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Energy and charge trapping by localized vibrations: Electron-vibrational coupling
in anharmonic lattices
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We study the time dependence of the energy redistribution between an initially localized electron and
the vibrations of a one-dimensional anharmonic lattice. Numerical solutions show the periodic
electron-lattice energy exchange, in contrast to the usual irreversible gradual decrease of the electronic
energy. This energy trapping is shown to occur due to the appearance of localized vibrations, induced

by strong enough electron-vibrational coupling in the anharmonic lattice. For these strong-coupling situ-

ations, we observed both localized (trapped) and conductive electronic charge.

The interaction between electronic and vibrational sub-
systems is crucial for such phenomena as electron
transfer, conductivity, nonradiative decay, and energy
transport. Experimentally, it is now possible to go to the
space and time scales where the detailed time dependence
of these processes can be seen. Very impressive examples
are known for molecular systems, quantum wells and
quantum wires, electron beam —thin film interaction,
etc. ' ' The main goal of the present paper is to demon-
strate, in a rather simple model, that this transfer and its
time dependence may be drastically changed by the ap-
pearance of localized vibrations, generated in anharmonic
chains by the electron-vibrational coupling.

Consider the situation when at time t =0 an electron
appears, due to the phototransfer or any other process, at
one of the lattice sites. It is the time evolution of this
state that interests us, especially the time dependence of
electron-lattice energy redistribution and of electron lo-
calization (small polaron) caused by the electron-lattice
interaction.

In the tight-bonding approximation for the electron
states and the linear approximation for "diagonal, " on-
site, vibronic coupling, the electron-vibrational Hami1-
tonian takes the form

H=g t
—P(a„++&a„+a„+a„+&)

+ga„+a„(x„+)—x„)—2R0) J +H(x), (1)

where a„,a„+ are the electronic operators on site n, P and

g are the electron transfer integral and vibronic constant,
x„and Ro are the coordinates of nth atom and equilibri-
um lattice constant, respectively. In Eq. (1) H(x) is the
Hamiltonian of free vibrations

H(x) =$p„/2m + W( x„. ),

the first term being the kinetic energy Ek;„of the lattice
atoms and the second one describing the potential of the
atom-atom interaction, that may be chosen as a harmon-
ic, Morse or Lennard-Jones type.

To treat the time evolution of the electron-vibrational
system we use the Born-Oppenheimer version of the

time-dependent self-consistent field (TDSCF) approxima-
tion (see Ref. 11), i.e., we write the total wave function
%(r,x; t) as a product of electronic P(r, t) and vibrational
@(x,t) functions

%(r,x;t)=g(r, t)4(x, t) .

Each term depends on time and can be found from the
solution of the related time-dependent Schrodinger equa-
tion. The Born-Oppenheimer electronic Hamiltonian
(H, l )

H 1 XI P(a +la +a a +1)

+ga„+a„(x„+,—x„,—2Ro ) I

contains the atom coordinates x as parameters, so the
electronic energy E (x, t) = ( f(r, t) ~H, & ~ g(r, t) ) depends
on both t and x, the latter in turn being time dependent.
The behavior of the vibrational subsystem is described by
the Hamiltonian H„;b(x, t)=H(x)+E(t, x) where the x-
dependent electronic energy E(t,x), determined above,
plays a role of a vibronic part of the potential for atom
motion. Thus we start with evolving, from t =0 to t =dt,
the initial electronic state for some initial values of atom-
ic velocities and coordinates by numerical solution of the
electron Hamiltonian in the tight-bonding model. Then
the new potential for atom motion is found, and new ve-
locities and coordinates are determined that are used to
find out a new electronic function at t +dt, and so on.

