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Theory of electron backscattering from crystals
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The contrast in electron channeling patterns is quantitatively treated using a theory in which
electrons in Bloch states excited by the incident electron are scattered through large angles by the
fluctuation part of the potential (thermal diffuse scattering). The subsequent multiple elastic and
inelastic scattering is described by an inhomogeneous transport equation. Formally this is shown
to be identical to the solution of the kinetic equation for the one-particle spectral density matrix.
Employing the supermatrix algorithm proposed by Fathers and Rex, we develop a computational
technique which makes it possible to perform full-scale multiple scattering simulations of electron
backscattering from crystals and to provide a consistent quantitative explanation of a number of
experimental observations, including the dependence of the contrast on the detector position and
on the energy of the backscattered electrons, the origin of which has not previously been fully
accounted for. Our computational results show a substantial increase in the channeling contrast
and in the signal-to-noise ratio for the conditions of oblique incidence and low takeofF angle of
backscattering, which agrees with recent experimental studies. We show that under the conditions
of multiple scattering there exists a perturbation expansion which considerably simplifies the problem
of evaluation of the contrast and which can be employed for interpretation of channeling images of
defects.

I. INTRODUCTION

Recent experimental observations ' have demon-
strated the possibility of direct imaging of defects in the
bulk crystal using the so-called channeling mode in a con-
ventional scanning electron microscope (SEM). The idea
that images of this type could be obtained in practice
was discussed by Booker et al. soon after the experimen-
tal discovery of electron channeling patterns by Coates.
Channeling patterns arise in SEM's as a result of varia-
tion of the coeKcient of backscattering of electrons with
change in the orientation of the incident beam with re-
spect to the atomic planes of the crystal. A dislocation
becomes visible due to local bending of the atomic planes,
which results in a variation of the coeKcient of backscat-
tering when the beam of incident electrons scans over the
region corresponding to the distortion of the lattice. '

A formulation by Hirsch and Humphreys7 and by Vi-
cario et al. of the erst theoretical models capable of
providing a description to the contrast efFects associated
with electron channeling showed that in order to obtain
quantitative results, it is essential to take into account
multiple inelastic scattering of electrons. Reimer, Badde,
and Seidel, and Clark and Howie developed theoretical
methods which made possible to evaluate the variation of
the backscattering coefBcient with changing the direction
of incidence, and in the last case the authors extended the
theory to consideration of imperfect crystals. Spencer,

Humphreys, and Hirsch emphasized the importance of
a consistent treatment of the e8'ects of multiple scatter-
ing of electrons in the crystal bulk, and proposed the
so-called forward-backward approximation in which all
the inelastically scattered electrons were separated into
two groups moving in opposite directions normal to the
surface. In the treatments quoted above the e8'ect of
energy losses has been taken into account in a semiem-
pirical way by introducing some adjustable parameters.
Sandstrom, Spencer, and Humphreys generalized the
approach developed in Ref. 11 in order to be able to
calculate energy spectra of electrons backscattered &om
crystals. Discussing the limitations of the approach de-
veloped in Refs. 11, 12, Howie noted that the forward-
backward approximation, although being relatively sim-
ple and convenient for carrying out many-beam dynam-
ical diffraction calculations (see, e.g. , recent results by
Marthinsen and Hgier ), ignores scattering through in-
termediate angles 8 —vr/2 and therefore it may not be
fully applicable to the interpretation of experimental ob-
servations performed using the geometry of oblique in-
cidence of electrons on the surface, ' ' for which the
angular distribution of backscattered electrons and their
energy spectrum depend strongly on the polar and the
azimuthal angles of incidence.

More recently, two alternative treatments have been
proposed of the problem of multiple scattering of elec-
trons by single crystals. One of them (see Ref 16 and
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21—23) is based on Monte Carlo simulations of elec-
tron backscattering. The other employs the transport
equation. Each of these approaches involves further
simplifications; in particular the Monte Carlo formula-
tion developed by Morin and co-workers ' is based
on the two-beam approximation of dynamical diffraction
theory, while the treatment proposed by Spencer and
Humphreys employs the assumption that the effect of
energy loss is equivalent to the condition that the crystal
thickness is finite. In the present paper we formulate a
method which is not restricted by these approximations,
and which makes it possible to compute both the angu-
lar and energy distributions of backscattered electrons
for any direction of incidence using many-beam dynami-
cal diffraction theory.

The method which is described in the present paper
is based on the kinetic equation for the one-particle den-
sity matrix. The idea that the density matrix formalism
can be applied to the analysis of multiple inelastic scat-
tering of charged particles by crystals has been proposed
by Kagan and Kononets and by Rez. Recently it has
been shown that the kinetic equation for the spectral
density matrix can be used for quantitative evaluation of
the contribution of inelastically scattered electrons to the
diffraction pattern observed in the transmission geometry
of scattering. Dudarev, Vvedensky, and Whelan have
demonstrated how the density matrix approach can be
applied to the treatment of dynamical electron diffrac-
tion Rom partially disordered growing surfaces. Below
we use the density matrix formalism in order to describe
high-energy electron backscattering from a bulk crystal.
We show how under certain conditions the kinetic equa-
tion for the density matrix can be transformed and re-
duced to an inhomogeneous transport equation similar to
that formulated by Spencer and Humphreys. Within
the &amework of this model, elastic dynamical diffrac-
tion of the incident electrons is described using a Bloch
wave formulation. Quasielastic phonon scattering results
in attenuation of the intensity of Bloch waves and gives
rise to a redistribution of intensity to larger angles of
scattering. In what follows the electrons undergo multi-
ple quasielastic (electron-phonon) and inelastic (electron-
electron) scattering before emerging from the crystal.
This process is best modeled using a transport equation.
The dynamical diffraction and subsequent phonon scat-
tering act as a source term. The large angle quasielastic
scattering is represented by a Rutherford cross section;
the inelastic scattering through small angles which in-
cludes plasmons, valence electrons, and inner shell exci-
tations is described by an effective average cross section
derived from the Bethe energy loss law. The processes in-
cluded in our model and corresponding to various terms
of the inhomogeneous transport equation (see below) are
shown schematically in Fig. 1. Using a supermatrix algo-
rithm proposed by Fathers and Rez, we develop an
efBcient computational technique for solving this equa-
tion. The numerical results obtained dexnonstrate that
the present approach provides a consistent explanation
of a number of experimental observations, the interpre-
tation of which has hitherto remained obscure in previ-
ous theoretical treatments. In what follows we use our
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FIG. 1. Schematic diagram representing the basic stages
of the process of backscattering of high-energy electrons from
crystals.

approach in order to extend the perturbation treatment
developed by Howie, and prove that under conditions
of multiple scattering there exists a simple approximate
formula which can be employed for interpretation of elec-
tron channeling images of defects.

