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We report the fracton density of states (DOS) and its fluctuation properties on the infinite two-
dimensional critical percolation cluster and its backbone. The fracton DOS 8uctuations, as expressed
by the number variance ([b'N(E)] ) in an energy width E, follow the quadratic law ([bN(E)] ) oc

(N(E)), instead of the usual linear Poissonic behavior normally expected for localized states We.

also find that the average DOS for the percolation backbone obeys the one-parameter fracton scaling
theory with a spectral dimension d, = 1.23 +0.02. This kind of violent DOS Buctuation cannot be
understood in the context of random matrix theories and is discussed in connection to intermittency
and multifractal localization.

Percolation represents the simplest example of a ge-
ometrical phase transition with numerous applications
in diverse fields, ranging &om the spread of a disease
to transport in disordered media. A great advance in
percolation theory was achieved via the recognition that
the percolation cluster is a random &actal object hav-
ing statistical self-similarity properties up to the perco-
lation correlation length („. This is made explicit via
the law M oc L"~, which describes how the average total
mass M within a linear distance L scales with L, defin-
ing the &actal dimension dy. Attention has also been
focused on the percolation backbone which is obtained if
we remove &om the percolation cluster the non-current-
carrying dangling ends. Then the averaged mass dras-
tically reduces when compared to the percolation clus-

EBB
ter but still scales as (x: I"&, defining the smaller &ac-
tal dimension of the backbone, d& . In two dimensions

dI = 91/48 and dB&B = 1.62 + 0.05.
During the last decade most of the attention has been

focused on important questions concerning the elastic dy-
namics of the percolation cluster in view of real &actal
systems, such as polymers, rubers, and gels. Within what
is known as the dynamical scaling approach the presence
of anomalously slow diffusion at p = p and the con-
cept of &actons have been introduced. In the case of
spin-wave spectra at p = p one obtains, for small E, the
power law7'

(N(E)) oc E (1)
where (N(E)) is the averaged cumulative density of
states (IDOS) counting the fracton states from zero en-

ergy up to E. The exponent d, is the &acton dimension,
which in the case of the percolation backbone is replaced
by d, , and for ordered systems both reach the space di-

mension value d so that the usual magnon DOS is recov-
ered. Moreover, since the percolation cluster behaves as
an ordinary continuous medium for length scales L )) (z,
being fractal only for I ( („, a crossover occurs in the
corresponding DOS &om an ordinary magnon or phonon
very-low-E regime to the rest of the low E's which is
known as the fracton regime described via Eq. (1).
The long-wavelength dynamics for &actons is summa-
rized by the dispersion law

E (x: k"" for Ic(„-+0, (2)

which is different &om the quadratic E oc A: magnon
dispersion. The spectral dimensions are subsequently
defined as d, = 2dI/O and dBB = 2d+&+/dBB, respec-
tively. Moreover, Alexander and Orbach (AO), using
an assumption of a single characteristic length („, pro-
posed that for percolation a mean field value d, = 4/3
should approximately hold in any dimension greater than
2. Moreover it is expected that the transport properties
of the excitations on fractal clusters will be affected by
the topological "disorder, " in a way similar to what disor-
der does to electron in metals. In fact, the &acton states
turn out to be superlocalized with amplitudes decay-
ing faster than exponential, at least for typical samples
before averaging. This phenomenon implies the presence
of a variety of characteristic lengths and has also been
described as multi&actal localization.

Our aim is to study the localization properties of the
&actons by considering the DOS fluctuations in percolat-
ing clusters and backbones in two dimensions within the
appropriate statistical random matrix ensembles. The
corresponding matrices are short ranged and sparse, i.e. ,
with most of the matrix elements being identically zero,
with the "disorder" due to the random positions of the
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nonzero matrix elements while in the usual Gaussian
random matrix ensembles, instead, all the matrix
elements are random variables. We consider the ques-
tion of &acton DOS and the corresponding DOS fluc-
tuations for the percolating cluster and the percolation
backbone at p, by using the Gaussian elimination eigen-
value counting algorithm. We compute (N(E)) and
([SN(E)j ) = (N(E) ) —(N(E)) numerically for our
matrix ensembles and display the unambigous presence
of violent &acton spectral fluctuations by establishing the
law

(PN(E)j') ~ (N(E))'

which is intimately related to intermittency and the un-
usual &acton localization. For a better presentation of
our results we focus on the following questions: (i) How
do the results for the spectral dimension change, the AO
conjecture in particular, when one considers instead of
the critical percolation cluster the percolation backbone.
(ii) What is the magnitude of the spectral density fluc-
tuations and are these results compatible from what is
known from random matrix theories? (iii) What are the
localization properties of &actons in the absence of the
dangling ends?