We choose Lennard-Jones potentials to describe
nearest-neighbor atom-atom interactions, W(R )
=e,( —g +g' ), g=(cr/R), R is the interatomic distance,
with equilibrium distance Ro=t7(2)' =4 and potential
depth E=0.01; typical values of P and g vary between
0.01—0.001 and 0.005 —0.020 correspondingly (all values
in a.u. ), and the mass m of atoms has been chosen as 60
proton masses. We use a classical description of the vi-
brations, so the coordinates x„and velocities v„can be
found from Newton's equations of motion. The results
below are given for a linear chain, chosen long enough to
avoid any boundary inhuence for the time scale of several
characteristic chain vibrations. For T =0 at t =0 all the
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atoms have been placed at equilibrium positions with
zero velocities, at TAO sets of initial coordinates and ve-
locities have been generated in a standard way, and the
averaging has been performed over NO initial sets (trajec-
tories); for the temperatures that we considered the re-
sults do not depend on XO if NO) 100, so we used
XO= 100.

Figures 1(a) and 1(b) show the spatial and time depen-
dence of electronic density. In regular and "frozen"
chains the occupation Po of the site where the electron
appears at t =0 rapidly vanishes due to spreading of the
electron over all equivalent sites. If the vibronic constant
g is small, vibronic coupling does not change the situa-
tion, because the vibronically induced atomic displace-
ments are also small and evolve very slowly [the case of
Fig. 1(a)]. However, with increased vibronic coupling lo-
cal distortions appear simultaneously, or even before the
electron completely leaves the initial site. Thus an addi-
tional vibronically induced lattice potential appears, con-
sistent with the initial electronic distribution, that self-
traps the electron. At short times before effective self-
trapping the electron decay is practically independent of
g, but after that the electron starts to feel the additional

potential that results in nonvanishing Po at long times,
and in a nonuniform distribution of the electron over the
chain, in sharp contrast to the case of Fig. 1(a). Figure
1(b) illustrates both the time for producing such localized
polaron states at large-enough vibronic coupling, and the
resulting localization of the electron, for details see Ref.
12. The electronic distribution may be considered as con-
sisting of two components —the delocalized "zonelike"
one, corresponding to the part of the electron that has es-
caped from the initial site before the evolving of the self-
trapping potential, and the localized part, characterized
by the value of Po, that shows the amount of electron
density that has remained trapped near the initial site.
Features representative of both delocalized and localized
states of electron in a molecular adsorbed layer on a met-
al surface were found and examined recently. '

Since coupling of the electron to the lattice causes dis-
placements of the chain atoms, the chain gains energy
from the electron. Figure 2 shows the time-dependence
of the chain kinetic energy at difFerent values of vibronic
constant and transfer parameter. With increased vibron-
ic coupling at fixed P, more energy is transferred to the
vibrations from the electron. At fixed g the amount of
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FIG. 1. (a) Spatial and time
dependence of the electron den-
sity at weak coupling, @=0.001
and g =0.005, showing uniform
spreading of the electron over
the chain (in Figs. 1 and 9 at
t =0 the electron is located on
site 0, the time is measured in
units 200 a.u. ; due to the symme-
try only the right half of the
chain is shown). (b) Spatial and
time dependence of the electron
density at strong coupling,
P=0.001 and g =0.015, clearly
illustrating both the localized
and delocalized components of
the electron distribution.
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FIG. 2. Kinetic energy of the chain for different vibronic
coupling and electron transfer integrals, T =0.

energy transferred from the electron to the chain in-
creases essen ia y wit' ll ith the increase of electron localiza-

W e that for increased g/p, localization istion. e see a
stronger and more energy is received by t e c ain. e
greatest energy transfer is reachedd at &=0' in this case
the energy transfer in a harmonic chain is proportional to
g . or armF harmonic lattices the dimensionless parameter
a= /2KP determines the strength of couphng where
is the interatomic harmonic force constant. At not very

anharmonic lattice by the same parameter, with E2 in-
stead of K where K2 is the harmonic component of the
real anharmonic potential. For the Lennard-Jones poten-
tials

K2 =(d W/dR )~ =iso

=6E[ 7(cr/Ro) +—26(o /Ro)' ]/Ro

which gives 2 ='
h

' K —10 for the parameters we use. Then
cases (a) and (d) of Fig. 2 correspond to an intermediate
coupling a=, w

