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Resonances in driven dynamical lattices
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We predict that the response of a weakly damped one-dimensional lattice to a localized ac driving
force demonstrates a strong resonance when the driving frequency is close to the upper edge of the
lattice phonon band. The response is considered in terms of the energy absorption rate vs the driving
frequency, which is an experimentally observable characteristic. We consider the effect semianalyt-
ically for the linear lattice, and then display results of systematic direct numerical simulations of
both linear and nonlinear cases, which clearly demonstrate the resonance predicted. In comparison
with the known resonance for the case when the driving frequency is close to the lotoer edge of the
phonon band, the new resonance is stronger, and also more robust when competing with dissipation
and nonlinearity. Both resonances are closely related to the singularities of the lattice s density of
states at the edges of the phonon band.

The dynamical properties of one-dimensional lattices,
which have been a subject of studies for a long time, '

have again attracted a great deal of attention recently
(see, e.g. , Ref. 3). If the dynamical lattice is placed
into a substrate potential, its phonon frequencies u are
bounded &om below' 4J ) (8 '„&~i being the lower
cutoff frequency produced by the substrate (on-site) po-
tential. The existence of this cutoff (the lower forbidden
gap) is not a peculiarity of discrete systems, as it survives
in the continuum limit. However, discrete systems, con-
trary to their continuum counterparts, always have the
upper cutoff &equency u „, so that the &equencies of
the propagating modes (phonons) belong to the band

&min & & & &max

The aim of the present work is to study the simplest
dynamical characteristic of the lattice, viz. , its response
to a local ac driving force applied to a single particle.
The ac drive can be necessary, e.g. , to compensate dis-
sipative losses, and the consideration of the dynamical
response is of a fundamental interest by itself. We will
concentrate on the most interesting case, when the driv-
ing frequency is close to either of the cutoff &equencies

;„or ~ . We will consider slightly damped lattices,
and, generally, the driving amplitude will be taken to be
small enough. As a characteristic of the response of the
lattice to the applied ac drive, we will consider the rate
of absorption of energy by the lattice. This is an ex-
perimentally observable characteristic which bears a fun-
damental information about the dynamical properties of
the lattice.

We will consider both the linear and nonlinear damped
driven lattices. For the linear case, an analytical ap-
proach will be developed, the usefulness of which, how-
ever, proves to be limited. The main results will be ob-
tained by means of direct numerical simulations of the
lattice equations of motion. We will display a set of rep-
resentative plots for the energy absorption rate vs the

driving &equency. As one can expect &om the analogy
with known results for driven continuum systems, the
amplitude of the wave created in the lattice by the local-
ized drive, and, accordingly, the energy dissipation rate,
have a sharp maximum when the driving &equency is
close to the lower cutoff &equency of the lattice. How-
ever, an essentially new effect is a stronger maximum
observed near the upper cutoff. Unlike the maximum at
~ close to u;„, the new maximum at u close to u
is a distinctive property of the discrete systems. This
maximum can be clearly interpreted as a special type of
resonance in the discrete system driven by the ac force.
This new resonance should be a generic property of the
dynamical lattices. In particular, it must demonstrate
itself not only in the case considered in the present work,
when a single particle is driven, but also when the ac
drive is distributed in the lattice.

To observe the effect experimentally, one can use a
lattice doped with ions, which may be driven by an ac
electric Geld. In this case of impurity-activated optical
absorption, it is necessary to exclude a resonance with
the possible localized modes created by the impurities
(ions), which should not be a very hard problem2 since
that effect can be estimated. If the density of impuri-
ties is very small, the localized states would form a very
narrow &equency band away &om the region of interest.
Alternatively, a narrow segment of a long overlayer on a
substrate can be driven mechanically (e.g. , acoustically),
which completely excludes the impurity modes. At last,
it looks plausible that the resonant response considered in
this work should be easily observed in the dynamical lat-
tices represented by electrical transmission lines, where
the linear dispersion relation can be tailored with the ap-
propriate choice of circuit design and nonlinear electronic
elements.

As was mentioned above, the new resonance near the
upper cutoff is conspicuously stronger than the known
resonance at the lower cutoK One should expect that
any resonance is gradually attenuated with the increase
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of the dissipative constant, as well as with the increase
of a coeKcient in &ont of the nonlinear term. We will
demonstrate that the new resonance is more robust than
the old one, being more slowly attenuated with the in-
crease of the dissipation and nonlinearity. It seems rel-
evant to stress that, although the idea of the resonant
response when the driving &equency is close to the upper
cuto8' seems very simple and natural, we were not able to
find in the literature any consideration of this efFect. In
this work, we will consider the standard dynamical lat-
tice model with quartic nonlinearity along the chain and
a symmetric substrate,

x~ dx~ 2 — 3+ A = x„+g+x„g—2x„—0 x —o.x

+&(z-+i —z )' —P(z- —z--i)'
(2)

where e and cu are the amplitude and &equency of the
driving force.