The percolation backbone is generated following tech-
niques reported in the literature. First, the perco-
lation cluster is constructed at the critical percolation
threshold p = 0.593 for the two-dimensional L x L
square lattice. Then the largest cluster is isolated us-
ing the labeling technique of Refs. 28, 29 and eventually,
the backbone is isolated &om the percolation cluster via
the so-called "burning algorithm. " The choice of two
end points on the percolation cluster, lying on diago-
nally opposite corners, is the essential feature of the al-
gorithm which proceeds in three steps: (i) Starting at the
first point the cluster burns by examining all its neigh-
bor sites and assigning specific index values increasing
by +1, which denote the distance of the new site &om
the point of origin. This step ends once the opposite
point is found and assigned its index value. (ii) In the
second step burning starts at the second end point, and
only these sites can be burned which have a smaller index
value than the value of the site burned in the previous
time step. Similarly, this burning ends once the point the
first point is reached. (iii) In the final step one burns all
that have been formed in the previous two steps. Again,
as in the second. step, a site can only be burned if its
index value is smaller than the value of the site burned
in the previous time step. For a given loop, it becomes
part of the backbone only if the backbone can be reached
in more than one way. If it is reached only via one path,
this means that the loop leads to a dangling end, and it
is not included. When reached in more than one way,
then all the sites burned. are added to the growing back-
bone. This last step must be repeated several times until
no more parts can be add. ed to the backbone. Once all
three steps are finished the backbone is isolated. More-
over, cyclic boundary conditions are used at the ends of
the lattice, so that if two sites which belong to the back-
bone are at opposite ends, they can communicate.

In order to check our construction of the backbone we

have calculated its &actal dimension which we find to be
d& ——1.62 + 0.05. Calculations for the end-to-end dis-
tance and the number of sites visited for random walk-
ers evolving in the backbone can be found in Ref. 30.
The random walk dimension was d = 2.70 + 0.02,
about 6'Fo smaller than d = 2.87 + 0.02, which is
obtained for the percolation cluster. The spectral di-
mension calculated &om counting the number of sites
visited for random walks on the percolation cluster is
found to be d, = 1.31 + 0.02, and for the backbone
d, = 1.23 + 0.02. The reduction of the spectral di-
mension on the backbone has been assigned there due to
the fact that in the backbone there are no new sites to
visit on isolated branches and the particle spends more
time revisiting the same sites again and again.

The question of dynamics on random &actal structures
can be dealt with in a straightforward manner via the
solution of a tight-binding equation on the lattice defined
by the percolation cluster or the percolation backbone.
The equations of motion corresponding to a single spin
deviation are

(4)

where r labels the percolating cluster sites on the lattice
and when E is an eigenvalue g, is the corresponding wave
function amplitude on site r. J is the exchange constant,
conveniently chosen to be 1, and the summations are per-
formed over all available sites r', nearest neighbors of r,
on the incipient percolating cluster or backbone. From
Eq. (3) the statistical matrix ensemble is created which
consists of random matrices defined in the orthogonal-
ized site basis representation. The random matrices are
real, symmetric, and sparse with five, at most, nonzero
elements per matrix row. The off-diagonal matrix ele-
ments (bond strengths) are 1 or 0, when nearest-neighbor
sites are present or absent, respectively, while the diag-
onal elements (site energies) are equal to the number of
nearest-neighbor sites of r present, ranging &om 1 to 4 in
two dimensions. The resulting gapless spectrum consists
of strictly positive energies E.

The calculation of the averaged IDOS at p proceeds as
follows: We collect all the eigenvalues at energy windows
for many different, randomly generated clusters, so that
the average (N(E)) can be determined. The sources of
error in this type of calculation are twofold: First, due
to the finite number of samples making up our statistical
ensemble, a statistical error exists. This can be estimated
&om the scatter of the number of eigenvalues in a given
energy window and is used below to define the transport
properties. Another kind of error is due to the finite size
of the chosen sample which results in a limited number
of sites in a given energy window and. may cause pro-
nounced discreteness in the spectrum when the matrix
size is not large enough. This kind of error also limits
us to extend the calculation down to very small energies
and it has been monitored in our calculations by choosing
large enough samples.