II. TRANSPORT EQUATION
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backscatte red
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FIG. 2. Schematic diagram illustrating the geometry of
scattering. The incident and backscattered beam directions
are indicated with heavy dotted lines. The projections of
these directions on the x, y plane are indicated by dashed
lines.

As was shown recently, in order to evaluate the dou-
ble differential cross section of inelastic scattering of high-

energy electrons by a solid taking into account both
the effects of dynamical diffraction and multiple inelas-
tic interactions, one needs to find a solution of the ki-
netic equation for the so-called spectral one-particle den-
sity matrix p(r, r', E), the diagonal elements p(r, r, E)
of which give the probability distribution of finding an
electron having the energy E at the point r, while the
off-diagonal elements are relevant to the distribution of
scattered electrons over angle and energy. In principle
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the approach formulated in Ref. 29 makes it possible to
calculate all the details of the cross section and, for ex-
ample, to find the distribution of intensity in electron
backscattering Kikuchi pattern. However, in many
cases information about the Gne detail of the angular
distribution of backscattered electrons is not required,
and what is observed experimentally ' is the intensity
of backscattering averaged over a relatively large accep-
tance window of the detector, i.e., over a range of angles
(Ag, AP) where both b.e and A(ti are of the order of a
few degrees (for the definition of the geometry of scatter-
ing see the diagrain shown in Fig. 2). This considerably
simplifies the treatment and makes it possible to neglect
the influence of dynamical diffraction on the distribu-
tion of electrons emerging &om the crystal (it does not

I

simplify the treatment of diffraction of the incident elec-
trons). The incident electrons are dynamically difFracted
by the static crystal potential and inelastically scattered
through small angles. This group of electrons is best rep-
resented by the appropriate Bloch functions whose Aux
is depleted by scattering to large angles by the fluctu-
ation part of the crystal potential (thermal diffuse or
large angle phonon scattering). The subsequent multiple
elastic and inelastic scattering of these electrons can be
treated using a transport equation in the same way as for
electrons incident on a semi-infinite amorphous medium.
Mathematically the process can be represented by an
inhomogeneous transport equation, where the phonon-
scattered electrons from the Bloch wave states act as a
source term, viz. ,

vn —F(n, E, r) =nv do ds n, E n Ei+ e' v F(n, E+ sr)
d 0 I

Br d0~1 (&

0—nv do dc n', E —cnE vEnEr + nEr.
On'

In this equation F(n, E, r) denotes the distribution function which is proportional to the probability of finding an
electron at the point r moving along the direction

ri = (sin0cosg, sin8sing, costI)),

n& is the number of atoms per unit volume, and v = /2E/m is the velocity of the electron. The quantity

d cr n, E n', E+c don de is the double differential cross section of scattering of an electron from the state character-

ized by the direction of motion n' and the energy E+ s to the state (n, E) by the fluctuation part of the potential of a
single atom which is associated with thermal vibrations and excitations of the electronic subsystem of the crystal. The
source function Q(n, E, r) on the right-hand side of Eq. (1) describes electrons which have undergone inelastic scat-
tering through relatively large angles (i.e. , the angles exceeding the Bragg angle). Application of an inhomogeneous
transport equation to the problem of electron backscattering by crystals was considered by Spencer and Humphreys.
Recently, Werner, Tilinin, and Hayek have shown how an inhomogeneous transport equation can be applied to the
description of electron backscattering from amorphous solids.

Equation (1) can be formally derived from the quantum kinetic equation under the assumption that the scattering
from the small-angle Bloch wave group of electrons into the group of electrons scattered through large angles is a
first-order process. As follows from the derivation given in Appendix A, there exists an explicit expression for the
source function Q(ni E, r) entering Eq. (1), namely,

2

Q(rr, E, r) = v
~ e ~

d xd e'exp(ik. (x' —x)] f dtv (2'x, ,x )ep ee( xx', E+he), (2)
4 22rh ) I

p —«I Ir —«'
I

2"0

in which k = nmv/5 is the wave vector, psA(x, x, E+ h~) is the density matrix describing the electrons scattered
through small angles (i.e., describing the first stage of the process shown in Fig. 2), s(x, x, w) is the mixed dynamic
form factor of localized inelastic interactions, and ro is a parameter defined in Appendix A. In accordance with the
derivation given in Appendix A, integration over x and x on the right-hand side of this expression should be carried
out over the vicinity of the point r.

Equations (1) and (2) form the basis of our treatment, and in what follows we intend to develop a method which is
suitable for solving these equations. We start from the definition of the basic quantities entering (1) and (2). In the
case of phonon scattering the dynamic form factor can be represented in the form

s(x, x', ~) =h(~) ) U (q)U (—q') exp[iq. (x —r ) —iq' (x' —r )]
(2vr)

x (exp[—M (q —q')) —exp[ —M (q) —M (q')]), (3)
where U (q) denotes the Fourier component of the potential of a single atom, M (q) = ((q . u )2)/2 is the Debye-
Waller factor, and u is the thermal displacement of an atom a. Summation over a in (3) is carried out over all atoms
of the crystal. If we disregard the effect of damping of coherence in the process of small-angle scattering by collective
electronic excitations, then the density matrix p, (x, x, E) can be written in the form of a sum of propagating and
diffracted waves with slowly varying amplitudes,
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psA(x, x', E) = ~(E —Eo) ) 0'h(x)4'~*(x') exp[i(ko + Gh) x] exp[ —i(ko + Ct) x'], (4)
h, l

where the summation is carried out over the reciprocal lattice vectors of the crystal Gh and C~, and ko is the wave
vector of the incident electrons. Each of the amplitudes Ph(x) entering (4) satisfies the Schrodinger equation of the
form (the so-called Takagi equation)

i (ko—+ Gh) V„gh(x) = (ko+ Gi ) —ko g h(x) + ).l
U« —-~«

I &~(x)
m 2m- (5)

which relates the functions Pg(x) for various h. In Eq. (5) the quantities Uhq denote the Fourier components of the
periodic potential of the crystal,

U« = U(Gi, —Gt) = —) U (Gh, —Gq) exp[ —i(Gh —Gt) r ] exp[ M(G—h
—Gi)], (6)

where 0 denotes the volume of a unit cell, and matrix elements phd represent non-Hermitian corrections to these
quantities which result from inelastic interactions, namely,

5'q' )
2m p

i
U~(ko + Gh —q)U~(q —ko Gt) exp[ —i(Gh —Gq) . r~]

1 d3q
ph. ~= —)

( ), ~
l

Eo-

x (exp[ —M (Gh, —Gt)] —exp[ —M (ko + Gh —q) —M (ko + Gt —q)]) .