'
( —1) hile the curve (c) illustrates the

strong-coupling case (a= 10).
Due to vibronic coupling the electron generates dis-

placements of the surrounding atoms, and the resulting
ket corresponding to the superposition o c ainwave pac e, cor

~ ~

vibrationa mo es w''b '
1 des with different velocities an p a

~ ~

evolves and spreads with time over the chain. is pro-
cess is irreversi e, i.e., ubl '. . due to the large number of active
vibrationa mo'b '

1 des energy cannot be trans erre bac to
the electron on any experimental time scale. Figures a
and 3(b) ive examples of the time depen e
electron energy given by the Hamiltonian (3) with instant
x„(t) found by solving the vibrational Hamiltonian. The
cases (a) illustrate just such a behavior, showing that
there are practically no oscillations of &x,

coupling. However, as curves b, c show, at strong vibron-
ic coupling these oscillations appear and they damp very
slowly. While these behaviors are clearest in the case of

=0, where the electron must remain at its initia site,
Fig. 3 a shows that these trapping behaviors are also
seen for p%0, if the vibronic coupling is sufficiently
strong. This demonstrates the process of energy going
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FIG. 3. Electronic energies at different couplj. ngs and
transfer integrals, T =0.

back from the chain to electron, instead of spreading over
vibrational band states. Such a process can take place
only if the electron-generated displacements do not easi y

f th ite where the electron is located, into
oscilla-the collective chain vibrations. The decrease of osci a-

tions describes the relaxation of local excitations of the
chain, and as Fig. 4 shows, the relaxation of the hig y
excited chain with strong vibronic coupling is much
slower than at weak coupling.

The appearance of such stable mixed electron-
vibrational localized polaron excitations can be of a great
importance or e pf r the roblem of energy redistribution and
ion -distance energy transfer in strong-coupled electron-
vibrational systems. To find the mechanism respes onsible
for this effect, we have repeated the same calculations o
energy redistribution for a harmonic chain, whose elastic
force constants correspond to the harmonic terms of
Lennard-Jones potentials. One can see from Fig. 5, t at
the relaxation in the harmonic chain does not show any
d d u on the vibronic constant. Therefore t e

of the s s-phenomenon is related to the anharmonicity o t e sys-
tem, and thus is different from the periodic, at much
lower frequency, energy exchange between electron and
vibrations found recently by the molecular dynamics
modeling in the harmonic chain. ' Note that the temper-
ature increase causes stronger dampmg, however, as Figs.
6 a and 6(b) show, these oscillations are still much more
pronouonounced than in the harmonic case.
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FIG.G. 4. Chain kinetic energy at different coupling, for fully
localized electron, @=0,T =0.
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For this localization behavior we have suggested a
trapping mechanism that is based on the idea that the
electron-vibrational coupling causes vibrational mode lo-
calization. The vibronic coupling changes the equilibri-
um interatomic distances; then, due to anharmonicity the
harmonic and anharmonic chain force constants are
changed also, and this can result in the appearance of lo-
cal modes. In this picture the electron and local vibra-
tions are always localized in the same area; thus it can
lead to slow damping of the energy exchange between the
electron and these local vibrations. Note the nonmono-
tonic dependence of this phenomenon on the vibronic
constant. The stronger the coupling is, the more local-
ized the electron; the more it is localized the larger are
the local displacement that it causes, the larger the dis-

1p acements are the greater are the changes of lattice force
constants —as a result the threshold behavior with in-
crease of g is realized, clearly seen in Figs. 3 and 4.

