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Three-body effect on the lattice dynamics of Pd —10% Fe alloys
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We have developed a three-body potential based on a two-body model potential and applied it, as an
application, to reproduce the experimental phonon frequencies of the fcc Pd —10% Fe alloy. For this
purpose two- and three-body interactions have been employed to develop the dynamical matrix of the
fcc structure. The parameters defining the two- and three-body potentials for Pd and Fe have been eval-
uated for the fcc structure at the lattice constant of the alloy. The radial, tangential, and three-body
force constants of the alloy have been calculated by the concentration averages of the computed force
constants of the component metals. Finally, the phonon frequencies of the alloy along the principal sym-

metry directions have been computed using the calculated force constants. The theoretical results are in

good agreement with the corresponding experimental values.

I. INTRODUCTION

There has been growing interest in the development of
empirical and semiempirical interatomic potentials for
more than thirty years, to investigate the elastic, lattice,
and electronic properties of metals and alloys. The works
in this field have also sustained the continued interest.
Recently a two-body potential has been developed by
Singh and Rathore' and it has been tested for phonon
dispersion curves of fcc Fe. In this study, the cohesive
energy, lattice constant, and compressibility are the input
data for the model potential. As we know, compressibili-
ty and cohesive energy are the sum of the ionic interac-
tion and the interaction due to electrons. For this pur-
pose, i.e., to include the most significant contribution to
the binding energy, which arises from the interaction be-
tween the metal ions and electrons, we have developed a
three-body potential based on the two-body mode1 poten-
tial of Ref. 1. The functional form and the parametriza-
tion procedure of the proposed three-body potential are
explained in Sec. II B.

The interesting feature of Pd-Fe alloys is that the two
constituents of the alloy are in different phases, as Fe is in
the bcc phase and Pd in the fcc phase at room tempera-
ture. However, the Pd-Fe alloys form a random solution
having a fcc structure. Due to their structural complexi-
ty, not much theoretical work has been done on Pd-Fe al-
loys to reveal the lattice dynamics. Therefore the pur-
pose of the present work is to investigate the suitability of
applying both the two-body potential' and the three-body
potential described in Sec. II 8 to the problem of study-
ing the lattice dynamics of the Pd —10/o Fe alloy.

II. THEORY AND COMPUTATION

A. Two-body model potential

If the interatomic interactions between two atoms of a
lattice are of the model potential type deve1oped by Singh
and Rathore, ' then the average interaction energy per
atom may be written as

$2(r)=g D
[P exp( —m ar )

J 2(m —1)rJ
—mP exp( ctr —)],

where D is the dissociation energy of the pair, a is the
constant which measures the hardness of the potential, m
is an exponent which delivers the same effect to the po-
tentia1 as resu1ts from the exchange and correlation
effects due to electrons, ro is the separation of the atoms
for minimum potential, and P=exp(aro). In Eq. (1) the
term r modifies the potential to exhibit the correct na-
ture of the forces, particularly at small distances. The
distance of the jth atom from the origin
r =a(m +n +I )', where m , n , l . ar.e integers
representing the coordinates of the jth atom of the lattice
and a is the lattice constant.

The parameters (a, ro, D) defining the model potential
(1) for Pd and Fe are computed for the fcc structure at
the lattice constant of the Pd —10% Fe alloy, following a
similar method to the procedure given by Girifalco and
seizer. The lattice constant of the alloy is a =0.387 20
nm. At equilibrium semilattice constant of the alloy, ao,

dy, (r)
c&

d $2(r)
G7

r=a 0

r=a 0

where eo is the pair energy at equilibrium, i.e., eo is the
ionic part of the cohesive energy, and k is the force con-
stant at equilibrium. These parameters (eo, k) are avail-
able in the literature for most metals. For Fe and Pd the
input data used in Eqs. (2) are given in Table I, where P is
the total cohesive energy.

Eight forms of the model potential (1) obtained by
varying the exponent m as 1.01, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
and 5.0 are studied for Pd and Fe, i.e., the potential pa-
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Element —eo (eV) k (eV/nm )
—P (eV)

TABLE I. Input data for Pd and Fe from Refs. 4—6. TABLE III. Computed parameters for Pd and Fe at the lat-
tice constant of the alloy.