Substituting (4) and (3) into (2), we arrive at an explicit expression for the source function,

m 1
Q(n, E, r) =v

i 2 ~

8(E —Eo) —) ) Ph(r)P&(r)(2~h') 0
x U (ko + Gh —k) U (k ko G() exp[ —i(GL GQ) ' r ]

x (exp[—M (C g
—C h, )] —exp[ —M (ko + Gh, —k) —M (ko + C l

—k)]) (8)

in which k denotes the wave vector of the electron after inelastic scattering, k = kn = 2mEih n.
It can be expected that the source function (8) satisfies the requirement of current conservation, i.e. , that the

total current generated by this source function must be the same as the current associated with the incident beam of
electrons. Indeed, combining Eqs. (1), (7), and (8), and taking into account the condition that dE = (h /m)kdk, we
obtain

V, do„dEvF(n, E, r) = dE do„Q(n,E, r)

=
~ ) pi„A(r)4i,(r) = ——) (ko+ Gr ) &.i0h(r)~'.

h, l

Integrating (9) over the volume of the crystal, we arrive at equation

d r dE do„Q(n,E, r) =— ds —) .(ko+ G~) l&~(r) I'
h

which shows that the total flux generated by the source function Q(n, E, r) in the transport equation (1) is equal to
the decrease of the Aux associated with electrons scattered through small angles. Integration over S is carried out over
an arbitrary closed surface surrounding the crystal. It is important to emphasize that condition (10) is satisfied for
any direction of incidence, and this fact will be used below in order to formulate a perturbation scheme for evaluation
of the contrast of the channeling patterns.

III. NUMERICAL SOLUTION

In this section we describe briefly a numerical procedure which has been developed in order to solve Eq. (1) taking
into account both quasielastic scattering and energy losses of the high-energy electrons. We assume that the crystal
occupies the region z ) 0 and the boundary conditions are homogeneous in the plane z = 0, i.e. , Q(n, E, r)
Q(n, E, z). As follows from the results obtained in the previous section, all the electrons are efFectively generated
inside the crystal by the source function (8), and so the distribution function F(n, E, z) satisfies a homogeneous
boundary condition at z = 0 and n ) 0,

F(n, E, z) =0 for n, ) 0.
z=O
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Introducing the flux density N(0, P, E, z) instead of the distribution function F(n, E, z) by the relation N(0, P, E, z) =
vE(n, E, z), we can rewrite Eq. (1) in the form

cos8 N—(cos8, P, E, z) = dP' d0'sin0'vi, i(cosg', E)N(cos 0', P', E, z)
t9Z 0

+ [e(E)N(cos 0, P, E, z)] —tu„(E)N(cos0, &P, E, z) + Q(cos 0, P, E, z),

where the angle g' between two directions of propagation
n and n' is given by the formula

cos @' = sin 0 sin 0' cos(P —P') + cos 0 cos 0'

and where we have followed a standard procedure
and separated the double dift'erential cross section of scat-
tering d o /do„ds into two parts, the first part describ-
ing quasielastic scattering and the second part represent-
ing the cross section of energy losses. It should be noted
that this separation is not always possible. In particu-
lar, it is known that electron-electron scattering results
both in energy losses and in a change in the direction of
propagation.

In our calculations we used the screened Rutherford
formula for the probability of quasielastic scattering,

vi, i(cos g, E) = nv
~

~
(1+P —cosg)

(Ze' )
E2E)

where P was considered as an adjustable parameter. In
the case of scattering by an amorphous medium the
magnitude of this parameter was chosen to be P
1/2(A:aTF), where aTF = 0.885a~/Z ~ is the Thomas-
Fermi radius and a~ is Bohr's radius. In the case
of scattering by a crystalline material, where the cross
section of quasielastic scattering depends on the abso-
lute temperature, ' ' ' the value of P was chosen
in such a way as to obtain the best fit to the cross
section of scattering by phonons. Integration of (13)
over the entire solid angle gives the total probability
of quasielastic scattering vi~& (E) = nv o, &

(E).
4vrnv(Ze /2E) [P(2 + P)] . The average rate of en-
ergy losses, e(E), in Eq. (12) is assumed to follow the
Bethe law e(E) = (2vrnv Ze /E) ln(1.166E/I), where
I = 11.5Z (eV).

Our goal is to solve Eq. (1) taking into account bound-
ary condition (ll), and to evaluate the distribution of
backscattered electrons over angle and energy,

This quantity after integration over angle and energy
gives the total probability of backscattering,

Ro o
= [vo coo 9o] f d4

Ep
x dE R(0, $, E),

0

d0 sin 0

where the normalization factor [vo cos 00] i is propor-
tional to the Aux associated with the incident beam. The
magnitude of (15), as well as (14), depends on the mutual
orientation of the incident beam and the crystal.

The kernel of Eq. (12) considered as an integral equa-
tion with respect to the variable P is a convolution, since
it depends on P and P' via the combination cos(P —P').
This makes it possible to look for a solution of this equa-
tion in the form of the Fourier series

1
N(cos 0, P, E, z) = —N(cos 0, 0, E, z)

27r

1+—) N(cos 0, n, E, z) cos(nP).
'll n=l

(16)

In practice, the convergence of the series (16) depends on
the angle of incidence, and for 00 70 it is necessary to
retain about 20 terms on the right-hand side of expression
(16). Each Fourier component entering (16) satisfies a
separate equation of the form

B(0,Q, E) = icos0iN(cos0, $, E, z = 0) for cos0 & 0.

(14)

1

p N(p, n, E, z) =—dp,
'

u~, i(p„p,', n, E)N(p', n, E, z)
OZ —1

[e(E)N(p, n, E, z)] —iv,
&

(E)N(p, n, E, z) + Q(p, n, E, z),

where p, denotes the cosines of the polar angle. Explicit expressions for iv, i(p, , p, n, E) and Q(p, n, E, z) are given in
Appendix B. The boundary condition on (17) is

N(p, n, E, z = 0) = 0 for 0 & p & 1,

and we are interested in finding the quantities N(p, n, E, z = 0) in the region —1 & p & 0.
Taking into account that evaluation of experimental quantities requires integration over some finite ranges of angle
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and energy, we define the function N(p, , n, E, z) on a grid of values of E and p in the region 0 ( E ( Eo and
—1(p(1, namely,

dp, N(p, , n, E,z),

and rewrite Eq. (17) in the matrix form

p~ N—(n. , z) = Ap) iU,
&

(n, E )N , )(n., z) —m(i )(E )N( )(n, z)
z 2'

( TB—1) N(TTL —1)
( )

( TA) N(TIE)
( )

Q(TTL)
( )

where

and

p, s +Ap, /2

dp m, ((p~, p, n, E~)

(21)

@~+Ay,/2

(n, z) = dp, Q(p, , n, E,z).
Lp

(22)

J~ = 30 and J~ = 120). In order to avoid the ne-

cessity of diagonalization of a large matrix, we employ
the supermatrix algorithm. ' The basic idea of the su-
permatrix approach consists in successive diagonal''zation

