
PHYSICAL REVIE%' 8 VOLUME 51, NUMBER 1 1 JANUARY 199S-I

Theory of giant magnet+resistance far parallel and perpendicular currents
in magnetic multilayers

H. Itoh, J. Inoue, and S. Maekawa
Department of Applied Physics, Nagoya University, Nagoya $6'$ 01,-Japan

(Received 18 May 1994)

For a magnetic multilayer system, the physical origin of the difference between the giant mag-

netoresistances for currents parallel and perpendicular to the layer planes is studied. In order to
take into account the two characteristics of a multilayer system, interfacial roughness and layered

structure, we adopt the single-cell coherent-potential approximation. The spin-dependent resistivi-
ties are calculated for currents parallel and perpendicular to the layer planes by using a single-band

tight-binding model and the Kubo formalism. It is shown that the magnetoresistance ratio for per-
pendicular current is larger than that for parallel current. The difference between magnetoresistances
for parallel and perpendicular currents is attributed to the fact that the effects of the anisotropy
of the effective mass and the two-dimensional distribution of randomness on the anisotropy of the
resistivity depend on the spin-dependent potential. It is also shown that interfacial roughness is
favorable to magnetoresistance for parallel currents.

I. INTR.ODUCTION

Magnetic multilayers have provided novel magnetic
and transport phenomena in the 6eld of magnetism: the
long range exchange coupling between magnetic layers '

and the giant magnetoresistance (MR). Since the first
observation of the giant MR in Fe/Cr multilayers,
many investigations of the magnetotransport proper-
ties in magnetic multilayers have been stimulated and
it has been found that many multilayers such as
Co/Cu, Co/Cu/NiFe/Cu, Fe-Co/Cu, s Co-Ni/Cu,
Fe-Co-Ni/Cu, io etc. , show the giant MR. The giant MR
is different &om the conventional anisotropic MR because
the decrease of the resistivity in the giant MR of multi-
layers is independent of the relative direction of the ap-
plied magnetic field and the direction of currents. The
electrical resistivity decreases with the reorientation of
the magnetization within the magnetic layers &om an
antiparallel (antiferromagnetic) alignment to a parallel
(ferromagnetic) alignment by the magnetic field. With
increasing the net magnetization of the system, the re-
sistivity decreases and becomes independent of the mag-
nitude of the Beld after the saturation of the magnetiza-
tion. The fact that the resistivity depends on the direc-
tion of the magnetization of the magnetic layers indicates
that spin-dependent resistivity is responsible for the gi-
ant MR. The giant MR is usually measured for currents
parallel to the layer planes. Recently, the giant MR for
currents perpendicular to the layer planes has been mea-
sured and it has been reported that the MR ratio for
perpendicular currents (MR~) is much larger than that
for the parallel currents (MR~~).

These fl.ndings have brought up several important is-
sues to be studied theoretically: (1) the origin of the spin-
dependent resistivity, (2) transport properties in layered
structures, (3) material dependence of the giant MR, (4)
relations between the giant MR and other transport phe-

nomena such as the thermoelectric power, thermal con-
ductivity, and Hall resistivity, (5) temperature depen-
dence of the giant MR, and so on. Several theoretical
works on the giant MR have dealt with the electrical re-
sistivity in the layered structures. In these theories,
however, the asymmetry of the spin-dependent scatter-
ing was treated as an adjustable parameter to explain
the giant MR observed. In our previous papers, we

have attributed the origin of the spin-dependent scat-
tering to the randomness of the exchange and atomic po-
tentials caused by interfacial roughness, and have studied
the material dependence of the giant MR by calculating
the electronic structures near the interfaces. It is natu-
ral to consider that the roughness of the interfaces plays
an important role in the giant MR when we note that
large residual resistivity exists in the multilayers and that
the interfaces are the boundaries of magnetic and non-
magnetic layers. The successful explanation of the mate-
rial dependence of the giant MR by detailed calculations
of the electronic structures supports the basic assump-
tions of our model. The spin-dependent scattering at
the interfaces is also supported by experimental fact that
the MR depends on the roughness of the interfaces
and that it changes dramatically when thin layers of a
third element are inserted at the interfaces. 2 We have
further investigated the relation between the giant MR,
thermoelectric power, and thermal conductivity and have
obtained a basic agreement between the theoretical and
experimental results. As for the temperature depen-
dence of the giant MR, several explanations have been
presented; a dilution effect, spin fluctuation efFects,
and magnon scattering.

In order to explain the outstanding feature of MR~,
namely, that it is much larger than MR~~, several
theoretical &ameworks have been developed by using
semiclassical and quantum theories including
numerical simulations. Possible physical mechanisms
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for MR~ && MRII have been proposed: effects of
backscattering (or vertex correction) on the conductiv-
ity, diffuse scattering at the interfaces, and/or miniband
structures (or the anisotropy of the effective mass of the
electrons). Although these effects clearly make the resis-
tivity of perpendicular currents larger than that of par-
allel currents, it is not evident that they also make MR~
larger than MRII. Thus, the physical origin of the ob-
served results still seems to be far &om fully understood.
To clarify the physic~i ~masons of MR& ~~ MRII ~

we mus
take into account the layered structures of the systems
and interfacial roughness explicitly and study the depen-
dence of the resistivity on the direction of the currents
and on the change in the periodicity due to the alterna-
tion of the alignment of the magnetizations by the exter-
nal magnetic 6eld. The numerical simulation based
on the Kubo formalism is a powerful method to include
these effects because no approximation is made in this
method. A shortcoming in this method, however, is the
effects of the contact resistance due to the 6niteness of
the system used in the simulations.