Pd
Fe

1.10
0.90

2315
926

3.89
4.28 Pd

Fe
2.5
3.5

7.664 29
6.198 54

2.417 86
2.167 35

2.773 23
2.770 34

Element m D (10 I m) a (10' m ') ro (10 ' m)

rameters (D, a, ro) are evaluated for each value of m sepa-
rately. In order to determine the best values of the ex-
ponent m defining the two-body potential (1) for the ele-
ments we have then computed the elastic constants
(C», C,2, C44) for the fcc structure at the lattice constant
of the alloy. The elastic constants can be evaluated from
the well-known expressions for cubic crystals with two-
body interatomic interactions: '

C» =(a l2V)g m~D $2(r ). , .

J

Ci2=(a l2V)g m n D $2(r ),
J

C~ =
—,'(2C» —Cia»

(3)

B. Three-body potential

The total interaction energy of a system of N atoms, in
general, may be expressed as a many-body expansion,

where D =( I!r )(d /dr ) and V is the volume per atom.
These relations are applicable to unstressed crystals only,
i.e., the crystal must be in equilibrium with no external
force applied. For C44, the theoretical expression
developed by Milstein and Rasky is used because they
have noted that the relations in Eqs. (3) are in better
agreement with experimental data than the Cauchy rela-
tion C44 =CI2 for fcc crystals. Also, using the theoretical
expression C44= —,'(2C» —C,2), the elastic constants of
the fcc Fe—35% Ni alloy have been computed by
Akgiin, ' and it is seen that the results obtained provide
theoretical support for the efficacy of this relation in the
fcc alloys. Thus the elastic constants of Pd and Fe at the
lattice constant of the Pd —10% Fe alloy are calculated
separately from Eqs. (3) for the values m given above.
Comparing the calculated values with experimental
values of the elastic constants we have determined the
values m given in Table II for Pd and Fe. For Pd, the
values of elastic constants obtained using the Linhard-
Taylor' dielectric function are also given in Table II for
comparison. For the determined values of the exponent
m, the computed parameters (a, ro, D) of the two-body
potential (1) are given in Table III. In the computations
we have considered couplings extending to the eighth
neighbor of the fcc structure.

0=4+0+'''+0 +'''
where $2, P3, and P„represent the total two-body, three-
body, and n-body interaction energies, respectively. Here
we propose a three-body potential based on the two-body
model potential (1). The three-body general potential
coupling the atom (I, k) with its two common nearest
neighbors (I', k') and (l",k") may be written as

CD
43( 1 2) X X

I,I, ,&l„k„&k 2(m —1 )(r i + r2 )

X I P exp[ ma—(r, + r2 ) ]
—mPexp[ a(ri+—r2)]],

where r, and r2 are the respective separations of the
atoms (I', k') and (I",k") from the atom (l, k). C is the
only parameter in the three-body potential to be evalu-
ated. The three-body potential parameter, C, can be eval-
uated easily by fitting the total interaction energy of an
atom in a particular crystal structure to the total cohesive
energy P of the element. One can write the total interac-
tion energy simply by separating C as

0=0z+C43 .

For Pd and Fe, the necessary parameters used in the cal-
culations are given in Tables I and III. In the calculation
of the lattice sums in P2 given by Eq. (1) we have con-
sidered the two-body couplings extended to the eighth
neighbor of the fcc structure. For the three-body interac-
tion considered here, the first neighbor of the fcc
configuration is regarded as the common nearest neigh-
bor of the second and third neighbors. Therefore the
computed values of the three-body potential parameter at
the lattice constant of the alloy Pd —10% Fe are
C =27. 1474 for Pd and C =24.4989 for Fe.

C. Phonon dispersion relations

In the harmonic and adiabatic approximations, the
phonon frequencies corresponding to a wave vector k for
a cubic crystal are determined by solving the secular
equation, given by

ID MW'r
I
=0,—

TABLE II. Computed elastic constants (in units of 10" N/m ) for Pd and Fe at room temperature.

2.5 2.61
2.27
1.70

Pd
CI2

1.40
1.76
1.33

1.27
0.71
1.14

3.5 2.45
2.30

Fe

1.29
1 ~ 35

C44

1.20
1.17

Ref.