~ ~ I ~ -I ~ ~ I

of matrices m, i (n Ep)& m, i (n, Ei), tu, i (n, E2), . . . fol-
lowed by recursive computation of angular distributions
of backscattered electrons at each point of the energy
spectrum Eo, E~, E2, . . . . This procedure is described
in more detail in Appendix C. After all the quantities

(n, 0) have been calculated, the total coefficient of
backscattering (15) can be found as

In solving Eq. (20) we will be following the method de-
veloped by Fathers and Rez, ' although some of our
definitions differ from those used in Refs. 31, 32 (Fa-
thers and Rez considered a problem of solving a homo-
geneous transport equation for scattering of high-energy
electrons in an amorphous solid). There is also a close
similarity between the present method and an approach
to the problem of deconvolution of energy loss spectra
proposed for the transmission geometry of scattering by
Schattschneider. In the latter case the author developed
a more advanced treatment which makes it possible to
avoid using the continuous slowing down approximation
adopted in Eq. (17).

We note that (20) has the form of a set of ordinary
difFerential equations with constant coefficients, and so
we can look for an appropriate solution of these equa-
tions in the form of a linear combination of eigenstates of
the matrix describing coupling between various functions

(n, z). We need to find the values of N( ) (n, 0) cor-
responding to p~ ( 0. In principle, these values can be

readily determined if we notice that N. ) (n, 0) = 0 for

p~ & 0, and take into account the condition that for a
semi-infinite crystal there must be no terms diverging at
z = oo (see Appendix C for more details). However,
straightforward implementation of this principle is very
demanding computationally and requires diagonalization
of a very large matrix. Indeed, in order to achieve rea-
sonable accuracy of computations, we need to take into
account about J~ 20 points approximating the energy
spectrum and J~ 50 points describing the angular dis-
tribution of electrons, therefore arriving at the problem
of finding eigenvalues and eigenvectors of a large ma-
trix of the order of 1000 x 1000 (some of our computa-
tional results presented below have been obtained using

Jg

j, p&(0m=1

A similar expression is valid for the distribution of
backscattered electrons over angle and energy. Imple-
mentation of the supermatrix algorithm is relatively
straightforward and, for instance, for J„=48 and
J@ ——10 it takes only 15 s on a Hewlett-Packard Apollo
workstation in order to calculate the entire distribution
of backscattered electrons over angle and energy for a
particular orientation of the incident beam.

IV. RESULTS AND DISCUSSION

We start with a verification of the reliability of the
method based on the inhomogeneous transport equation
(20). As an. example we compare the values of the to-
tal coefficient of backscattering which have been calcu-
lated using the method described above, with experi-
mental data and Monte Carlo simulations of electron
backscattering &om amorphous solids. The results of
this comparison are shown in Fig. 3. Generally our com-
putational results agree well with the results of Monte
Carlo simulations, and both theoretical approaches are
in an equally good correspondence with the experimen-
tal data. The deviation of the computed values from the
experimental data is probably associated with the use
of an approximate representation of the cross section of
scattering by a single atom [Eq. (13)] (for a discussion
of some other approximate representations see Ref. 51).
In the present paper we do not attempt to improve the
agreement for all the elements in Fig. 3, but instead
we proceed to consider the electron backscattering kom
silicon single crystals, for which our method gives good
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agreement with the experimental results (Fig. 3).
In order to evaluate the angular and energy distribu-

tions of electrons backscattered from a crystal, we trans-
form the source function (8) in order to make it more
amenable to numerical computations. First we notice
that for large angles of scattering, many times the Bragg
angle, the source function has the form

FIG. 3. The total probability of backscattering of elec-
trons from amorphous materials measured experimentally and
calculated theoretically as a function of the angle of incidence.
The circles represent the results of Monte Carlo simulations
of electron backscattering taken from Ref. 50, while the tri-
angles are experimental results taken from the same source.
The solid curves have been computed using the supermatrix
algorithm described in the text for J~ =30 and J~ =120. The
energy of the electrons Eo ——25 keV.

tion generated by the source function (8) in the region
]kp —k] ]G~ and rewrite this function Q(n, E, r) in a
form

Q(n, E, r) = h (E —Ep + K(Ep) z/ cos Hp)
u), i(cosQp, Ep) 1

(tot) (E ) jj

x ) Pi (z)P& (z)pii,
h, l

(25)

where Hp denotes the angle of incidence, cos @p
sin H sin Hp cos(P —Pp) + cos H cos Hp, and where we have
taken into account the possibility of the electron losing
energy before scattering through a relatively large angle.
Note that the source function (25) satisfies the same con-
dition (10) as the source function (8), being at the same
time more suitable for expanding as a Fourier series (16).
All the angular and energy distributions of electrons dis-
cussed below have been computed using this form of the
source function (25).

We start by considering the energy spectrum of the
backscattered electrons. The fact that the spectrum may
exhibit a noticeable dependence on the orientation of the
incident beam was shown experimentally by Wolf et al.
A similar effect for lower-energy electrons was demon-
strated by Gomoyunova et al. This dependence was
analyzed theoretically by Sandstrom et al. using the
forward-backward (FB) approximation. In discussing the
limitations of the FB approach, Sandstrom et al. noted
that the FB method does not take into account scatter-
ing through intermediate angles 8 90, and as a result
it does not predict the existence of a maximum of the en-
ergy spectrum. The reversal of channeling contrast when
electrons with different energies are selected, which is
evident &om the curves in Fig. 4, cannot be described

m 1
q(ri, E, r) = i ~, I &(E —Ep) —) ) yh(r)y$ (r)

(2vrh ) 0
x~U (kp —k)] exp[ —i(Gi —Gi, ) r ]

x exp[ —M (Ci —Gi, )], (24)

2

el

and that it behaves in a way which is similar to the be-
havior of the cross section of elastic scattering of fast
electrons by a single atom o;, namely,
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Therefore, the only difference between the angular distri-
bution of electrons generated by the source function (24)
and the angular distribution of electrons resulting from a
single scattering in an amorphous substance is associated
with the region of relatively small angles of scattering of
the order of the Bragg angle. These angles correspond to
a momentum transfer of the order of a reciprocal lattice
vector (~kp —k] ~G~). Bearing in mind that we are
considering plain geometry of scattering in which all the
di8'racted beams propagate downwards into the crystal,
and taking into account the fact that the grazing angle
of incidence (p (= 90 —Hp) greatly exceeds the Bragg
angle, we can neglect the details of the angular distribu-

E (keV)

FIG. 4. Energy spectra R(E) = f dP f d8

sin HR(8, P, E) of electrons backscattered from single crystal of
silicon. Solid curve corresponds to the spectrum evaluated for
the direction of incidence Hp ——69' and @p = 0.44'; the dotted
curve corresponds to the direction Hp = 69' and Pp ——1.26'.
The total probability of backscattering R(Hp, Pp) plotted as
a function of azimuthal angle of incidence Pp [Pp = 0 cor-
responds to the (220) planes of crystal lattice of silicon] for
Hp = 69 and Ep = 25 keV is shown in the inset. R(Hp, Pp)
is seen to Quctuate around the value R(Hp) = 0.48, which
is equal to the probability of backscattering for amorphous
silicon.