We will consider analytically only the linear versions of
Eqs. (2) and (3), i.e. , o. = 0 and P = 0. In this case, our
aim is, first of all, to find a wave supported in the weakly
damped lattice (small A) by the drive. As is well known,
at e = 0 and A = 0 the &ee traveling-wave solution to
Eq. (2) is

x (t) = A exp(ikn —iut), (4)

where the wave number A: takes the values 0 & A: ( 2',
and the frequency ~ is related to it by the dispersion
equation

. , f'k1= 0 +4sin (5)

where x is the coordinate of the nth particle, A is the
dissipative coefficient, n and P are, respectively, the sub-
strate and chain nonlinear coeKcients, and the parame-
ter 0 represents the linear part of the on-site (substrate)
potential. The particle with the coordinate xp is driven
by the external force, so that, at n = 0, Eq. (2) should
be modified as follows:

d xp dxp2
2 — 3+ A = xi+ z i —(2+ 0 )zo —o.zo

dt

+P(» —*o)' —P(zo —*—i)'
+e cos(Ldt),

max

of the &equency &om the cutoÃ value can be naturally
sought for in the form

x„=A( 1)"e —' '+'s exp( —pin+ ipgn), (8)

where A is an arbitrary amplitude, 0 is a phase shift,
and pq and p2 are, respectively, a small decay constant
and a small wave number shift. Due to the smallness
of these parameters, Eq. (2), rewritten for the slowly

varying amplitude in &ont of the rapidly varying function

(—1) exp( —iver „t) [see Eq. (8)], may be replaced by its
continuum counterpart, and thus one finds

urally approximate the discrete lattice by its continuum
limit. In Ref. 5, the response of the semi-infinite con-
tinuum system to the ac drive applied at the edge was
analyzed in detail. Evidently, the semi-infinite system
driven at the edge is equivalent to the symmetric infi-

nite system driven at the central point. It was demon-
strated, in a fully analytical form, that the response of
the semi-infinite system to the drive whose frequency is
close to u;„ is anomalously strong in comparison with
the case when the driving &equency u is far &om u
In particular, the energy absorption rate R'g;„, regarded
as a function of u, has a sharp resonant maximum at

Note that TVd;„rapidly vanishes inside the
forbidden gap, i.e. , at ~ & u;„, but, nevertheless, the
dependence W~;»(~ —u;„) is smooth; i.e. , Wg;„does
not vanish by a jump at ~ = u;„, and the smooth
dependence is provided by inQuence of the dissipation.
It is also noteworthy that, in the limit of the vanishing
dissipation, the quantity TVd;„does not vanish. When
o. = 0, the absorbed energy is not directly dissipated,
but is emitted to infinity in the semi-infinite continuum
system. The limit of TVg;„at o; —+ 0 was demonstrated
in Ref. 5 to be exactly equal to the energy emission rate
in the case o. = 0.

So, in the present work, we will consider only the case
of w close to w „. Note, first of all, that exp(ikon) =
(—1); i.e. , in this case the solution (4) describes the so-
called staggered state in which the particles with even
and odd numbers are oscillating vr out of phase relative
to each other. Therefore, in the case when A is small
but finite a solution to the linearized equation (2) corre-
sponding to a small deviation

As follows from Eqs. (5) and (1), the upper cutoff fre-
quency

Pl &@2 = g~ &~ ~nxax ~

Finally, one can obtain from Eq. (9)

p', = —(Qb'+ A'~' „+h) .
2

(9)

(10)

is attained at k = kp = m. The lower cuto8' &equency
determined by Eqs. (5) and (1) is u;„=O.

Our analytical consideration will be confined to small
vicinities of the cutofF &equencies, where the resonances
are expected. Note, however, that for u close to w

the problem can be readily reduced to that solved earlier
in Ref. 5 for the continuum model. Indeed, as follows
from Eq. (5), u is close to u;„ for small wave num-
bers, i.e., large wavelengths. In this case, one can nat-

The solution given by Eqs. (8)—(10) describes, at n ) 0,
a driven wave with the local amplitude slowly decaying
at n -+ oo (the actual values of the displacements z are
given by the real part of the complex solution). At n ( 0,
we have the same solution with n replaced by —n.