Present work
Expt. (Refs. 9, 10)
Theory (Ref. 18)
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r dr

d $2(r)

dr
i=1—8 .

For Pd and Fe, the calculations of o.; and P, are done for
the fcc structure at the lattice constant of the alloy
Pd —10%%uo Fe. Now we evaluate the force constants (a,
and p; ) of the alloy by using the linear relations

a; (Pd-Fe) = (1—x)a;(Pd)+x a, (Fe),
P;(Pd-Fe) =(1—x)P;(Pd)+xP;(Fe),

(10)

where x is the concentration of Fe in the alloy (x =0.10).
For Pd, Fe, and the Pd —10% Fe alloy the computed
force constants are given in Table IV. The average mass
used in the calculations for the alloy is obtained from the
relation

M(Pd-Fe) = (1—x)M(Pd) +xM(Fe) .

In order to determine the contribution of the three-
body forces to the diagonal and off-diagonal matrix ele-
ments of D p, we follow the scheme of Mishra, Srivasta-
va, and Mishra, ' where a three-body empirica1 potential
is used to deduce the force-constant matrix, involving a
single parameter. For a fcc system, the elements of the
diagonal and off-diagonal matrix may be given, after solv-
ing the usual secular determinant, as

where D is the dynamical matrix of order (3 X 3), I js the
unit matrix, and M is the ionic mass. In the present
work, the elements of the dynamical matrix D p are corn-
posed of two-body (D'&) and three-body (D &) parts:

D.p =D'.p+D.p

In the case of the two-body central pairwise potential, the
interactions are assumed to be effective up to eighth
nearest neighbors and the D'p are evaluated by the
scheme of Shyam, Upadhyaya, and Upadhyaya. " The
typical diagonal and off-diagonal matrix elements of D'

p
can be found in Ref. 11. In the case of the central in-
teraction, first and second derivatives of the two-body po-
tential Pz(r) provide two independent force constants,
i.e., the radial force constant cz; and tangential force con-
stant p;, for the ith set of neighbors:

D =4y[4 —2C2; —C;(C +Ck)],
D p=4y[C(C+Ck) —2],

(12)

where y is the second derivative of the three-body poten-
tial $3(r, r2 ), C; =cos(mak; ), and Cz; =cos(2m ok; ). To
calculate the three-body force constant y, we limit the
short-range three-body forces in the fcc system only up to
first nearest neighbors. For the alloy Pd —10% Fe, the
three-body force constant is obtained from the linear re-
lation

y(Pd-Fe) =(1—x)y(Pd)+xy(Fe) . (13)

The computed values of the three-body force constants at
the lattice constant of the alloy are y = —62S.001 X 10
N m ' for Pd, y = —612.720X 10 N m ' for Fe, and
y= —623.772X10 N m ' for Pd —10% Fe.

Now one can construct the dynamical matrix D p by
using Eq. (8) and then solve the secular equation (7) to
compute the phonon frequencies along the principal sym-
metry directions [100], [110],and [111]for the alloy.

III. RESULTS AND DISCUSSION

In the present paper, the interaction system of the fcc
Pd —10% Fe alloy is considered to be composed of two-
body and three-body parts. By a three-body interaction
we mean an extra interaction energy owing to the pres-
ence of a third particle. This type of interaction may
occur through the deformation of the electron shells. '

The three-body potential (5) developed here and the two-
body model potential (1) are used, as an application, to
investigate the dynamical behavior of binary type-II al-
loys, where the end members have different structures.
In the case of the two-body interaction, we have con-
sidered couplings extending to the eighth neighbor of the
fcc structure. The parameters (a, ro, D) defining the
model potential Pz(r) for pure Pd and Fe are evaluated
for the fcc structure at the equilibrium lattice constant of
the alloy, by knowledge of the equilibrium pair energies
and the equilibrium force constants of the elements. The
three-body parameter C is evaluated from knowledge of
the total cohesive energies (total interaction energies) of
the elements. Thus, on one hand, we determine the ab in-
itio radial and tangential force constants of Pd and Fe for
the fcc structure at the lattice constant of the alloy by us-
ing the model potential (1) and, on the other, we reason-

TABLE IV. Computed radial (a; ) and tangential (P;) force constants for Pd —10% Fe.