3404 S. L. DUDAREV, P. REZ, AND M. J. WHELAN

D(E) = (26)

where Ett, denotes the threshold energy (which is a quan-
tity of the order of 2 keV for the YAG detector5s), and
Eo is the energy of the incident beam. The observable
signal can be represented as

I(0o; Po) = dP dosin0
~[~] D[~j

x dE D(E)B(0,P, E), (27)

by the FB approximation. In other words, if we com-
pare the energy spectra of backscattered electrons, one
corresponding to the direction of anomalous transmission

(Po ——1.26', dotted curve in Fig. 4) and the other cor-
responding to the direction of anomalous absorption of
the electrons (Po ——0.44', solid curve in Fig. 4), then the
shapes of the energy spectra will differ for these two cases.
Generally speaking, the peaks of the spectra behave in
a similar way to the total probability of backscattering,
which is shown in the inset in Fig. 4 as a function of the
azimuthal angle of incidence Po for Oo ——69'. However,
the behavior in the tails of the energy spectra is opposite
to that near the peaks. A behavior of the energy spectra
of the electrons similar to that shown in Fig. 4 was dis-
covered experimentally by Wolf et a/. As follows from
their results, the contrast of the channeling patterns ob-
served using a particular type of a detector may depend
noticeably on the response function D(E) of the detector,
and in some cases small changes in the response function
may have a substantial influence on the magnitude of the
contrast and. can even result in a change of its sign. In
what follows we will be discussing experimental observa-
tions carried out using two types of detectors, namely,
a Si detector and an yttrium aluminum garnet (YAG)
detector. ' Response functions of both types of detectors
have a similar form

tion (i.e. , on the angles 0 and P). They found that the
contrast is "normal" (i.e. , the observed signal is lower if
the direction of incidence coincides with a direction of
anomalous transmission of electrons in the bulk crystal)
for all angles of incidence provided that the detector is
placed at a shallow take-off angle along the direction of
the incident beam. However, if the detector is positioned
to receive electrons scattered through relatively large an-
gles (tl 90'), then inversion of the contrast may take
place for grazing angles of incidence, (o ((o ——90' —Oo),
smaller than a particular critical angle I,', (the magni-
tude of which depends on the position of the detector).
In Fig. 5 the dependence of the channeling contrast cal-
culated for the (220) channeling band of Si on take-off
angle y (= 180' —0) is shown. Negative values of y in
Fig. 5 correspond to scattering towards the backward
hemisphere P = 180'. As seen from the curves in Fig. 5,
for Oo

——50' ((o ——40') the contrast is "normal" (pos-
itive) for all y. However, with increasing angle of inci-
dence there appears a large region of the take-off angles
where the contrast is negative (for Oo

——65' this region
lies between y ——45 and y 47'). In Figs. 6 and
7 electron channeling patterns calculated numerically for
two different positions of the detector are shown. Figure
6 corresponds to the detector in the direction de6ned by
y = 80 and P = 0', while for Fig. 7 the corresponding
parameters are y = 40 and P = 180'. These two direc-
tions coincide with those chosen by Ichinokawa et al.
for carrying out experimental observations. The (220)
channeling band, the center of which coincides with the
plane P = 0', is clearly visible in both patterns. In the
case of the low-angle detector position (Fig. 6) the con-
trast of the band remains normal over the entire range of
the angles of incidence. For the high-angle detector posi-
tion (Fig. 7) the contrast changes sign for grazing angles
of incidence, (o, smaller than (, 26'. The intensity
distributions shown in Figs. 6 and 7 are very similar to

where the functions D[P] and D[0] determine the range of
solid. angles corresponding to the acceptance window of
the detector. In (27) it is emphasized that for the case of
electron backscattering from crystals, the signal depends
both on the polar and azimuthal angles of scattering.
Using (27), we can define the contrast as

~(g )
I(oo, go) —I. (Oo)

I-(t~o) (28)

where I (Oo) corresponds to the intensity of backscat-
tering from an amorphous solid.

As was noted above, the shape of the energy spec-
trum of electrons backscattered from a crystal is sensi-
tive to the orientation of the incident beam, and this
agrees with experimental observations. 7 Another inter-
esting aspect of the problem of backscattering of electrons
from crystals at oblique incidence has been investigated
by Ichinokawa et al. , who presented experimental ev-
id.ence that the sign of the channeling contrast d.epends
not only on the particular region of the energy spectrum
chosen for observations, but also on the d.etector posi-

100

80
~O0

v) 60

0
40

C:

CO

20
Cd

O
0

0,=70
0,=65
e,=60'
e„=5O'

—20 '

—90 —60
I I ~ ~ I

—30 0 30
take-off angle X (degrees)

I

60 90

FIG. 5. The contrast of the Si (220) channeling band eval-
uated as a function of the take-off angle y for P 0' (y ) 0)
and P 180' (y ( 0) for various angles of incidence. The
energy of the electrons Eo ——25 keV, and computations have
been performed using J„=80, J~ ——15.
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the distributions shown in Figs. 3(a) and 3(b) of Ref. 15.
The value of the critical angle (, found experimentally
((, = 22') appears to be somewhat lower than the value

(, = 26 found numerically, although it should be noted
that this value is sensitive to the choice of the form of
the response function of the detector [Eq. (26)j and to
the magnitude of the screening parameter P in Eq. (13).
Changes in E~h and P may result in a variation of (, over
a range of a few degrees.

