internal strains should be calculated
from the minima of the Helmholtz free energy, not from
the minima of the potential energy of the crystal as in
Ref. 5. Moreover, final formulas published in Ref. 5 are
very lengthy and cumbersome since, due to the derivation
made there, the knowledge of the internal strains up to
the second-order over external strains were found to be
necessary. We overcome this di%culty by the elimination
of internal strains quite rigorously based on the same
algebra as described in some detail in the preceding sec-
tion. Namely, due to our method, the complete set of
derivatives of the free energy over the whole set of
geometrical variables should be calculated making use of
the perturbation method. And only after that, the elim-
ination of the internal coordinates must be performed. As
a result, only first-order terms of the internal strains are
necessary, Eq. (41), and our final formulas do not appear
to be very complicated.

Besides, in employing the perturbation method, the
case of degenerate eigenvalues of the phonon problem has
still not been considered. However, we found it to be
quite important for the problem in question, especially
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(57)

(Note that in Ref. 5 the corresponding decomposition
was made only with respect to external strains assuming
that the internal strains had already been eliminated and
included in a proper expression for the dynamical matrix;
see p. 203 in Ref. 5.) In order to simplify the notations,
we remove in this section the indication of both the vec-
tor k and the indices like s, a, etc., inherent to the
dynamical matrix Q. However, the latter in the above
written expression should be understood as a matrix
(with respect to these indices) at some (fixed) k&BZ. The
matrix Qo=Q(x=O) corresponds to an unstrained crys-
tal whereas Q=Q(xAO) corresponds to a strained one.
Our task is to calculate first- and second-order derivatives
of the eigenvalues A, (x}of the Hermitian matrix Q(x) at
x=O using both eigenvalues, A, =A, „=A, „(0), and eigen-
vectors, e (jr), of the unstrained matrix Qo:

Qoe (j r)=AJ„e (jr) . (58)

We assume for the moment (until otherwise stated) that j,
j', etc., run over states having different eigenvalues while
additional indices like r, r, etc. , run over degenerate
states.

Following the usual perturbation theory for the degen-
erate states, we can consider the first- and second-order

I

for high-symmetry crystals. Indeed, as is clear from the
equations given in the preceding section, in order to cal-
culate every bracket, the integration over the Brillouin
zone (BZ) should be performed. It is known that the
method of special points is very useful for that purpose
producing sets of points distributed over the irreducible
part of the BZ. In the cases of high-symmetry crystals,
many points lie along high-symmetry axes or on symme-
try planes and therefore give rise to degenerate eigenval-
ues. Though it seems to be possible to choose such sets of
special points which contain k points entirely in general
positions, in many cases it is expected that these sets
would have too many points. Hence, we have to regard
them as impractical for actual calculations. Good-
quality sets involving as small a number of points as pos-
sible usually contain several high-symmetry points.
That is why we must generalize the corresponding deriva-
tion. Furthermore, the inclusion of electronic coordinates
is still lacking and we shall consider this complexity as
well.

Let us decompose the dynamical matrix Q(x) into a
power series over x= jexternal, internal stains[ = (x; j
up to second order:

Q(x) =Qo+ Q x,
'an '

BXg

where W„„. (x) is defined as the diagonal (j =j') ele-jj(&)

ment of a more general matrix, which will turn out to be
useful later:

W„.„- (x)=e (jr') g x; e (j'r") . (60)
jj'($) p, y

I QQ

l p

(j)Of course, the coefficients C, (x) depend on x, but their
derivatives tend to zero as x:-0:

because W„„~ (x) is a homogeneous polynomial of the
jj'( &)

first order in x. Performing standard manipulations, we
get the following expression for the eigenvalues A, „(x)
(for arbitrary x) up to second order in x:

A, „(x)=AJ+AJ„"(x)+QC„(x)*W„„~(x)C„- (x)

where

g,J gJ,J

j +j p Atj kj
(62)

(x)=e (jr') —g x;x; e (j'&"),jj'(2) p . , g 1 8 0
2 ". BX BX-

P',J„=yW„,„„"(x)C„-(x) . (64)

Now, we must obtain first- and second-order derivatives
of A, .„(x), Eq. (62), with respect to components x;, x;. of
the vector x in the limit x --0. Since, as was already
mentioned above, the first derivatives of the coe%cients
C„(x) over arbitrary x; are zero, as far as the limit is

'I ' ]concerned, we need to differentiate only WJ J,', "(x) and
WJJ„' '(x). Besides, both W„'J'"(x) and W,.„~ (x} tend to
zero under the same limit. Thus, we have from Eq. (62):

terms inside the square brackets in the right-hand side of
Eq. (57) as the first- and second-order perturbations, re-
spectively (x is chosen as a small parameter).