The purpose of this paper is to present a method to
study the origin of the difference between MRII and MR~
(Ref. 51) for infinite systems and to provide some im-
plications for the experiments. In this work, the spin-
dependent resistivity will be calculated in the Kubo for-
malism by taking into account the layered structures and
the randomness at the interfaces explicitly but some ap-
proximations will be made in the treatment of the ran-
domness. The present method and the numerical simu-
lations may be complementary to each other. Although
there may be several types of the randomness in mul-
tilayers, we confine ourselves to substitutional random-
ness caused by the interfacial roughness. The structural
randomness such as grain boundaries, lattice distortion,
lattice defects, etc. , is neglected because it may be less
important for the spin-dependent scattering. In the case
of substitutional randomness, there exist magnetic atoms
in the nonmagnetic layers and nonmagnetic atoms in the
magnetic layers near the interfaces. In other words, there
are mixed. layers of magnetic and nonmagnetic atoms at
the interfaces. In order to deal with these mixed lay-
ers and the arti6cial periodicity of the multilayers, we
adopt a cellular method where long unit cells are taken
along the direction perpendicular to the layer planes. It
is important to note that the cellular method52 can treat
the resistivities for currents parallel and perpendicular to
layer planes consistently. We make use of the coherent
potential approximationss (CPA) to formulate the ex-
pression of the resistivity caused by the interfacial ran-
domness. The formalism will be explained in the next
section. Numerical calculations, however, will be done
in a weak scattering limit by using a single-band tight-
binding model and the results of the computation and
their interpretation will be given in Sec. III. We will show
that MR~ )MRII and the origin of this result will be at-
tributed to the fact that the anisotropy of the resistivity,
which is caused by the anisotropy of the effective mass
of electron and the two-dimensional distribution. of ran-
domness at the interfaces, depends on the spin-dependent
potential.

II. MODEL AND METHOD

In this section, we first summarize the single-cell CPA.
Then, the expression for the resistivity is formulated in
the same approximation, followed by explanations of the
model to be used and the application of the derived ex-
pressions.

A. Formulation of resistivity in cell CPA

In deriving the cell CPA, we consider the disordered
material which is divided into nonoverlapping equivalent
cells. The Hamiltonian of this system consists of a purely
site diagonal part U and a purely site off-diagonal part
W as follows:

H = R" +U,

where U is, of course, cell diagonal and TV is translation-
ally invariant with respect to cells. In order to describe
the cellular structure, we choose

I
C, p) (=

I C) Cs
I p))

for the basis vector where | and p, denote the indices of
the cell and the site within the cell, respectively. Using
this basis, TV and U are rewritten as

~ = ).I&)~cc (&'I ~

C,C'

U =).It-") Uc(&l.

Since Wcc depends only C —C' because of transla-
tional invariance, R' becomes k diagonal by the following
Fourier transformations:

(4a)

(4b)

where N, Rc, and k are the number of cells in the sys-
tem, the position vector of t th cell, and the wave vector,
respectively. In this transformation, R' becomes

—ik. (Rc—Rc~ )

C,C'

We assume site diagonal disorder due to the substitu-
tional randomness of atoms. Then Uc depends on cells.
The con6gurational average of any physical quantity over
all random con6gurations in a cell is independent of the
cell. Then we focus our attention on any single cell and
replace the surrounding material by an effective medium
Z, which possesses the translational invariance of the
cell. The effective medium is cell diagonal and cell inde-
pendent, that is,
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z = ):I&)~(&l. (7) Then, the self-consistent equation in the single-cell ap-
proximation is (tc) = 0, that is,

The Green's function can be expanded in terms of (U-
Z),

G—:(z —H)
= g+ g (U —Z) g + g (U —Z) g (U —Z) g+ . .

=g+gTg,

g= (z —W —Z)
T = (U —Z) (1+gT).

(9)
(1o)

The full T matrix is rewritten by using the corresponding
single-cell t matrix tc as

T = ) tc+ ) tcgtcI
C CgC'

where g and T are the effective Green's function and the
full T matrix, respectively, defined as

((Uc —o') [& —«c(Uc —~)] ) = o

which is an extension of the single-site CPA equation.
In deriving the expression for the electrical resistivity

p, we start &om the Kubo formula

p
' = Tr ( v b(E~ —H) v b(Ep —H) ),0 (2o)

h(EF —H) = G(z ) —G(z+)
27ri

where z~ ——E~ R ig and g is an infinitesimal small pos-
itive number. To calculate the electrical resistivity, it is
necessary to evaluate a configurational average of prod-
ucts of two Green's functions such as

where 0, v, and Ey are the volume of the system, velocity
operator, and the Fermi energy, respectively. In Eq. (20),
the b function is defined as

A zz,

&cg&c g&c ~ + . . .
CgC', C'gC"

The single-cell t matrix is defined as

&c = I&) tc(&l,
tc = (Uc —~) l1 —«c(Uc —o')]

The cell diagonal element of Green's function is

(12)

(13)

It (zi " '2) = ( G(zi) "G('2) ) .