Recent experimental studies ' have demostrated that
oblique incidence and low take-off angles are particularly
suitable for observation of defects in crystals using the
scanning electron microscope (SEM). Examination of the
results presented in Figs. 5 and 6 shows that the mag-
nitude of the channeling contrast increases rapidly with
increase of the take-off angle (for y & 0), and is not
particularly sensitive to the angle of incidence. Another
quantity which determines the feasibility of carrying out
experimental observations in SEM s is the signal-to-noise
ratio (S/N). This is given by ~n, where n is the num-
ber of electrons collected by the detector in the recording
time. The contrast t of a channeling band should sig-

ni6.cantly exceed the inverse of this ratio if it is to be
observable. The factor C(S/N) & 5 is often taken as a
suitable criterion. The actual signal-to-noise ratio de-
pends on the detector window area and recording time,
i.e., on the total number of electrons collected. However,
for a given detector and recording time and for a fixed
incident beam current, the factor above will scale with
take-ofF angle y as shown in Fig. 8. This shows the vari-
ation with y of C multiplied by the square root of the
scattered beam intensity, for the same set of angles of
incidence as used for evaluation of the channeling con-
trast (Fig. 5). Negative values of the product evident
over certain ranges of y in Fig. 8 simply reQect a change
of sign of the contrast C. The results shown in Fig. 8
demonstrate that while the channeling contrast itself de-
pends rather weakly on the angle of incidence, the factor
C(S/N) decreases rapidly with decreasing angle of inci-
dence Oo. This shows that both oblique incidence and a
shallow-angle detector position are required in order to
obtain both high contrast and high S/N ratio, in agree-
ment with experimental observations. '

In this section we have described how application of the
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FIG. 6. The intensity distribution in the channeling pat-
tern computed numerically for the (001) face of a single crystal
of Si and for a low-angle position of the detector (Ref. 15),
namely, ( = 10' and &P

= O'. The azimuth Po = 0' is paral-
lel to the (220) planes, and Eo = 25 keV. Calculations have
been performed using 14 terms of the expansion (16) and 26
functions Ph, (z) in (5), and E,h = 6 keV.

azimuthal angle P (degrees)
0

FIG. 7. Intensity distribution in the channeling pattern
computed numerically for the (001) face of a single crystal
of Si and for a high-angle position of the detector (Ref. 15),
namely, ( = 50' and P = 180'. The azimuth $0 ——0 is
parallel to the (220) planes, and Eo ——25 keV. Calculations
have been performed using 14 terms of the expansion (16) and
26 functions Ph, (z) in (5), and Eth = 6 keV. Note the effect of
reversal of the contrast of the band at ( 26'.
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full-scale multiple scattering approach to the problem of
electron backscattering &om crystals makes it possible
to give a consistent interpretation to a number of phe-
nomena which have been observed experimentally in the
past and the origin of which have remained obscure so
far. Nevertheless, the method used, which is based on a
straightforward solution of the matrix equation (20), is
relatively demanding computationally. In the following

I

FIG. 8. The signal-to-noise ratio (see text for definition)
for the Si (220) channeling band computed as a function of
the take-off angle 8 for p —0 (y ) 0) and It) 180' (y ( 0)
for various angles of incidence. The energy of the electrons
Ep = 25 keV, and computations have been performed forJ„=80, J~ ——15. Note the increase of the peak height with
increasing angle of incidence.

section we consider a perturbation expansion which in
some cases can be employed for evaluation of the chan-
neling contrast and which can considerably accelerate nu-
merical computations.

V. PERTURBATION TREATMENT

In this section we derive an approximate expression
for the channeling contrast, which is consistent with the
multiple scattering treatment described above and which
makes it possible to avoid the requirement of ending a
numerical solution of Eq. (1) for each orientation of the
incident beam. In the past this question was addressed
by Bowie, who proposed that if one considers the back-
ground intensity as a phenomenological parameter known
&om experimental measurements, then it may be possi-
ble to develop a relatively simple scheme for calculating
the magnitude of the variation of the backscattering sig-
nal. This idea was based on an argument that if the
magnitude of the contrast is small (as a rule, this quan-
tity is of the order of a few percent; see Fig. 4), then it
may be possible to expand the exact solution in a series
in which the zero-order term corresponds to the "aver-
aged" background and the Grst-order term accounts for
the contrast e6'ects. In what follows we consider a se-
ries which satis6es this requirement and which provides
a good approximation to the full-scale multiple scattering
solution of the problem of electron backscattering.

Following the standard quantum-mechanical proce-
dure for generating a perturbation expansion, we rewrite
Eq. (12) in the integral form

oo n 1 Ro

N(p, P, E, z) = dz' dQ' dp' dE'C(p, P, E, zIp', P', E', z')Q(p', P', E', z').
0 —7r —'i 0

(2g)

In this equation Z(p, P, E, z]p', P', E', z') denotes the Green's function of the transport equation, i.e. , a solution of
Eq. (12) with a plane source situated at z = z' and emitting electrons along a particular direction (0', gV), namely,

p —l:(p, , (t), E, z [p', P', E', z')

dd" f dd sic I sc&(c"os @"",E),L(cos I",d", Ez(y, ', d', E',, z')

[e(E)z(p, P, E, z
I
p', P', E', z') ]

—Id) (I ) (E)c(p, P, E, z
~
p, ', P', E', z')

+~(V —
S ') ~(& —&')~(E —E')~(z —z') (30)

where p' = cose'.
Taking into account that the source located at z' = 0 is equivalent to a boundary condition, we find that the Green's

function must obey the integral equation

oo m. 1 Ro

z(p, , (t, E, 0Ipp, Pp, E(), 0) = dz' ddt)' dp'dE'L(, IJ„P,E, OIp', Q', E', z')
0 —7r —i 0

xu), t(cos @',E'), b' ——,„exp—u).t (E')z'/po

z'
)

'&
I p, &, E, Olp', O', Eo ——.(E.) —,z'

I

o Po )
xm, t(cos @',E()) exP[—Io(I ')

(E())z'/Po].
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In order to evaluate the variation of the intensity of backscattering associated with channeling of the incident
electrons, we use formula (29) in which we substitute the difference between two source functions, the first one
coinciding with (8) and the second one being the source function corresponding to an amorphous material,

4 '&
I I, 4, E, 0lu', O', Eo—

OO 7r 1

hR(p, P, E) =
I
cosOI dz' dP'

0

I -„'):~.( ')~;( ')"-"-!',"'(E.)-.[--!',"'(E.) '».] (32)

Expanding the Green's function under the integral sign as a Taylor series in z' and taking into account an equality
which follows from (10),

1
dz ) Pi. (z)4'&'(z)p~q = voI o,

h, r,

we find that the variation of backscattering intensity obeys a simple law

bR(p, P, E) = R(p, , P, E) —R,~„&(&,~, E) = K(p~ ~i Elvo~ 4o, Eo)

—) .&~(z)&l'(z) ~« —vo~.'i"'(Eo) exp[-~.'i '(Eo)z/~ol
h, l

(33)

where the function K(p, , P, Elpp, Pp, Eo) does not depend on the orientation of the crystal lattice and is proportional
to the derivative of the Green s function of the transport equation with respect to the variable z, namely,

K(p, , (t, EIpo, go, Eo) = IcosOI dP' dp', iv, i(cos g', Ep)
( )(E)

e(Ep) c)

ZE, I
& (I, P, E, oIv', O', E', z') (34)