Let us estimate the magnitude of this effect. At strong
vibronic coupling the electronic energy E (x, t) is almost
linear in the atomic displacements, so the harmonic con-
stant of the renormalized interatomic potential is equal to
the parameter K2, given by Eq. (4) with Ro replaced by
the new equilibrium. positions. As Fig. 7 shows the vib-
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FIG. 6. Temperature damping of the electron energy oscilla-
tion s.
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ronically induced renormalization of the harmonic force
constant can be rather efficient (our calculations show
that the atomic displacements -0. 1 are typical for the
situations under consideration), and the relative change
of the local harmonic constant, y=Kz/X2, may greatly
differ from 1. Due to the symmetry the vibronically in-
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FIG. 7. Dependence of the harmonic (quadratic) force con-
stant K2 of anharmonic chain upon the forced change of intera-
tomic distance. The y axis shows the value of ratio I(:2/K2
[curve ( —)] or (Kz/Kz) ' [curve (+)] depending upon a de-
crease or increase of the bond length.
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The last equation shows that for the appearance of the lo-
cal vibrations with co & coD the condition

(9)

must be fu1611ed. It is known' ' that for local vibrations
around site 0, the corresponding displacements of sur-
rounding atoms fall off as y ", where n is the neighbor
number, so at large y the vibrations are strongly localized
indeed.

Figure 7 shows that the change of K2 depends upon
the sign of vibronic constant. Positive values of g cause
the increase of effective local frequency. As a result the
vibronic effects have to decrease because the stiffer lattice
resists the vibronic-induced rearrangements more
efhciently. When g is positive a second effect can be seen:
oscillations in the energy transfer between lattice and
electron due to the appearance of a local mode of fre-
quency above coD. These effects are illustrated in Fig. 8,
which demonstrates the fast monotonic decrease of the
electron energy for the vibronic constant g (0, while for
the vibronic constant of the same absolute value, but
different, positive, sign, the electron energy loss is smaller
and shows oscillations.

As Fig. 7 shows the criterion (9) is very likely fulfilled
(note that in anharmonic chains this criterion for the lo-
cal vibration appearance is even softer), and so the vib-
ronic coupling can generate vibration modes localized in
the vicinity of electron location. To check that, we have
performed calculations of the spatial dependence of the
chain kinetic energy as a function of time [Figs. 9(a) and
9(b)]. If the coupling is not strong enough, the usual pic-
ture of the vibrational excitations leaving the region,
where they have been generated, and spreading over the
chain, can be seen [Fig. 9(a)]. On the other hand, Fig.
9(b) clearly illustrates two main features of the trapping
situation at strong coupling: (a) the chain energy is local-
ized near the initially occupied site and spreads over the
chain very slowly, (b) the oscillations in the chain energy,
caused by the energy backfeeding of the electron, are well
pronounced. These results strongly support the key role

of the localized vibrations.
However, it is known that intrinsic localized modes

may be generated in anharmonic lattices at a high-
enough level of excitation. ' ' Thus one can suppose
that, beside the mechanism suggested above, in a situa-
tion under consideration the electron-vibrational interac-
tion can generate, at strong-enough coupling, such a lo-
calized vibrational excitation, and then a periodic ex-
change of energy between the electron and that mode
(with which the electron interacts most efficiently), takes
place. To check that we have calculated the relaxation
behavior of highly excited local vibrations in the same
anharmonic chain, but without vibronic coupling. This
requires solving the chain equations of motion with initial
velocities and coordinates, corresponding to the highest
peak in the time dependence of chain energy in Fig. 4,
cases of larger chain energies have been considered also.
The results demonstrate that the vibrations damp very
quickly, thus the energy trapping by vibrational solitons
is insu%cient for the model under consideration. The
main reasons for that perhaps are that (a) the breathing-
type localized vibrations centered around the site of the
initial electronic state are unstable (in contrast to the
breathing type modes centered at the midpoint between
adjacent sites, which are stable)' ' ' ' and (b) in monoa-
tomic chains with realistic potentials these modes usually
do not occur.

In conclusion, we have shown the possibility of the
long-lived periodic exchange of the energy between ini-
tially localized electron and lattice vibrations. Our calcu-
lations give evidence that this effect is due to the appear-
ance of localized vibrations, generated by strong vibronic
coupling in anharmonic lattices, and that this can result
in long-lived charge localization.
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