We first substitute Eq. (8) into Eq. (22); then

k=i+grg,
K = gvg,
F = (TgvgT),

(22)

(23)

(24)

(25)

«c = (&Igl&)
1

k

gi, = (zeal —Wi, —cr)

(14)

where the second term of Eq. (23) is a vertex correction
and I' is called a vertex operator. In order to evaluate I',
we use Eq. (11) and apply a decoupling scheme which is
consistent with the single-cell approximation in Eq. (18).
As the result of the decoupling, the vertex correction be-
comes cell diagonal and cell independent:

where the quantities tc, Uc, cr, gcc, and gi, are n x n
matrices if n atoms are in a cell and X denotes a n-
dimensional unit matrix. It is assumed that the real
Green's function averaged over all random configurations
in a cell should equal to the corresponding Green's func-
tion of the efFective medium itself. Hence,

F = ) I&) I'(&I

I' = ( tc Kcc tc ) —( tc gcc I' gcc tc ),

(26)

(27)

(T) =0, Kcc = &cc+) gcc I'gc c, (28)

where the brackets (. .) denote configurational average.
This equation indicates that the efFective medium pro-
duces no scattering of electrons on the average. Equa-
tion (17) is the exact self-consistent equation for deter-
mining the efFective medium a called the coherent poten-
tial. Instead of Eq. (17), however, a single-cell approxi-
mation is usually adopted. By decoupling the average in
the right hand side of Eq. (11), we get

where Kcc = (Cl g v g IC). The vertex correction can be
derived by solving Eqs. (27) and (28). In the single-cell
CPA, the Kubo formula Eq. (20) is reduced to

(Io + I„),

CgC', C' gC"

+ 0 ~ ~

(&c) (& + g (&c ) + g (&c ) g (tc«) Iz =, ) ' ) Tz (z g(zz)zg(zz))
Ag)Ag C

( 1)(Ay+A@)/2 (3o)
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I„= ) ) Tr [K~c (zi, v, z2) I'(z2, v, zi)]
A1,Aa C

~( 1)(Ay+Ay)/2 (31)

w = ) ii Ic) w)i (O'I+) IC) w (CI
C, C' C

+) IC)W' (O'I+ ) IC)W" (O'I,

where zi = E~ + iqAi, Ai = +1 (j = 1, 2), and I„ is the
vertex correction.

C, C' C, C'

B. Model

We consider an A/B multilayer where the A and B
layers consist of n~ and n~ atomic planes, respectively.
In this section, we restrict ourselves to the case n~ ——1,
n~ ——2 and formulate the expression for the resistivity.
It is, however, quite easy to extend the expression derived
in this section to other cases. We adopt the single-band
tight-binding model to describe this multilayer. And we
assume that the structure of this multilayer is a simple
cubic lattice with lattice constant 1. Atomic layers are
stacked along the (0, 0, 1) direction and the layer planes
are assumed to be parallel to the x-y direction.

We now partition the multilayer into small equivalent
cells. The periodicities along x and y directions are the
same as those of the simple cubic structure. However,
the periodicity of the unit cell along the z direction is n
lattice spacings with n = 2 (n~ + n~), so that the unit
cell has a (1, 1, n) structure. It is convenient to choose
n = 2 (n~ + n~), instead of (n~ + n~), for the follow-
ing motives. In case of magnetic multilayers A/B where
A and B atoms are magnetic and nonmagnetic atoms,
respectively, the adjacent magnetic A layers couple fer-
romagnetically in an external magnetic field but couple
antiferromagnetically in the absence of the field. In order
to treat the magnetic multilayer, it is necessary to choose
A

I
B

I
A'I B as the period. For ferromagnetic coupling, A

and A' layers are equivalent. However, these layers are
not equivalent for antiferromagnetic coupling because the
magnetization direction of the A' layer is opposite to that
of the A layer. As for the randomness at the interfaces,
we only consider the substitutional randomness of A (A')
and B atoms. Let v and v' denote the sites of A and A'
atoms in the cell, respectively. We assume that A (A')
atoms are replaced by B atoms with a concentration c at
the p, = v(v') site.

The Hamiltonian of this system consists of a purely ofF-

diagonal part TV and a purely diagonal part U as follows:

w~~ = —ta, (34)

Wg ——

w~=

W/I

(0 t 0 0— 0 0)
0 —t 0 0 0

0 —t 0 —t 0 0
0 0 —t 0 —t 0
0 0 0 —t 0

(0 o o o -t 0)t: (l, n—) element,0:others,

t: (n, 1) e—lement,0:others,

(36)

(37)

where the symbol = stands for "is represented by the
basis vector

I p)." By using the Fourier transformation
Eq. (4), W is rewritten as

W = ) Ik) Wi, (kI,
k

t 0—
—t

II

0 —t
II

0 0
0 0 0

te'"*" 0 0—

0 0
0 0

0
—t

II—t
II

0

Wk ——

0
0
0
—t
kll

(38)

where —vr & k, k„& x, —m/n & k, ( x/n, and ei,
~~—2t(cos k + cos k„).