It should be emphasized that in practice in order to
use the expansion (33), there is no need to find the
Green's function and to calculate its derivative via
(34). Evaluation of the two constants entering (33),
R g(p, , P, E) and K(p, P, Elpp, Pp, Ep), for a given pair
of directions (eo Pp) and (0, P) can always be performed
by fitting to the form (33) a numerical solution ob-
tained using one adjustable parameter. As an exam-
ple we substitute instead of the Grst term under the
integral sign in (33) an expression which contains one
free dimensionless parameter p, namely, Q(p, P, E, z)
voiv, i (Eo)p exp[ —w, i (Ep)pz/pp], where p varies be-
tween 0 and oo. Qualitatively, the region 0 ( p ( 1
corresponds to anomalous transmission of electrons while
the region p & 1 can be attributed to anomalous absorp-
tion. Substituting this expression for the source func-
tion in (33) we find that within the range of validity of
the perturbation expansion the intensity of backscatter-
ing follows the law

backscattering varies almost linearly with p, and this
confirms the validity of the perturbation expansion (33).
The only case in which the dependence of backscatter-
ing intensity on p deviates from the linear law is the
case of small take-off angle (, where the contrast can ac-
quire values of the order of 100% (see Fig. 5). Therefore,
we can see that over the entire range of the angles of
incidence and backscattering there exists a perturbation
expression for the channeling contrast, which does not
contain any adjustable parameters and which makes it
possible to evaluate the absolute value of the contrast by
carrying out only a single integration over z. Expression
(25) can be easily generalized to the case of imperfect
crystals, and this makes it possible to conclude that
formula (33) represents a simple and suitable tool for car-
rying out computer simulations of channeling images of
defects.

VI. CONCI USIONS

R(p, , P, E) = Cp+
'Y

(35)

or, in other words, R(p, P, E) varies linearly with p
The computational results shown in Fig. 9 and obtained
using the full theory [Eq. (20)] demonstrate how the in-
tensity of backscattering depends on p for various take-
ofF angles. Generally in all the cases the intensity of

In summary, in this paper we have developed a multiple
scattering approach to the problem of electron backscat-
tering from crystals and to the evaluation of the contrast
of the channeling patterns. Numerical results obtained
using this approach have made it possible to analyze in
detail the dependence of angular distributions and energy
spectra of backscattered electrons on the orientation of
the incident beam, and to compare the results of com-
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sity matrix. The kinetic equation for p(r, r, E) has the
form

p(r, r', E) = pr(r, r', E) + jd xd x'G[rx, s, )

x G'(r', x', E) dt's s(x', x, cu)

x p(x, x', E + her ),
(A1)

where G(r, x, E) is the Green's function which describes
propagation of the electron f'rom x to r. In Eq. (A1)
the quantity po(r, r', E) represents the incident wave and
associated elastic scattering, and the Green's function
satisfies the equation

hE+ V —(U(r)) G(r, r', E)
2m

0.25 1.00 1.75 2.50 3.25
(anomalous transmission parameter, y)

FIG. 9. The dependence of the differential probabil-
ity of backscattering (i.e. , the function R, , = [Ap&E/
vo cos Ho] p ~rd~ iN (0, 0)). on the efFective anomalous
transmission parameter p (see text) for various take-ofF an-
gles. The linear dependence results from the first-order term
of the perturbation expansion (33). The solid curve corre-
sponds to y = 30.40, the dotted curve to y = 50.39, the
dashed curve to y = 70.28, and the dot-dashed curve to
y = 80.65 . The energy of the electrons Eo ——25 keV.

d x dusr, x, ~

s(r, r', ~) = —) exp( —e„/kiiT)(v~bU(r) ~v')

V, VI

x (r!
~

d U (r')
~

r )d (tr — „),(A3)

G(r, x, E —h~)G( xr', E) = h(r —r'). (A2)

In Eqs. (Al) and (A2), (U(r)) denotes the part of the
interaction which is averaged over the thermal ensemble
and s(r, x, w) is the mixed dynamic form factor of inelas-
tic excitations,

putations with experimental observations. We have gen-
eralized the perturbation approach proposed by Howie
and derived a simple expression which is consistent with
the multiple scattering formulation of the problem and
which is convenient for simulating channeling images of
defects.
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p(r, r', E) = ps~(r, r', E) + pLA(r, r', E), (A4)

describing the electrons scattered through small and large
angles, respectively. Considering the difFerence

in which the matrix elements of the fiuctuating part of
the interaction (v~SU(r) ~v') are associated with inelastic
transitions between various eigenstates of the medium.

Following Spencer and Humphreys, we consider a
two-stage mechanism of formation of the channeling pat-
terns (see Fig. 2). The first stage involves di6'raction of
the incident electrons by the averaged potential (U(r))
and small-angle inelastic scattering by excitations of the
electronic subsystem of the crystal (the term "small-angle
scattering" corresponds to the case where the mean angle
of scattering does not exceed the efFective angular width
of the Kikuchi lines). The second stage includes at least
one event of scattering through a relatively large angle
(in most cases this corresponds to phonon scattering) and
subsequent propagation of the electron towards the sur-
face. Formally we can represent the density matrix as a
sum of two terms

APPENDIX A

In this appendix we show how the transport equation
(1) can be derived &om the kinetic equation for the den-

dsxp(r, x, E)G '(x, r', E),

and neglecting the infiuence of the averaged crystal po-
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tential on propagation of electrons scattered through relatively large angles, we obtain the differential form of the
kinetic equation,

h
(V', —V', ) pi (r, r', E)

d r" d~ s r —r, ~ G r —r, E —h~ p~A r, r, E

+ d r'" d~ s r —r, ~ G r —r",E pz, A r, r'", E+ h~

d r"' d~ s r"' —r', w G r' —r"', E —h~ pL~ r r E

d r" d~ s r' —r", w G r —r",E pgA r", r', E+ h~

d r' ' d~ s(r, r, ~)G(r', r ', E)psA(r, r, E + hu)

d r" d~ s(r', r", w)G(r, r", E)psA(r", r', E + h~), (A5)

where we have taken into account that for the electrons scattered through relatively large angles both the dynamic
form factor and the Green's function can be represented in a form corresponding to a "random" orientation of the
crystal lattice. ' Representing pLA(r, r', E) as a linear combination of plane waves with slowly varying amplitudes,

pr, A(r, r, E) = W(k, k', r, r', E) exp(ik r —ik' . r'),
2vr ' (A6)

h 0 h k2 ds—k—W(k, r, E) =h
~

E—
m Or

' ' ( 2m, ) (2m)2

dsq (d~s(k —q, (u)b
~

E —h(u-
(2vr) 2

h'k')
+2~h

i

E—
) /8

—«[/8 —«'/ no

d~s(q —k, ~)W(q, r, E + h~)

h
i
W(k, r, E)

d xd z'exp( —ik x+ik x')

and substituting (A6) into (A5), we can derive an equation for the diagonal elements W(k, r, E) = W(k, k, r, r, E) of
the amplitude function,

d~s(x', x, cd) psA(x, x', E + h~), (A7)

in which the value of ro is so chosen to satisfy the inequalities r, „&(rp &( L~, where r,
„

is a characteristic distance
between two arguments x and x' of the mixed dynamic form factor s(x', x, w) determining the efFective range over
which this factor is appreciable, and the value of t~ characterizes the rate of variation of the function W(k, r, E) in
real space. Using the definition

k2dk
F(n, E, r) = W(kn, r, E),

Q 27r
(AS)

Eq. (A7) can be transformed to the form (1).