Treating the driving force in Eq. (2) perturbatively,
we assume that, in the lowest approximation, it does not
alter the form of the driven wave as given by Eqs. (8)
and (9). Then, the rate Wg, at which energy is supplied
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to the lattice by the ac drive can be calculated as the
mean potoer, i.e., the time average of the product of the
force and the velocity of the driven particle [according to
what was said above, one should take the real part of the
formally complex velocity following from Eq. (8)]. Thus
we obtain

xo 1
Wg~ = e cos((dt) = —E La)A slI10,

dt 2

TV, = 2EVg, ,

where E is the density of energy in the excited wave, Vg,
is its group velocity, and the multiplier 2 takes account of
the fact that the energy is emitted in both directions. In
the present case, it is easy to find that the time-averaged
energy density is E —z~ „A, and the group velocity
can be obtained from the dispersion law (5):

where the angular brackets stand for the time average,
and 0 is a phase shift between the ac driving force and
the oscillations of the driven particle [n = 0; see Eq. (3)].
The equilibrium value of the amplitude A is determined
by the energy balance condition (see, e.g. , Ref. 4), i.e.,

by equating the energy input rate (11) to the rate of
dissipation of energy Wg;„. As it follows from Eqs. (2),
the mean value of the energy dissipation rate, summed
up over all the particles, is

+ XIl&3C + ~~my, ~+ )

where we have inserted the real part of Eq. (8) (actually,
with n replaced by lnl, according to what was said above
about the solution at n ( 0), and everywhere except for
the resonance detuning h [Eq. (7)], u was replaced by

Now, equating the expressions (ll) and (12), we
find the equilibrium value of the driven wave's amplitude,

—1 —1
- X/2

A,q
——esin8~ '

A
' — /P+A*~t +8)2

(13)

Finally, the energy dissipation rate can be found inserting
Eq. (13) back into Eq. (12):

- i/2
Wg' — E sill OA QP+A fU +8)2 2

(14)

(recall ke = m). Inserting this into Eq. (16) and using the
simplified expression for A,~ f'rom Eq. (15), it is straight-
forward to obtain for R' exactly the same expression
which is given by Eq. (15).

The main idea pursued in this work is that the new res-
onance in the driven dynamical lattices should take place
when the driving &equency is close to the upper cutoK
&equency. For direct verification of this idea, we have
performed detailed numerical simulations of the dynam-
ical equations (2) and (3). The equations were solved
for the symmetric configurations, x = x, with the
periodic boundary conditions x~ = x ~. In the sim-
ulations, we took N & 500. Looking at the numerical
data, we could conclude that this length of the lattice
was suKcient to simulate the infinite one; i.e., the local
amplitude of the established wave was practically equal
to zero deep inside the lattice. In all the runs, we took
the fixed value of the drive's amplitude e = 0.01, while
the dissipative and nonlinear constants A, n, and P were
varied, as well as the driving frequency &u [obviously, one
parameter, e.g. , e, can always be fixed due to the scaling
properties of Eqs. (2) and (3)].

The mode of the simulations was chosen as follows: At
fixed values of all the parameters but u, we directly mea-
sured the total energy dissipation rate according to the
definition (12), and plotted the dependence W~;„(u). In
Fig. 1, we display a set of these plots obtained for the
linear system (n = 0, P = 0 ) at different values of the dis-
sipative constant. The resonant peaks at u close to both
edges of the phonon band are clearly seen. Moreover, the

Note that the phase shift 0 remains an unknown param-
eter, which will be found below numerically.

A remarkable property of Eqs. (13) and (14) is that,
due to the regularizing role of the weak dissipation, they
provide for a smooth transition &om the phonon band at
6 ( 0 [see Eq. (5)] to the forbidden band at 8 ) 0. In
particular, suKciently deep inside the phonon band, i.e.,
at —b )) Au „, both expressions simplify and become
independent of the &iction coeKcient A:

A ~
—e S1I10

I
~i ', Wsass —(d E S1I1 0

4
(15)

W
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The independence of these expressions of A has a simple
physical meaning: In the dissipationless limit, the ex-
pression for the rate of dissipative losses goes over into
the expression which gives the rate of emission of energy
to infinity. Indeed, the energy emission rate is