In a similar way, U is rewritten as

where the first terxn in the right-hand side describes the
hopping of electrons between cells in the x-y plane, the
second term describes the hopping within a cell, and the
third and fourth terms describe the hopping between cells
along the z axis. The sums over C, C' in the first, third,
and last term on the right-hand side of Eq. (33) are re-
stricted to sumxnations over all nearest neighbor cells un-
der the conditio~ zC = zC & zc & zC &

and zC & zC &

respectively, where zc (zc ) denotes the z component of
the position vector of C(C')th cell. The quantities W~~,
W~, W&, and W& are n x n matrices defined as

H = R'+U
= -t).Ii)(jI+):u'I')(iI

(~ i)
(32) U=) Ic)U~(cI, (4o)

where
I i) is the Wannier state centered on the site i,

the sum over (i, j) in the first term is restricted to a
suxnmation over all nearest neighbors, t is the hopping
integral, and the atomic potential u, is equal to u~, u~,
or u~ when the site i is occupied by an A, A', or B atom.
By using the basis

I C, y,), which denotes the state at site
p, (= 1 n) in the Cth cell, W is rewritten as

Uc ='

(u~ 0 0 0
0 uc„O 0
0 0 u~ 0
0 0 0 u~
0 0 0 0

( o o o o

0 0
0 0
0 0
0 0

uC
o u~)

where u~ „(„l is u~(~ &, if the site v(v') in the Cth cell
is occupied by an A(A ) atom, and u~ if it is occupied
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( uxx 0
0 ~vv

0 0
0 0

x

0

( 0 0

0 0 0 0 )
0 0 cr 0

u~ 0 0 0
0 u~ 0 0
0 0 o"" 0
0 0 0 ug)

by a B atom.
Since randomness exists only on the v and v' sites, the

coherent potential, which is derived by solving Eqs. (14)
and (19) self-consistently, is written as

1
Kcc(zlzz vni z2) = ) gk(zl) vk, n gk(z2) ~

k
(49)

Since gx, and vx, &„l are even and odd functions of k („),
respectively, K~~ vanishes for x and y directions; i.e., the
vertex correction for the currents along x and y directions
vanishes. However, since vx, is not an odd function of
k, the vertex correction for the current along z direction
does not necessarily vanish. We found, however, that
this vertex correction is negligibly small in our numerical
calculation.

The numerical calculation will be performed in the weak
scattering limit. In this limit, the coherent potential is
reduced to IIX. CALCULATED RESULTS

& = (Uc ) + ((Uc —(Uc )) «c (Uc —(Uc )) ) .

(43)

o "" = cug + (1 —c)uxor + c(1 —c)(u~ —uxx) gr&,
(44a)

o" " = cupel + (1 —c)uxx + c(1 —c)(u~~ —uxx) g&&,
(44b)

(44c)

where o's ixlvolved ixl gcc (= ( v
~
gc/

~

v )) axld gcc (=
(v'

~
gcc

~

v')) are replaced by (Uc ) as mentioned
above.

Next, we derive the velocity operator, which is de6ned
as

v = —. [R,II] (n = z, y, z),ih (45)

It should be noted that cr involved in gc~ in Eq. (43)
is replaced by (U'~ ) and that the imaginary part of the
last term of Eq. (43) describes the effect of the scattering
due to randomness. The matrix elements of the coherent
potential are

At the beginning of this section, we show the validity of
our method and calculation. We consider a nonmagnetic
multilayer A/B, with a configuration of atoms within the
unit cell as shown in the inset of Fig. l. At the shaded
sites, A and B atoms are randomly distributed, each with
concentration 0.5. The potentials of the A and B atoms
are taken to be 0.3t and —0.3t, respectively. Calculated
results for p, i.e., the conductivity, are shown in Fig. 1
as functions of Ex:, where

~~
and J denote directions par-

allel and perpendicular to the layer planes, respectively.
The dependence of p on E~ is quite similar to that
calculated for a random alloy. The dips in

p~~
and p&

are related to the Van Hove singularities of the density
of states for the simple cubic structure. The similarity
between our results and those calculated for a random
alloy is considered to justify our method and calculation.

