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Modified-hypernetted-chain determination of the phase diagram of rigid C6p molecules
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The modified-hypernetted-chain theory is applied to the determination of the phase diagram of the
Lennard-Jones (LJ) fiuid, and of a model of C«& previously investigated [Phys. Rev. Lett. 71, 1200 (1993)]
through molecular-dynamics (MD) simulation and a different theoretical approach. In the LJ case the
agreement with available MD data is quantitative and superior to other theories. For C60, the phase dia-

gram obtained is in quite good agreement with previous MD results: in particular, the theory confirms
the existence of a liquid phase between 1600 and 1920 K, the estimated triple point and critical tempera-
ture, respectively.

In a previous work' a rigid molecule model of C60 (Ref.
2) has been investigated both through molecular-
dynamics (MD) simulation, and a thermodynamically
consistent liquid structure theory. This study indicated a
narrow range of temperatures and densities in which C60
could exist in the liquid phase.

In a successive study, other authors have obtained the
phase diagram of the same C60 model by using the Gibbs
ensemble (GE) simulation technique and an integration
procedure of the Clausius-Clapeyron equation; the sub-
limation line was found to pass a few degrees above the
(metastable) critical point of the binodal line, thus justify-
ing the opposite conclusion that C60 should not exist in a
stable liquid phase.

While interesting speculations about these two ap-
parently contradictory sets of results have been pro-
posed, it seems worthwhile to produce further and accu-
rate phase diagrams of C60 that can help to solve the con-
troversy. This article reports the results of such an e6'ort.
We apply the well-known modified-hypernetted-chain
(MHNC) theory to the determination of the boundaries
of the fluid phase (that is the binodal and the freezing
line) of the Lennard-Jones (LJ) fluid and of C6o modeled
as in Refs. 1 and 3. We observe that the MHNC was
developed by Rosenfeld and Ashcroft in 1979, and is
known to be a highly accurate structural theory of Auids;
however, to the best of our knowledge, no calculation of
the liquid-vapor coexistence or freezing line based on it
has yet been published.

The LJ phase diagram is here preliminarily investigat-
ed, since it is accurately known from previous studies and
this allows us to test the MHNC predictions. We then
apply the same theoretical scheme to the determination
of a C60 fullerene's phase diagram. Such calculations are
complemented by a molecular-dynamics investigation of
the self-diffusion coefficient of the C60 molecule to ascer-
tain the dynamical properties of the model in the predict-
ed liquid phase region.

In the MHNC the well-known Ornstein-Zernike equa-
tion for the pair- and direct-correlation function, h (r)
and c(r), respectively, is associated to the exact cluster
expression for the radial distribution function

g (r) =h (r)+ 1 =exp[ —PU (r)+h (r) c(r)—+E(r)]
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where F'" is the excess free energy with respect to the
ideal gas value, I3P (p, T) Ip is the virial EOS, and the in-
tegration is taken along an isothermal path at tempera-
ture T.

Now, if PF'" is to be calculated at a subcritical temper-
ature To and at a density po, which rests on the liquid
side of the binodal, the isothermal integration path (1)
would cross the phase coexistence line, inside which line
(except for a narrow metastable region immediately close
to the binodal) no solution to the MHNC will exist.

This difficulty can be circumvented by adopting a corn-
posite integration path by which after having calculated
13F'" along a supercritical isotherm T up to density po,
one adds the contribution

U,„(PO, T') dT
T

(3)

to form a couple of equations in three unknown func-
tions, namely, h (r), c(r), and the bridge function E(r).
A closure is then obtained by assuming
E(r)=EHs(r;oHs), the otherwise-known hard-sphere
bridge function calculated at a hard-sphere diameter o.Hs
such that thermodynamic consistency between the virial
and the compressibility equation of state (EOS) is
achieved. Specifically, one requests that the derivative of
the virial pressure

(13dP'/dp) =(pk TK )

where ECT is the isothermal compressibility obtained from
fluctuations and p is the number density of particles.