Let us consider one bunch of the degenerate states, say,
all states (jr) with fixed j. In zeroth-order perturbation
theory, we get the first-order correction A, '„"(x) to A, „(x)
in the form of eigenvalues of the following secular prob-
lem formulated on the subspace [jr[ of the degenerate
states (j is fixed):

gW„„- (x)C„- (x)=A, ',"(x)C„(x), (59)

p p

(65)

'I I ~

b, - .(x )6 (x')"=g C,. (0)' ~ b,„.„-(x,,x, )+2 Re g gX X'
O ~I+ ' III

J J
'I

C„(0), (66}
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where
T

HAJJ, (x;)=e (jr') e (j'r"),
i 0

iV~„(x-;,x; )=e (jr') e (j'r") .
0

(67)

(68)

In order to calculate the derivatives remaining on the
right-hand side of Eq. (65), let us difFerentiate both sides
of the secular problem, Eq. (59), over x; and then ap-
proach the limit x —.0. Because of Eq. (61), we get the
desired result —an equation written directly for the
derivatives of AJ„"(x):

a~,'„"(x)
gh", „(;)C,' (0)=
r lt Xl- 0

(69)

Thus, in the general case the first-order derivatives of the
phonon eigenvalues A,N(x) for every x; should be calcu-
lated as the eigenvalues of the matrix A~~(x; )= )~b,P„(x;)(~

defined on a subspace spanned by the functions e (jr) of
the degenerate states (the index j is fixed). Note that un-
der an infinitesimal distortion of the crystal along x; the
degeneracy can be removed and the derivatives
(BA,,„(x)/Bx;)0 may not still be the same for different r
[though AJ„(0) are the same for diff'erent r].

Now, let us consider the second-order derivatives given
by Eq. (66). We are going to show that we do not need to
know the coefficients C„"(0) of the secular problem, Eq.
(69), for that purpose. Indeed, owing to the orthogonali-
ty of the eigenvectors of the problem (69), and to the fact
that in Eqs. (51)—(53) we have the complete sum over all
states including the complete bunch of those in the de-
generate case (when j —:

Ij r ] ), we can sum up the
second-order derivatives given by Eq. (66) over all the de-
generate states r (j is still fixed). The final contribution to
every degenerate state is found to be

a'x, (x)
=5'J(x;,x; )

Bx;Bx; p

6' ~(x; )hJ ~(x; )*
+2 Re g ', (70)

j'(&j) j j
where we have returned to our initial notations (i.e., j
runs over all states including degenerate ones) and the
summation over j' runs over all states which have dis-
tinct eigenvalues, A, WA, .

Our derivation shows that in the general case the ex-
pression for the second-order derivatives of the squares of
the phonon frequencies is the same as that obtained ear-
lier in Refs. 5 and 31 except the note made above for the
sum over j'. However, a new expression for the first-
order derivatives was derived here, Eq. (69), instead of
that obtained previously basing on the Hellmann-
Feynman theorem. ' lt results in an ambiguous result
for the first-order derivatives in the general case of degen-
erate states since the eigenvectors e (j) are defined up to
arbitrary unitary transformation. This problem is easily
avoided in solving, instead, the problem (69): any unitary
similarity transformation of the matrix K~J(x;) (on the

subspace of the degenerate states) does not affect the cor-
responding eigenvalues, i.e., the derivatives
(M. .„(x)/Bx; )0 sought for.

Thus, as follows from Eqs. (67)—(70), in order to calcu-
late the derivatives of the quasiharmonic eigenvalues, A.&.,
we have to calculate those of the dynamical matrix, Eq.
(10). This is the most powerful result of this section
which shows that in the most general case it is neverthe-
less possible (at least in principle) to link the derivatives
of the phonon eigenvalues with those of the dynamical
matrix and therefore represent the former through some
lattice sums. This provides a basis for the further con-
sideration and for a numerical implementation.