It is also noteworthy that the resistivity without the
vertex correction term does not change in the weak scat-
tering limit even if we use the unit cell whose structure
is (2, 1,n), (1, 1, 2n), etc. , instead of (1, 1,n, ), and that
the vertex correction is negligibly small in our numerical
calculation.

where R is the site-position operator. From Eqs. (4)
and (33), the velocity operator v becoxnes k diagonal: 30

v = ) ik)vx, (ki, (46)
0 p'

0 Q

2g
v'k~(y) = —sin /c~{y) 1l. ~ (47)

20-

10-

&kz

0
Z

0
0
0

i~iA'~ n

—i 0 0
0 —i 0
i 0 —i
0 i 0
0 0 i
0 0 0

0
' 'Exei fL

0 0
0 0
—i 0
0 —i

0 )

. (4S)

Using the
~
k) representation, Kcc in the vertex cor-

rection terxn Eq. (31) becomes

0 I I I I I I I I—5 0 5
EF / f

FIG. 1. Calculated results for the inverse of resistivity in
a nonmagnetic multilayer for parallel (o) and perpendicular
(~) currents as functions of E». Solid and dashed curves are
guides to the eye. The inset shows the configuration of atoms
within the unit cell.
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A. MR)) and MR~

B A B B A' B0 '. .": 0 0 —:.:—0
E

0.5t-

F alignment

We consider a magnetic multilayer AjB. The config-
uration of atoms within the unit cell is shown in Fig. 2,
where A and A' atoms are magnetic atoms. Then, the
potentials of the A and A' atoms, u~ and. u~, depend
on the spin cr(=g, $). For ferromagnetic (F) alignment of
adjacent magnetic layers, A and. A' atoms are equiva-
lent and u~ ——u~ . However, for antiferromagnetic
(AF) alignment, their magnetization directions are op-
posite to each other, and they are no longer equivalent,
but instead u~ ——u~ . A schematic Ggure of the
potential of each atom within the unit cell is shown in
Fig. 2. We ass»rne that the spin-dependent potentials of
the A and A' atoms are given to be +0.5t and treat the
spin-independent potential of the B atom, u~, as a vari-
able parameter. We further assume that A and A' atoms
are replaced. by B atoms with a concentration c = 0.5.

First, we show the calculated results for the spin-
dependent resistivities in F and AF alignments for par-
allel and perpendicular currents in Fig. 3 as functions
of u~. For AF alignment, since resistivities for f and $
spin electrons are the same, only resistivities for $ spin
electron, pgAF, are plotted. As the potential difFerence
for $ spin states, ~u~~ —u~~, decreases with increasing
u~, the resistivity for $ spin electrons in ferromagnetic
alignment, p~F, becomes small. On the contrary, the po-
tential difFerence for g spin state, ~u~g —u~~, increases
with u~, so that the resistivity for g spin electrons, pgp,
becomes large. Thereby OAF is always larger than pgF
and smaller than ptF. The figure also shows that the

10- 0,

0.2
uB I t

I
0.4

FIG. 3. Calculated results for the resistivities in a mag-
netic multilayer for parallel (open symbols) and perpendic-
ular (solid symbols) currents as functions of u&. Triangles,
squares, and circles are the results for pgp, pgF, andpgAF, re-
spectively. Solid and dashed curves are guides to the eye.

resistivities for perpendicular current are always larger
than those for parallel currents.

Next, we study the MR ratio which is defined as (p&F—
pF)/p~F where pF and p~F are calculated by using the
two currents model, that is,

—1—1 —1
PF(AF) P$F(AF) + P$F(AF) (50)

The calculated results of MR ratios, MR~~ and MR~, are
shown in Fig. 4 as functions of E~ for several values of
u~. The following characteristics can be noticed. from
the 6gure. When u~ ——0.4t, the MR ratios for both
parallel and perpendicular currents are nearly the maxi-
mum value, i.e., MR~~ MR~ 1.0. The reason is that
pFII pFII4 pF& pF~~ 0 because of a good level
matching for $ spin states, that is, u~g u~. A no-
table difFerence between MR~~ and MR~ can be observed

—0.5t-

1.0
k

ug ——0.4 t

O,~,~:MR~~

~,, ~:MR,

E
fig.

0.5t-

AF alignment
~ ~C3

Q
us -—02t ~ ~

C] 0
~ ~

~ uB ——0.0

—0.5t-

FIG. 2. Con6guration of atoms within the unit cell and the
level scheme of potentials of each atom which is used in the
calculation of MR ratio; the results are shown in Fig. 4. Solid
and dashed lines are potentials of each atom for g and $ spin
states, respectively.

0.0

o P 0 0 0
0

EF 1 t

o&o-
5

FIG. 4. Calculated results for the MR ratios for parallel
(open symbols) and perpendicular (solid symbols) currents
as functions of E&. Triangles, squares, and circles are the
results for u& ——0.4t, 0.2t, and 0, respectively.
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when u~ ——0.2t. Even when u~ ——0.0—that is, the po-
tential differences ~u~ —u~~ for t and $ spin states are
the same —the MR ratio is nonzero and MR~ & MR~~.
The dependence of the MR ratio on E~ is asymmet-
ric with respect to Ey ——0 except for the results with
u~ ——0.0. This is because the potential is asymmetric
with respect to the origin of the energy. We may con-
clude &om the calculated results shown in Fig. 4 that a
tendency towards MR~ & MR~~ exists. In the next sub-
section, we will give an interpretation for the numerical
results and clarify the physical origins of the results that
MR& + MRII

At the end of this subsection, we would like to note
that the present definition of the MR ratio is given by
(p~F —pF)/p~F and thereby the maximum value of the
MR ratio is 1.0. Therefore, the small difference between
MR~ and MR~~ for u~ ——0.4t does not necessarily mean
a small difference between pp~~/p~F~~ and pF~/pAF~. The
experimental values of the MR ratio in the present defi-
nition are about 0.2 and 0.5 for the parallel and perpen-
dicular currents, respectively, typically for Co/Cu and
Fe/Cr multilayers. i2 i5

of atoms within the unit cell is shown in the inset of
Fig. 5. The value of u~ is 0 and u~ is taken as a variable
parameter. We assume that A atoms are replaced by B
atoms with a concentration 0.5. The value E~ is taken to
be 0.0. These results show that p~ is always larger than
p~t. Both

p~~
and p~ are proportional roughly to u& as

expected. The deviation may be due to the interference
eKect.