APPENDIX 8
Substituting the Fourier expansion (16) in the right-hand side of Eq. (12), we arrive at Eq. (17), where the coefficients

to, i(p, p, ', n, E) a, nd Q(p, n, E, z) are defined as

zc s(cos 8, cos 8', n, E) = f d8) ceo(cos s8, E) cos(nQ) (B1)

and

Q(c , , os8z)n=Ef dg Q(c osdc o&s, E, z) cos(n8)), (B2)

where
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cos @ = sin 8 sin 0' cos P + cos 0 cos 8',

and w, ~(p, p', n, E) and Q(p, n, E, z) are given by expressions (13) and (25), respectively. Using the formula

n
cos(nx) 27r G v'a' —b' —a

dx +n(a+ bcosz) a —b ga2 6
(B3)

we obtain

/Ze'l
u) )(p, p', n, E) = 27rnv

~(2E)

l+ /3 —»'
+n

g(l + P —»')' —(l —~') (l —V")
(l + & —»')' —(l —~') (l —V")

(l + & —»') —V'(l + & —
VI")' —(l —V') (l —V")

X
V'(l —V') (l —V")

(a4)

Q(p, n E z) = b(E —Ep + e( Ep)z /pp) & ) pg(z)pt*(z)p(h )

P(2+ /3)

2h

l + /3 —poP +nV'(l+ & —~pS )' —(l —~o)(l —~')
(l + P —

S p V)' —(l —~o) (l —&')

(l+/3 —Vo~) —g(l+ P —VpV)' —(l —Vo)(l —~')
V'(l —~o) (l —I")

APPENDIX C

De6ning the matrix of eigenvectors Xp~ and a set of
eigenvalues p~ of the matrix II p as

) rr.px„=x.,p„
P

(C2)

Introducing a generalized index n = (m, j,n), we can
rewrite Eq. (20) in the form

d—m. (z) =) n.pup(z)+Q. (.).

Taking into account that in the expansion (C3) there
must be no terms diverging at z = oo, we find

Cp(0) = —) (X )p Q (z) exp( ppz)dz-
Cl 0

(G6)

for all coeKcients Cp(0) corresponding to positive pp.
Equation (C6) represents J~ x J~/2 conditions on J@x J~
coefficients Cp(0). Some further J@ x J~/2 conditions
follow &om the equation

we can obtain a solution of Eq. (Cl) in the form

N (z) = ) X pCp(z) exp(ppz).

N (0) = ) X pCp(0) = 0, (C7)

which must be satisfied for all o, corresponding to p~ ) 0.
After all the J~ x J„coefffcients Cp(0) have been found,
Eq. (C7) can be employed for evaluation of the distribu-
tion of backscattered electrons N (0) for p ( 0. The
main step in realization of the algorithm outlined above
consists in finding the matrices X and X and the eigen-
vector (p), avoiding carrying out straightforward numer-
ical diagonalization of II.

Following Fathers and Rezs~ sz and taking into account
that electrons c'an only lose energy, we can represent the
matrix II in the form

Substituting (C3) into (Cl), we arrive at

Cp(z) = ) (X —
)p Q (z) exp( —pp') (C4)

integration of which &om 0 to oo gives

(C5)

Cp(oo) —Cp(0) = ) (X ')p Q (z) exp( ppz)dz-
Ck 0
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(n{-i o o

II(")II(") 0
p II(») II(22}

II(32)

O 0 0

0
0
0

II(33)

II(43)

where the submatrices II(") describe elastic scattering of
electrons in the the energy level E, , and the submatrices
II('+ ") represent the probabilities of inelastic transitions

b etween the energy levels E; and E,+1 . It is evident that
the matrix of eigenvectors has a triangular form

(X{00~ O O O

x(")x(") o o
X (20) X(")X(") O

X(30) X(31) X(32) X(33)

X(40) X(41) X(42) X(43)

and can be represented in a form of a product

(x{"~ o o
x(")x (") o
X(20) X(21) X(22)
X(30) X(31) X(32)
X(40) X(41) X(42)

0
0
0

X(33)

X(43)

(10)

T(20)
(30)

l
T(40)

0

T(21)
T(31)
T(41)

0 0
0 0
E 0

T(32)
T(42) T(43)

~ ~ ~

0 U(44)

r o o o
o U(") o o
o o U(") o
o o o U(")
0 0 0

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

(c8)

A ~

where E denotes the unit matrix and the submatrices T('~ ) are chosen in such a way to reduce the entire matrix II to
the block-diagonal form

II( ) o o o ... E o o o
II(")II(") O O ... T(") E O O

O II(») II(") O ... T(")T(») E O

0 0 II( ') II( ) ... T( ) T( ') T( ) E

l
0 0 0 II( ) ... T( ) T( ) T( 2) T( 3)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ...) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

f i o
T (10)

T(20) T(21)

T(30) T(31)

T(40) T(41)

l e ~ ~ ~ ~ ~

0
0
E

T(32)

T(42)

0
E

T(43)

(g{00)

0
0
0

0 0
II(") 0

o II(")
0 0
0 0

0
II(33)

0

(cg)

and each of the matrices U (") is a matrix of eigenvectors
of II{"l. Performing multiplication in (C9), we arrive at
a system of commutatorlike equations,

II(10) + II(11)T(10) T(10)II(00)
(21)T(10) + II(22) T(20) T(20) II(00)

II(21)T(11) + II(22)T(21) T(21)II(11)

(c1o)

by solving which we can And the matrices T ( ), T (

T(2 ) etc.
A similar recurrence procedure can be used for evalu-

ation of the inverse matrix X ~ Representing X in the
form X = TU, where U is a block- diagonal matrix in-
troduced in (C8), we obtain X = U T . Using the
notation T = B, and taking into account the fact that

A is a triangular matrix, all the above-diagonal blocks
of which are equal to zero, we arrive at a sequence of
recurrence relations,

a(-) = E,
T(10)~(00) + ~(10) 0

T(20) ~(00) + T(21)~(10) + ~(20) 0

~ ~ ~

i(")= E,
T(21)~(11) + ~(21) 0

T( )~( 1) + T( 2)~( ) + ~(3 ) —p

(C11)

&om which we can find al 1 the blocks of the inverse matrix
T ) and subsequent ly the entire matrix X
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