C. Derivatives of the dynamical matrix

Now we must calculate all derivatives of the dynamical
matrix, Eq. (10), with respect to external and internal
strains (all x, ). First of all we note that a set of matrices
b, (x, ) = ~(b,JJ (x, ) ~ ~

of the first-order derivatives contrib-
utes to the second-order derivatives as well as is clear
from Eq. (70). Besides, while calculating the second-
order derivatives, b,J~(x;,x, ), we should meet products of
pure first-order derivatives. It was found to be con-
venient, however, to separate out all the contributions to
b,J'(x, ,x, , } which come from pure second-order deriva-
tives of the counterparts of the dynamical matrix Q(k),
i.e., from its blocks A(k), B(k), and D(k), see Eqs. (12),
(13), and (11}.This simplifies the final expressions and
saves computer time considerably. That is why the fol-
lowing additional definitions were found to be useful al-
ready at the stage of the first-order derivatives:

and

'P(j)=D 'Be(j)=D 'Be(j)M (71)

f 1
(x, )=B(x;.)e(J) D(x;)q—(j) (72)

—f (x;)tD 'f (x; ) I, (74)

where the sum over j' in the last equation runs over all

f, (x;}=((f,., (x;)~(, and
e(j)= lie, (j}ll is the quasiharmonic eigenvector. Besides,
B(x; ) =BB/Bx; is the corresponding derivative of the ma-
trix 8 over x;. The same notations will be used in all oth-
er cases, for instance, A(x, ), D(x;,x;.), etc. In this sec-
tion the direct indication of the common BZ vector k will
be omitted for the sake of simplicity of the notations. Us-
ing a well-known matrix identity, namely,
dD '= —D '(dD)D ', and the definitions (71) and
(72), we can differentiate the dynamical matrix given by
Eq. (10) and then rewrite Eqs. (67) and (68) in the form

AJJ (x; ) =XJ~ (x; )

—[0'(j) f (x; )+ f (x, )t%(j')],
b,J'(x;,x,') =AJ'(x, ,x, )

HAJJ(x;)HAJJ(x;

)"
+2Re.

j(&j) j j
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+%(j)tD(x;,x; )%(j)
—2 Re[%(j)tB(x, ,x,')e( j)] . (76)

Thus, all the derivatives under consideration can be
directly expressed through the corresponding derivatives
of the blocks A, B, and 0 of the dynamical matrix.
Therefore, we have to consider these derivatives in detail.

The corresponding derivation is rather lengthy, though
it is similar for every matrix A, B, and D, and so we shall
consider only B here as a simple example. Recalling its
definition, Eqs. (13) and (20), we obtain for an external
strain derivative [i.e., when x; = u &r

=—(Py )]:

& .(Pr)=&„XIe,-g.".(Pr)0+I"..(Pr) ]o
S

—e, Q"..(Py) —I"..(Pr» (77)

where the subscript 0 means that k=0 [cf. Eq. (20)].
Here Q" (py) and I "~.(py) are the derivatives over u&
of Q" .(k) and I " (k), respectively. Note that Q" (py)
coincides with Q" (py ) except that a contribution from
the zero reciprocal-lattice vector g=0 is absent, see Eq.
(16). That is why we can consider only Q", (Py) in the
following. Similar expressions are obtained for A " (py )

and D" (py ), as well as for external strain second-order
derivatives like A" (py, p'y'), etc.

Let us consider now the first-order derivatives over
internal strain, when

states which have eigenvalues A, which differ from A, .
The contributions marked by the wavy lines in the above
given formulas, are the following:

&" (x; ) =&(j) A(x; )e(j') —qs(j)tD(x; )~II(j'), (75)

b,"(x,,x; )=e(j) A(x;, x,')e(j)

Therefore, we can write down, for example, that for the
derivative over any internal strain:

ss

. Q" ~ =(5, —5, )
s

BU 0

=(5, —5, )Q" (o) . (78)

The same is true for any other matrix, such as V", I "
~

and D" .. Making use of this identity, we can derive all
other derivatives of interest containing internal strains.
The final relations are rather cumbersome and are omit-
ted.

Thus, as follows from the above, we must calculate (for
every kCBZ) a set of five derivatives of V",, namely,
V" (Py), V" (o), V" ~ (Py, o ), V" ~ (cr, o'), and
V" (py, p'y') for external, internal, external-internal,
internal-internal, and external-externa1 strains, respec-
tively. The same set of derivatives should be derived for
I ",Z", and Q" . All these derivatives have been cal-
culated by direct differentiation of the corresponding
direct and reciprocal- (in the case of Q" .) lattice sums
over strains. The zero strain is assumed to be set at the
end of the calculations. %'e give here only the final for-
mulas.