In Born approximation, the resistivity for the direction
o.(=)~, J ) is given by

((V) )= ) b(Ep —E(k))
k

1 BE(k)
Bk

' = e ~((V ) )D(Ep),

where 7, D(E), and ((V )2) are the lifetiine, the density
of states, and the square of the Fermi velocity, respec-
tively. The square of the Fermi velocity is defined by

B. Interpretation of the numerical results

In this subsection, we will give the interpretation of the
general trend that MR~ & MR~~ obtained in the previous
subsection and clarify the origins of the trend. There are
several factors which afFect the MR; that is, the resistiv-
ity depends on the potentials which are spin dependent,
on the direction of the currents, and on the change in the
periodicity. To separate these factors from each other, we
adopt the following procedures. First, we consider a non-
magnetic multilayer A/B and study how the resistivity
is afFected by the direction of the currents and by the
change in the periodicity.

Figure 5 shows the calculated results of the dependence
of

p~~
and p~ on the random potential. The configuration

where E(k) is the energy eigenvalue of the Bloch state
with wave vector k, and is calculated in virtual crystal
approximation where U~ in the Hamiltonian is replaced
by its averaged value (U~ ); then cr = (Uc ). &n this
case, the difference between

p~~
and p~ is caused only by

the anisotropy of the Fermi velocity, i.e., the anisotropy
of the efFective mass. The ratio ((V~~) )/((Vj ) ) as well
as p~/p~~ are shown in Fig. 6 as functions of u~, where the
resistivities

p~~
and p~ are already shown in Fig. 5. The

value ((V~~) )/((Vj ) ) represents the anisotropy of the ef-
fective mass of electrons due to the miniband structures
of the electronic states. The miniband structures origi-
nate &om the layered structure of the multilayer which
is reflected in the artificial periodicity of (Uc ). The
anisotropy of the efr'ective mass becomes large with in-
creasing value of u~, as well as the anisotropy of resis-

10

1.5—

0 0.4 0.8
uA/ t

FIG. 5. Calculated results for the resistivities in a nonmag-
netic multilayer for parallel (o) and perpendicular (~) currents
as functions of u~. Solid and dashed lines are guides to the
eye. The inset shows the con6guration of atoms within the
unit cell used in the calculation.

"0 04
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PIG. 6. Calculated results for the ratios ((VII) )/((Vj ) )
(o) and p&/pII (~ ) in a nonmagnetic multilayer. The resistivity
pI~ and p~ are already shown in Fig. 5. Solid and dashed
curves are guides to the eye.
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tivity. However, it is clear that the anisotropy of the
efFective mass is not enough to explain the anisotropy of
the resistivity because p~/p~~ increases more rapidly than

((V~~) )/((Vj ) ) as u~ increases.
The difFerence between p~/p~~ and ((V~~)2)/((Vj )2) can

be caused by the two-dimensional distribution of the ran-
domness at the interfaces. The coherent potential has
imaginary parts, which describe the efFect of the scatter-
ing due to the randomness at the interfaces as shown in
Eq. (44). When there are equivalent imaginary parts at
every site; that is, the second term of Eq. (43) is replaced
by iEIL (4 is a positive number small compared with the
hopping integral t), then the ratio p~/p~~ coincides with

((V~~) )/((Vj ) ) which is already shown in Fig. 6. It has
been checked that the resistivity hardly changes even if
the real part of the last term of Eq. (43) is fixed to be 0.
Therefore, the anisotropy of the resistivity must be en-
hanced by the two-dimensional distribution of random-
ness at the interfaces.

The thickness dependence of p~~
and p~ is shown in

Fig. 7. Here, u~, u~, n~, and E~ are taken to be 0.8t,
0.0, 1, and 0.2t, respectively, and the concentration of the
random sites is the same as that used previously. As can
be seen from Fig. 7, the inverse of resistivity is almost
proportional to n~. The result indicates that Ohm's law
holds well.

Next, we study the dependence of p~/p~~ on the peri-
odicity. The con6guration of atoms within the unit cell
and the concentration of the random sites are the same
as those in Fig. 2. The value u~ is taken to be 0.0,
and )u/i~(= ~u/i ~) is taken as a variable parameter. We
call the configuration where u~ ——u~ the symmetric (s)
case, and call the con6guration where u~ ———u~~ the
antisymmetric (a) case. The periodicity of the antisym-
metric case is twice that of the symmetric case. The
calculated results of (p~/p~~), ( ) for the symmetric (an-
tisymmetric) case are shown in Fig. 8 as functions of
u~. The values of E~ are taken to be 0.0 and 1.0t.
We find that (p~/p~~) & (p~/p~~), for Ep = 0.0, but
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FIG. 8. Calculated results for the ratios p~~/p~ in s non-
magnetic multilayer for the symmetric (open symbols) and
antisymmetric (solid symbols) cases mentioned in the text.
Circles and squares are the results for E& ——0 and 1.0t, re-
spectively. Solid and dashed curves are guides to the eye.