In order to determine the binodal or the freezing line,
the Helmholtz free energy F'" is then calculated accord-
ing to the following equation:

0163-1829/95/51(6)/3387(4)/$06. 00 51 3387 1995 The American Physical Society



3388 C. CACCAMO 51

PUex

N
&ex

TABLE I. Thermodynamic consistency of the MHNC (see
text). Top: Lennard- Jones fluid at p* =0.5 and T*= 1.4. Path
1 is the isothermal integration at T*=2.74 followed by isochore
integration at p =0.5 down to T*=1.4. Path 2 is the iso-
thermal integration at T =1.4 up to p =0.5. Bottom: C«at
2172 K and p=0. 837 nm . Path 1 is the isothermal integra-
tion at T=2585 K followed by isochore integration at p =0.837
nm ' down to T=2172 K, Path 2 is the isothermal integration
at T=2172 K up to p=0. 837 nm
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TABLE II. Comparison of MHNC thermodynamic quanti-
ties with computer simulation data. Top: LJ fluid; bottom:
C60. N is the total number of particles. Other quantities are
defined in the text.
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obtained by integrating the excess internal energy U,„
along an isochore path at Axed density po, down to the
desired temperature To. [Equation (3) expresses the
well-known "energy route" to thermodynamics. ]

We observe that thermodynamics constructed through
Eq. (3) will not generally be consistent with the virial and
compressibility routes; such a "residual" [with respect to
the fulfillment of condition (1)] inconsistency between the
three paths to the EOS's has already been evaluated in a
previous work' on the LJ Quid, where it was found to be
close to 1%. In Ref. 10 the phase diagram was obtained
through the joint use of the so-called HMSA approxima-
tion, " and of a "one-phase" freezing criterion' based on
the behavior of multiparticle contributions to the excess
entropy of the liquid (see below). Here, we perform a
similar calculation in the context of the MHNC.

We employ the well-known Verlet-Weis parametriza-
tion of the hard-sphere bridge function with a cutoff at
r =5o., where cr is the repulsive parameter of the 12-6 LJ

'Reference 14.
Reference 12.

'Reference 19.

potential. The Newton-Raphson solution method of Gil-
lan' is adopted, with a grid of 2048 points and a grid
spacing Dr =0.02, all distances being measured in o.

units. An accuracy of better than 10 ' in the solution of
the MHNC equations, and better than 0.1% in satisfying
(1), respectively, was usually requested. Reduced units
are used for the number density of particles p* =po. , and
temperature T =k&T/e, e being the depth of the LJ po-
tential.

The overall consistency of the MHNC for the LJ Auid
is appreciable from Table I. It appears that the
differences between thermodynamic quantities obtained
along different paths are practically neglegible. On the
other hand, as is visible in Table II, the theoretical pre-
dictions often reproduce within 1% the simulation re-
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FIG. 1. Binodal and freezing
line of the Lennard-Jones fluid.
Circles: Monte Carlo (Ref. 15);
filled triangles and squares: gas-
liquid coexistence and freezing
data, respectively (Ref. 14); tri-
angles: CzE simulation (Ref. 4);
full line: MHNC results. Inset:
temperature-pressure equilibri-
um lines along the binodal (left),
and the freezing line (right). In
the left inset, downward and up-
ward triangles refer to the gas
and liquid phase data (Ref. 4),
respectively, and are displayed
with their error bars. Pressures
are in units of e/o. .
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suits, at both supercritical and subcritical temperatures
(see below).

The phase diagram of the LJ fluid is reported in Fig. 1:
the binodal line is determined by equating the pressure
and the chemical potential JM (obtained from the free en-
ergy and the pressure through Euler's equation
p=F+P Ip) of the liquid and vapor phase.

It appears that the MHNC reproduces within the error
bars the computer simulation binodal line. In the region
very close to the critical point no theoretical results are
displayed (dashed curve in Fig. 1). The reason is that as
the LJ fluid critical temperature is approached, it be-
comes increasingly difBcult to impose an accurate ther-
modynamic consistency and to keep convergent the itera-
tive solution procedure. Possible sources of problems in
this concern could be the use of a limited spatial grid in a
density-temperature regime, where correlations tend to
become long ranged, ' or the chosen functional form of
the bridge function.

The MHNC critical-point parameters can, however, be
determined from an interpolation of the data available at
lower temperatures. We estimate T,', = 1.34 and

p,*,=0.31, while simulation yields T„=1.32—1.33 (Refs.
4, 8, and 14) and p,*,=0.31+0.02 (Ref. 4).

As far as freezing is concerned, this takes place when
(Ref. 12)
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FIG. 2. The T-p phase diagram of model C6O. Filled squares:
MD (Ref. 1); circles: HMSA results (Ref. 1); triangles and
squares: MHNC results. Solid lines across the calculated points
are drawn as a guide for the eye.

6$ =s~„sp =0,
where

(4)

s,„=g s„, sz = —
—,'p I Ig(r)ln[g(r)] —g (r)+1}dr;

7l =2

in Eqs. (4), s,„ is the excess entropy expressed as a sum of
nth particle contributions s„, and sz is the first term of
the series (see Ref. 12 for more details).