(i) First-order external strain derivatives:

One hint was recognized to be useful for the derivation
and we would like to pay a special attention to it: exam-
ining Eqs. (13), (15), (16), and (17), we can find that lattice
sums such as Q" (k) or I ",(k) depend only upon the
difference

T

s s=X' (s) —2 (s') =X +u ' ' —u '

Vss' (py )
—yi ikRVss'

I
(79)

Q (Py)=G g'e' Q PPy+ ge' [y(z )(v v 6Py+v zgy +a ver )+2y'(Ir )~ ir ~~ ]
I C g

(80)

(ii) First-order internal strain derivatives:

(81)

ikgss' (O) —G4yie&kR g + ~
g

I

ge'sxg x ~ y(~2) .
C g

(iii) Second-order external strain derivatives:

V" (Py, P'y')=g'e'" V" IipR Ry. ,.
I

(83)
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Qss (Py Ptyt)
—G3+&elkRQ p

ge's . K K [y(K )[(1+5')5p 5p +(1 5p—)5p .5pr]
C g

+2y'(K )(5p KpK .+5p KpK +5tr KpK +5p KpK +5 ~ KpKp)

+4+ (K )KpKp K K j +KpKpg(K )(5 ~5 +5 ~ 5 ~)

+ [2+ (K )Kr KpKp +g(K )(5pr Kp+5pr Kp )](5y K +5r~ K~)

y —r'
+ (84)

(iv) Second-order internal strain derivatives:

V",(cr, o'')=g'e' "V"
~ ~ +k k, V" ~ +i[k V" (a')+k ~ V" (o)],

Q" (cr, o')=G g'e'" Q
I

Q .+—(k Q ~ ~ +k.Q ) + ge's g g KK g(K). (86)

(v) Second-order external-internal strain derivatives:

V",(Py, g )=g'e'"aV" .P Rr+ik V" ~ (Py) i5& k—PV'* ~,
l

Q"' (Py, a)=g'e'.""
Q p +

G Q. .p pr
—5, G Q

+ ge's [K K [g(K )(5r gp+5&pg )+2KpKrg g'(K )]+g K~(K )(5& K +5~ K )] .
C g

(88)

R=R
l o

and the following tensor notations have been introduced:

V~~ p
=R ~R ~ R p V3' + (5~pR ~. +5~ pR ~+5~~ R p ) V2'

V"~pp
=R R ~ R p R Ir V4' + ( 5~p5 ~ p +5~jr 5~ p+ 5~~ 5pp ) V2'

+(5 pR .R p +5 pR R p+5 ~ R pR p +5 p R~ Rp+5 .pR R p+5ppR~R ~ ) V3'

(89)

(90)

Q p and Q p& are defined in the same fashion except
that V;" is substituted for Q; for i =1, . . . , 4. All other
derivatives of interest, namely those of I "

~ and Z" ~ are
written analogously with reasonable substitution of V,

"
by I' and Z,". , respectively. Recall that all definitions of
these quantities, V,",I', etc. , were given previously, in
Sec. II 8 for any integer i, though we need here only i' up
to 4 (higher values are needed for third, etc., derivatives
of the phonon frequencies).

Concluding this section, we should emphasize that the
complete (i.e., built from both the static and vibrational
parts) internal-strain-related brackets must show some
properties which follow from the invariance of the crystal
subjected to a rigid translation as a whole. In other
words, the identifies given by Eqs. (36) must be also

fulfilled separately for the vibrational contributions. It
was checked that this is really so. Thus, the formulas de-
rived here do not violate this important physical proper-
ty.

Another point is that, in spite of the first row in Eq.
(21), for noncentrosymmetric crystals the complete
bracket

may not be equal to zero in the thermodynamic equilibri-
um. The same is true for the shell component of the
"force,"
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This is especially so for piezoelectric crystals when atoms
are located away from points of high symmetry. In this
case the first equation in (21) is satisfied by a special com-
bination of the brackets which can be easily found by
careful elimination of the shells in Eq. (40), the final
linear term with respect to

S
0 0

For the same reason, the second term in Eq. (46) which
gives the internal strains contribution to the stresses does
not vanish for these crystals.

IV. CONCLUDING REMARKS

The method developed here is quite general and may
be used to derive corresponding expressions for high-
order elastic and dielectric constants as well. For that
purpose we must consider additionally only higher-order
derivatives of the squares of phonon frequencies, kk,
over both internal and external strains which can be done

without problems in the same way as was done above,
though, clearly, the derivation would be rather lengthy.
At the same time, our method can be very easily general-
ized in order to take into account any order of the anhar-
monicity [in a line of Eq. (49)]: g« is a well-defined
function of quasiharmonic phonon frequencies, eigenvec-
tors, and interatomic distances. Therefore, except for
some additional terms, this modifies the detailed expres-
sions for the functions y, (cokJ ) and q&2(col,~. ), but does not
a6'ect the derivatives of phonon frequencies derived here.

In the second part of this paper we consider in more
detail the numerical implementation of our formulas.
Two alkali halide crystals are investigated in the
quasiharmonic approximation employing several sets of
pair potentials (including ab initio and empirical ones) for
a rather wide range of temperatures and pressures. We
also make a detailed comparison with results obtained ex-
perimentally.
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