(p~/p~~) (p~/p~~), for Ep = 1.0t. The result that

(p~/p~~)~ (p~/p~~), may be attributed to the change
of the efFective mass especially for the perpendicular di-
rection. By doubling the period of the unit cell along
perpendicular direction, the size of the Brillouin zone is
halved and band gaps appear at zone boundaries in k,
direction, so that the effective mass for perpendicular di-
rection becomes large.

Thus, we have found that two factors, the anisotropy
of the efFective mass due to the miniband structure and
the two-dimensional distribution of randomness at the
interfaces, play important roles on the resistivities

p~~
and

p~. We would like to stress again that these two factors
originate &om the layered structure of the multilayer and
that the efFects of these two factors on the anisotropy of
the resistivity become strong as the potential di8'erence
between A and B atoms increases.

Now, we interpret the calculated results shown in Fig. 4
including the spin-dependent resistivity. A simple inter-
pretation, however, is possible only for two cases: the
results for u~ ——0.4t and 0.0. When u~ ——0.4t, be-
cause of the good level matching for $ spin state, we
obtain ppI~ p~p~~ and pp~ pgp~ for F alignment. For
AF alignment, we generally obtain that pg~p

——pgAp
for both parallel and perpendicular currents, so that
p~p = p~Ap/2. For AF alignment, we can approximately
neglect the scattering at A site for $ spin electron and
it is enough to consider only the scattering at A' site,

~&A'$ &gy
~
)) ~tiA$

shown in Fig. 7 that p~/p~~ is independent of n~, we can
approximate p~~p/p~~~p pt~p/p~~~p. Therefore, we get

FIG. 7. Calculated results for the inverse of resistivities in
a nonmagnetic multilayer for parallel (o) and perpendicular

(~) currents ss functions of nn. Solid and dashed lines sre
guides to the eye.

P[/p/P[[Ap

MRJ PJ p/PJ Ap

PQJ p/Pg))p

PJJp /P J i~ip.
PJ Ap/P)JAp

P~p/P[~~p

(54)

that is, MR~ ) MR~~. To obtain the last inequality in
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C. Dependence of MR on the randomness

In this subsection, we show the dependence of MR~~
and MR~ on the randomness at the interfaces, i.e., the
concentration c . The configuration of atoms within the
unit cell is the same as that used previously (see Fig. 2).
The concentration c, with which A and A' atoms are re-
placed by B atoms, is taken as a variable parameter.
Here, u& ~y tc&y and E+ are taken to be +0.5t, 0.2t,
and 2.0t, respectively. Figure 9 shows the calculated re-
sults for the concentration dependence of the MR ratio.

' 0 0.2 0.4 0.6

FIG. 9. Calculated results for the MR ratios for parallel
(o) and perpend. icular (~ ) directions as functions of c. Solid
and dashed curves are guides to the eye.

this equation, we used the results shown in Fig. 5 and
the fact that the potential difFerence lust —u~l is larger
thaii lu&4 u&l Here, the dependence of p&/pll on the
potential difference plays an important role.

The other limiting case is that for u~ ——0.0. In this
case, the MR ratios are not equal to 0 although the po-
tential difFerences lu~ —u~l for g and $ spin states are
the same. The reason why the MR ratios are not equal
to 0 and MR~ & MR~ is attributed to the change of the
effective mass due to the change in the periodicity.

It has been already pointed out that the anisotropy of
the resistivity is caused by the anisotropy of the effective
mass and the two-dimensional distribution of randomness
and that the ratio p~/p~~ becomes larger as the potential
difference between A and B atoms increases. When there
is a good level matching in, say, the $ spin state as in the
results in Fig. 4 with u~ = 0.4t, (p~/p~~) F is much smaller
than (p~/p~~)~F because the potential difFerence between
A and B atoms for the J, spin state in F alignment is much
smaller than that for the g and $ spin states in AF align-
xIlent. Therefore, we obtain p)Ip p~p and p(IAp ( p~Ap)
which results in MR~~ ( MR~. Because the large MR is
caused by the good level matching in either g or $ spin
state, the asymmetry of the spin-dependent potential is
crucial for both the MR and the difference between MR~~
and MR~. When there is no good level matching, the ef-
fect of the change in the periodicity becomes important
as in the results in Fig. 4 with u~ ——0.0.