We report our results for the IDOS for the d = 2 perco-
lation backbone in Fig. 1. In the double logarithmic plot
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FIG. 1. A log-log plot of the numerically computed aver-

aged cumulative DOS N(E) versus the energy E on the two-
dimensional percolation bacbone at p = p generated on five
di8'erent sizes I = 16, 32, 64, 128, and 256 and for 2000, 1000,
500, 100, and 10 random runs, respectively. From the slopes
of the solid lines d, /2 is extracted which gives the spectral or
fracton exponent as d, = 1.23 + 0.02.

the f'racton law of Eq. (I) implies that the data should be
in straight lines with gradient d, /2. Despite the sources
of error the data of Fig. 1 lie rather accurately on straight
lines. A least-squares fit gave gradients from which the
exponent d, is estimated as 1.23+0.02. A similar cal-
culation for the percolation cluster gives the well-known
values d, = 1.31+0.02. These results confirm the dynam-
ical scaling approach of AO, 4 as summarized by Eq. (I),
also for the percolation backbone but with a significantly
lower critical exponent. The small deviations &om the
straight lines can be understood as arising from the nu-
merical difBculties due to the chosen finite sizes.

In Fig. 2 we display the number variance ([hN(E)] )
as a function of the energy E and in Fig. 3 we estab-
lish the quadratic fluctuation law of Eq. (3) both for
the critical percolation cluster and the backbone. In

FIG. 3. The novel relation ([hN(E)] ) oc ((N(E)) is
shown to be valid both (a) for the percolation cluster and
(b) for the percolation backbone. The small difference in the
slopes lies in the slightly reduced value of d, for the percola-
tion backbone.

Fig. 4 we display the full probability distribution of the
N(E) values for difFerent random configurations. The
broadness of this distribution is in accordance with the
fact that the Huctuations are very large. This kind of
DOS Buctuation is not expected &om the random matrix
theories because for the Gaussian ensembles the num-
ber variance is weakly dependent (logarithmically) on
(N(E)), which implies strongly correlated eigenvalues re-
pelling their closest neighbors. Moreover, the logarith-
mic ([bN(E)] ) oc ln(N(E)) behavior and the level re-
pulsion can be associated with delocalized states as ob-
served in small metallic samples. Our results cannot
be understood by ordinary Poissonian statistics 2 ei-
ther, since in this case the eigenstates are localized and
the eigenvalues are randomly distributed according to the
usual statistical law ([8N(E)] ) oc (N(E)). The change
of the number variance &om a logarithmic to linear de-
pendence has been exploited for the identification of
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FIG. 2. The same as Fig. 1 but for the number variance
([8'N(E)] ) as a function of the energy E. The solid lines are
the best 6ts to the data and their slopes are found to be equal
to d„establishing the law: ([hN(E)] ) oc (N(E'))

FIG. 4. The distribution of the N(E) values for a specific
energy form zero to E = 0.10 and three different sizes (as
shown in the figure). The x axis is the rescaled quantity
(N —(N))/bN so that different sizes should coincide.
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the Anderson transition and the determination of mo-
bility edges separating delocalized &om localized states
in the spectrum. At the mobility edge an intermedi-
ate ([h'N(E)] ) oc (N) ~ law was recently obtained in
d = 2+ e dimensions.

The fracton fluctuations found [Eq. (3)] are much
stronger than all the above kinds and it seems natural
to relate them to the superlocalized &acton decay,
which is due to the long-range fractal potential correla-
tions. Superlocalization concerns only individual wave
function amplitude realizations and in order to see it
one must average the logarithm of the wave function
amplitude. This contrast between individual realiza-
tions and averaged characteristics of the wave functions is
precisely what is implied by our DOS sample-to-sample
fluctuation study. The violent DOS fluctuations found
should be due to the multi&actal properties of the spec-
tral measure and, therefore, are a typical characteristic of
multi&actality and intermittency. There is no report-
ing of such a spectrum of dimensions for the DOS at the
moment which could eventually be related to our unusual
DOS fluctuation results. Intermittency is a widespread
phenomenon which appears as enhancement of rare de-

viations in multiplicative random quantities in multipar-
ticle production and hydrodynamics.

The main results obtained are as follows: (i) The aver-
aged fracton DOS obeys the AO scaling, both for the per-
colation cluster and its backbone, and we have directly
determined the corresponding spectral dimensions. (ii)
The kacton DOS fluctuations found are unususally large
and can be cast neither onto the weak logarithmic nor
the linear dependences corresponding to extended and
localized states. The quadratic law obtained is, instead,
compatible with a stronger kind of localization. (iii) The
presence of strong DOS fluctuations for the backbone
shows that even in the absence of dangling ends &actons
display strong localization properties. Moreover, the vio-
lent fluctuations found in this paper should be, at least in
principle, observed by neutron and Raman scattering ex-
periments in &actal polymers and aerogels. Our results
could also be relevant for the electronic and localization
properties in dendritic aromatic molecules.
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