We first calculate As in the MHNC for the hard-sphere
fluid; we find pf„„=0.947, a result that practically repro-
duces the computer simulation estimate pf„„=0.943 and
whose accuracy is comparable to previously reported re-
sults. '

The LJ freezing line is then obtained. It appears from
Fig. 1 that the agreement with the computer simulation
data is satisfactory also in this case and comparable to
that achieved in Ref. 10 through the use of the HMSA.

From the knowledge of the binodal and freezing line
we can estimate through a spline interpolation the triple-
point temperature and density, T,*,=0.63 and p*=0.862,
respectively; both of these two quantities compare satis-
factorily with the computer simulation results
T,*,=0.67+0.02 and p*=0.86+0.01. ' ' We have also
obtained preliminary results' for the binodal line of the
hard-core Yukawa fluid; the comparison with the
computer-simulation data' is quantitative also in this
case.

Turning now to the C6O case, we recal1 that the mole-
cule is assumed to be spherical with a diameter of 7.1

A.' Other details about the model and the simulation
procedure can be found in Ref. 1.

One can see in Table I that, similarly to the LJ case,
one has almost exact consistency between thermodynam-
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FIG. 3. Top: MD mean-square displacement (Ref. 19)
(MSD) of the C6O molecule at fixed density p=0.944 nrn; la-
bels on the curves are temperatures (in K). Bottom: MD MSD
(Ref. 20) at average temperature 1780+50 K; labels on the
curves are densities (in nm ).
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ic quantities estimated via different paths. The compar-
ison with computer simulation data is reported in Table
II and is also satisfactory.

The phase diagram is reported in Fig. 2. The agree-
ment with the computer simulation results previously
generated' is better than that obtained with the HMSA. '

In the temperature region close to the critical point
difhculties similar to those experienced in the LJ case
arise; for the rest, the MHNC binodal fits quite well with
the MD calculated points; note in this concern the rela-
tively large error bars. The MD freezing line also now
appears well reproduced, especially in the high-
temperature region.

The MHNC predicts T„=1620 K, a triple-point tem-
perature substantially lower than the previous HMSA es-
timate' T„=1780K, the latter being a circumstance that
could be more favorable to the formation of a liquid
phase. The critical temperature, estimated by interpola-
tion, is —1920 K and is also lower than its HMSA coun-
terpart. The freezing density p = 1 nm is slightly
higher than 0.944 nm, the previously obtained result. '

The triple-point pressure is —5 atm.
Constant volume molecular-dynamics simulations with

864 (Ref. 19) and 560 (Ref. 20) C6o molecules have also
been performed, according to a procedure quite similar to
that detailed in Ref. 1 and within the same modelization.
The simulations covered a 25-ps time range after 10 ps of
equilibration with a time step ~=0.5 X 10 ' sec.

The mean-square displacements (MSD's) obtained' at
p=0. 944 nm, which is well inside the liquid-state re-
gion of C6o (see Fig. 2), and difFerent temperatures are re-
ported in Fig. 3. At T =1800 K one can estimate
D =4.6X10 cm /sec, a typical liquid-state value at
this temperature. Note that the MSD's remain

moderately diffusive down to 1500 K.
The MSD's have also been calculated through several

MD runs at "fixed" temperature as a function of the in-
creasing density; the average final temperature of these
simulations was 1780+50 K. The results are shown in
Fig. 3.

It appears that at p=1.033 (nm ), corresponding to
freezing at the chosen temperature (see Fig. 2), the MSD
is already substantially reduced with respect to p =0.95,
and that at p=1. 103 it completely Battens by attaining a
solid-state-like behavior. The results reported indicate
the existence of a liquid phase of rigid C60 molecules in
the range 0.6&p&1 nm, 1600 K & T &1920 K; this
temperature range is considerably larger than those pre-
viously found. '

In conclusion, we have shown that the modified-
hypernetted-chain theory is, in practice, self-consistent
with respect to all three routes to thermodynamics and
that it is able to predict the phase diagram of the
Lennard-Jones Quid in a quantitative accurate manner
with respect to simulation. The overall calculation time
necessary in order to map the phase equilibrium lines is
of the order of 10—20 h on a powerful RISC machine.
On the basis of this successful result, the phase diagram
of a rigid molecule model of C6o, recently investigated
with contradictory results' as far as the existence of a
stable liquid phase is concerned, has been similarly deter-
mined. The present results agree with previous' simula-
tion and theoretical predictions of the existence of such a
liquid phase.

I wish to thank Dr. A. Cheng and Professor M. C.
Abramo for allowing the use of some unpublished results
on the mean-square displacement of C60.
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