Serial
no. Pd

55 195.9
—1 605.07
—160.061
—23.022 4
—4.248 01
—0.933 12
—0.233 48
—0.064 69

~, (10-' N m-')
Fe

51 106.8
—1 215.55
—145.296
—25.009 9
—5.415 50
—1.375 25
—0.393 29
—0.123 42

Pd —10% Fe

54 787.1
—1 566.12
—158.585
—23.221 1
—4.364 76
—0.977 33
—0.249 46
—0.070 57

Pd

—243.57
157.219
12.770 8

1.608 94
0.267 74
0.054 02
0.012 57
0.003 27

P;(10 'Nm ')
Fe

—217.95
128.643

12.783 2
1.931 89
0.377 67
0.088 15
0.023 46
0.006 18

Pd —10% Fe

—241.00
154.362
12.772 1

1.641 24
0.278 73
0.058 34
0.013 66
0.009 86
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o.2 o.4 o.6 o.e
g=ak)

G.e o.6 o.~ 0.2 0 0.2 p.P

FIG. 1. P ho non dispersion
curves at room temperature for
Pd —10% Fe. The symbols
(, +,o) represent the experi-
mental values (Ref. 2). The solid
curves show the dispersion
curves computed by including
the contribution of three-body
forces and the dashed curves
represent the computed disper-
sion curves according to the
two-body central interactions.

ably account for the long-range character of interatomic
forces by considering the interaction system extending up
to eight sets of nearest neighbors. The three-body force
constants of Pd and Fe are also calculated for the fcc
structure at the lattice constant of the alloy, by using the
three-body potential (5). In order to study the phonon
dispersion relations of the alloy Pd —10% Fe, we calculate
the radial, tangential, and three-body force constants of
the alloy, using the concentration averages of the force
constants of the constituent metals.

First, the phonon dispersion curves of the alloy are
only computed according to the two-body central interac-
tion and the results are shown by dashed curves in Fig. 1.
Next the calculation is repeated for the alloy, by includ-
ing the contribution of three-body forces to the dynami-
cal matrix (8) and the computed dispersion curves are
shown by solid curves in Fig. 1. Furthermore, the experi-
mental values measured by Maliszewski et al. for the al-
loy are also shown by the symbols (0, +,0) in Fig. 1 for
comparison. As seen from Fig. 1 the experimental and
theoretical values are in good agreement when the three-
body force is incorporated in the alloy. Also, all the cal-
culations described in the text were repeated for the
Pd —4% Fe alloy. As seen from the experimental
findings for the alloy, the computed dispersion curves
are nearly identical to Fig. 1. Therefore the computed re-
sults for Pd —4% Fe are not given in this paper.

Recently, the radial and tangential force constants of
Pd and Fe in the fcc phase have been computed by Singh,
Banger, and Singh' and by Singh, ' by including the con-
tributions of s and d conduction electrons explicitly. In
these calculations they have used a two-body pair poten-
tial defined as the sum of s-s, d-d, and s-d contribu-
tions. ' ' The free-electron part of this pair potential
was also obtained in second-order perturbation theory us-
ing the rational dielectric function and the empty-core
pseudopotential. ' ' Furthermore, Singh' has calculat-
ed the phonon frequencies of the alloys Pd, Fe for the
concentrations x =0.04 and 0.10, using the microscopic
force constants obtained from the concentration averages
of the force constants given in Refs. 14 and 15 for Pd and
Fe in the fcc structure. He has noted that the discrepan-
cies between theoretical and experimental results are
found to be 11% and 10% for x =0.04 and 0.10, respec-
tively. In this work' it is to be noted that the force con-
stants of Pd and Fe are not evaluated by using the lattice
constants of the alloys separately. In the present work,
we have computed the radial, tangential, and three-body
force constants of Pd and Fe separately, using the lattice
constants of the alloys Pd, Fe .

Consequently, for fcc binary type-II alloys the present
results show that the proposed two- and three-body po-
tentials are sufficient to reproduce the phonon data and
the mean crystal model described above works well.
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