These results show that MRI~ increases while MR~ de-
creases with increasing concentration c, which is quali-
tatively consistent with results derived by the numerical
simulation. The difference between MR~~ and MR~ may
vanish in the limit of c —+ 1, because almost all atoms in-
cluded are B atoms and then both the anisotropy of the
structure and the anisotropy of the randomness become
weak. On the contrary, the difFerence between MR~~ and
MR~ becomes large with decreasing c. In the dilute limit
(c -+ 0) in Fig. 9, both MR~~ and MR~ remain finite and
MR~ & MR~~. This is due to the effect of the effective
mass on the resistivity. Thus, with decreasing the ran-
domness, the anisotropy of the electron mass becomes
dominant for the difference between MR~~ and MR~. The
effect of the randomness seems to be more important for
MR)I than for MR~.

IV. DISCU SSION

In our numerical calculation, the vertex correction has
been negligibly small. One reason is the treatment in
the weak scattering limit. The other reason is that we
have used small unit cells. The former is, however, less
important because the weak scattering limit is a good ap-
proximation when the random potential is small enough
as compared to the bandwidth and our calculations have
been done in this range. In cell CPA, the intracell scat-
tering is treated exactly, but the intercell scattering is
treated approximately. It has been reported by Bauer
et al. that the vertex correction to the conductiv-
ity corresponds to a difFusive scattering of electrons at
the interfaces where the electron momentum along layer
planes is not conserved. In the cellular method, because
the size of the unit cells is small, the momentum change
is restricted and the vertex correction is reduced. The
number of atoms in the unit cell used in the present cal-
culations has been limited to no more than 6. The lim-
itation is mainly due to the computational time for the
three-dimensional integration over k~, k» and k which
is necessary to calculate p~~. The integration is, how-
ever, reduced to the two-dimensional integration for p~
by uslIlg the complete elliptic integral. Although the
resistivity itself can be evaluated more correctly by mak-
ing the unit cell larger, the MR ratio may not be affected
so much because it is a ratio of resistivities in AF and
F alignments. The origin of the difference between MR~
and MR~~ may also hold to be correct.

We have shown that MR~ tends to be larger than MR~I,
which is consistent with experimental results. Quantita-
tively, however, both MR~~ and MR~ are larger than the
experimental ones. In Fig. 4, we get MR~~ & MR~ 1 for
the case u~ = 0.4t, which corresponds to a Fe/Cr mul-
tilayer in the sense that the potential difference between
magnetic and nonmagnetic atoms is small for the j. spin
state. In a Fe/Cr multilayer, the observed MR ratios
are about 0.2 and 0.5 for parallel and perpendicular di-
rections, respectively. The reason why the magnitude
of the calculated MR ratios is larger than those of ex-
periments is that only spin-dependent scattering at the
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interfaces has been taken into account to calculate the
resistivity. If we take into account the nonmagnetic scat-
tering, the MR ratios become smaller and the difference
between MRII and MR~ becomes more obvious.

Our result that MR~ & MRII is consistent with re-
sults derived by Asano et al. They attributed the origin
of the difference between MRII and MR~ mainly to the
miniband structure, which corresponds to the anisotropy
of the effective mass in our expression. Because their
treatment of the scattering is exact, their results must
include the effects of various factors of layered structure.
Further analysis, however, has not been made. In this pa-
per, it has been pointed out that not only the anisotropy
of the effective mass but also the two-dimensional dis-
tribution of randomness are important for the difference
between MRII and MR~. It has been also found that the
effects of the anisotropy of the effective mass and the two-
dimensional distribution of randomness on the anisotropy
of the resistivity become strong when the potential differ-
ence between magnetic and nonmagnetic atoms becomes
large.

As for the dependence of MR on the randomness at
the interfaces, we have shown that the difference be-
tween MRII and MR~ increases with decreasing the ran-
domness. The results are also consistent with those by
Asano et al. We must be careful, however, to inter-
pret their results because of the existence of the contact
resistance. The contact resistance may be interpreted as
the spin-independent resistivity, which naturally exists in
real samples. However, when we discuss the dependence
of MR on the magnitude of the randomness, the contact
resistivity must be sufficiently smaller than the resistivity
due to the randomness under consideration. Their results
with strong randomness are sufficiently meaningful and
are consistent with our present results.

V. SUMMARY

We have presented the cell CPA method to study the
origin of the difference between MRII and MR~ in mag-

netic multilayers. In this method, randomness at the in-
terfaces and layered structure can be treated simultane-
ously. The spin-dependent resistivity has been calculated
by using the Kubo formalism in the weak scattering limit.
It has been shown that MR~ tends to be larger than
MRII. Two factors have been pointed out to cause the
difference between MRII and MR~. One is the anisotropy
of the effective mass due to the miniband structure in the
electronic states; the other is the two-dimensional distri-
bution of randomness at the interfaces. These two factors
originate &om the layered structure of the multilayer. As
the difference of the spin-dependent potentials between
magnetic and nonmagnetic atoms increases, the effects
of these two factors on the anisotropy of the resistivity
become strong. Since the anisotropy of resistivity in F
alignment is smaller than that in AF alignment because
of a good level matching for f or $ spin states, MR~
becomes larger than MRII.

It has been also shown that MR~ tends to increase
with decreasing interfacial roughness, but MRII tends to
decrease. The results indicate that interfacial roughness
is favorable for MRII but not for MR~. Experiments
which verify the dependence of the difference between
MRII and MR~ on the interfacial roughness would be
desirable.
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