0.00
0.25 0.75 1.25 1.75 2.25

FIG. 1. The energy absorption rate vs the driving fre-
quency for the linear lattice at different values of the dissipa-
tion constant A.
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newly predicted peak at w close to u is conspicuously
stronger than the one known at u = u;„. Naturally, in-
crease of the dissipation attenuates the resonances, but
the high-&equency peak seems more stable against the
action of the dissipation. In Fig. 2, we have displayed
a set of the plots for difFerent values of the nonlinear-
ity parameter a (both positive and negative) at fixed
A = 0.01 and P = 0. We notice that the nonlinearity
affects the low-frequency resonance (as is shown in the
inset, the resonant peak is shifted to the left at positive
n and to the right at n negative), while the new high-
&equency peak is practically unafFected. It is not difBcult
to understand this since the low-&equency driving excites
acoustic waves, which displace the atoms with respect to
the substrate, so that the nonlinear part of the lattice-
substrate interaction becomes important. That is why
the low-&equency peak is afFected by the substrate non-
linearity. On the contrary, when the driving &equency
is near the upper edge, it excites optical vibrations (i.e. ,
the so-called staggered state ), so that Wg;„ is affected
by the chain nonlinearity (see Fig. 3), but it is insensitive
to the substrate nonlinearity. Generally, the robustness
of the high-&equency peak is natural as the same amount
of the dissipation and nonlinearity in the system are rel-
atively less important at larger &equencies. However,
the situation may change if we add to Eqs. (2) terms
which give rise to dispersion of the dissipation and non-
linearity. In the insets to Figs. 2 and 3, we show the
above-mentioned efFects on an expanded scale. Another
noteworthy efFect is that, for a strong nonlinearity, we
find bistable behavior outside the phonon band.

In the analysis presented above, we were dealing with
the unknown phase shift 0. To complete the analytical
consideration, this parameter can now be taken &om the
numerical data. A typical plot of 0 vs ~ is displayed, for
o. = 0, in Fig. 4. According to this picture, the quan-
tity sin 0 very quickly changes its value &om 1 inside the
phonon band to 0 in the forbidden band. For all the other
values of the parameters, includin. g o. g 0, we have ob-
tained very similar dependences 8(ui). Looking at the ex-
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pression (14), we notice that the factor gh2 + A2w2 „+h
rapidly increases when the resonance detuning cu —~
changes &om negative values inside the phonon band to
positive ones outside of it [see Eq. (7)], while the factor
sin 0 simultaneously rapidly decreases. The product of
the rapidly increasing and decreasing factors in Eq. (14)
can readily produce the sharp high-&equency resonant
peaks.

In conclusion, in this work we have predicted semiana-
lytically and found numerically a new type of resonance
in driven one-dimensional lattices, when the driving &e-
quency is close to the upper edge of the phonon band.
This resonance proves to be stronger and more robust;
than the known low-&equency resonance at the lower
edge. It is relevant to note that the resonant peaks are
closely linked to the singularities of the phonon density
of states at both edges of the band, which provides a
natural relation between static and dynamical properties
of the lattice. It should be remarked, however, that even
for the weak amplitude (e = 0.01) of the driving used in

FIG. 3. The energy absorption rate vs the driving fre-
quency at difFerent values of the nonlinearity coeKcient P
(n = 0.0). The inset shows the structure of the high-frequency
peak in more detail.

0.03 1.0

0.02

W

8/vt 05

0.01

o.oo t

0.25 0.75 1.25 1.75 2.25
0.0

0.25 0.75 1.25 1.75 2.25

FIG. 2. The energy absorption rate vs the driving fre-
quency at difFerent values of the nonlinearity coefBcient n
(P = 0.0). The inset shows the structure of the low-frequency
peak in more d.etail.

FIG. 4. A typical dependence of the phase shift 8 between
the driving force and. oscillations of the driven particle upon
the driving frequency (0r = 0, P = 0, A = 0.01).
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the simulations we see strong bistability behavior near
the two edges of the linear phonon band. As it can also
be seen in the insets in Figs. 2 and 3, for strong nonlin-
ear coefficients (o. or P) but still weak driving the dissi-
pated energy along the chain becomes significant outside
the &equency band where linear waves cannot propagate.
Thus the eKect of nonlinearity is essential.

The problem considered in this work can be general-
ized in diferent directions. First of all, the drive can
be applied not to the single particle but to a group of
them. A more complicated situation is then expected
if difFerent particles are driven at the same &equency

but at diferent phases. One can also consider the case
when the driven particles are located periodically along
the lattice. However, it seems more challenging to con-
sider the same problem for a two- and three-dimensional
lattice, although the relation between the eKect consid-
ered and the density-of-states singularities suggests that
the resonant peaks should be less salient in higher dimen-
sions.
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