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X-ray magnetic-circular-dichroism study of Fe/V multilayers
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The x-ray magnetic circular dichroism (XMCD) at the Fe and V 2p edge is measured in Fe/V multilayers.

For a V 3 A/Fe 4.4 A multilayer, the induced V moment is at least 0.26p,z, and it is aligned antiferromag-

netically with the Fe layers. The V dichroism signal is revealed to have a complicated structure relative to, e.g. ,
the Fe dichroism signal. We estimate the orbital moment on the V to be 0.13p,z, similar to values seen in other

ferromagnetic first-row transition metals. Only a lower bound for the V spin moment can be determined

(0.13pB), due to the breakdown of the XMCD spin "sum rule" in the case of V.

Several unusual magnetic properties are observed in arti-
ficially layered ferromagnetic/nonmagnetic structures, such
as oscillatory interlayer exchange coupling. An important

key to understanding such effects is to learn what is the
magnetic response of the nonmagnetic layer when it is in
contact with the ferromagnetic (FM) layers. However, the
small induced magnetization developed in the nonmagnetic
(NM) layers is usually swamped by the much larger magne-
tization of the adjacent FM layers, so that it is usually nec-
essary to employ an element specific probe to determine the
magnetic state of the NM layer. One way to achieve element
specificity is through the use of a highly surface sensitive
probe. Then the induced magnetism in the surface layer (say,
a NM film) may be probed independently from the FM bulk.
But to probe true multilayer structures, one needs chemical
selectivity, such as in x-ray magnetic circular dichroism
(XMCD). Here we apply XMCD to determine the induced V
magnetic moment in a Fe/V multilayer.

Oscillatory interlayer exchange coupling as a function of
V layer thickness has been reported in sputtered Fe/V
multilayers, making it a good candidate for study of the NM
layer induced magnetization. The Fe/V system is also inter-

esting because calculations indicate different behavior for V
films on Fe compared with V in Fe/V multilayers. A theoreti-
cal study indicates layer by layer antiferromagnetism in V
films on Fe, with the initial V monolayer (ML) antiferromag-
netically aligned with the Fe and having a magnetic moment
of —1.7p,z per atom. In contrast, the same study showed an
induced moment of only —0.82p, z per atom for the V ML
and —0.23p,z per atom for the V bilayers sandwiched be-
tween Fe layers.

An experimental study of thin V films on Fe using spin-
polarized electron energy loss spectroscopy (a surface sen-
sitive probe) generally agrees with the above prediction,
finding an induced V moment of ~ 1p,z for 0.8 ML V films,
followed by layer by layer antiferromagnetism. In the present
study, we focus on a multilayer film with the structure

Si(100)/Fe 55 A/[Fe 4.4 A/V 3 A]zo/Fe 22 A. This V thick-
ness corresponds to 1.5—2 ML of V in this polycrystalline
film, which should present a good comparison to the above-
mentioned calculations and experiment. Note that each V
atom is in contact with at least one Fe layer, so the V should
show high polarization. This particular film showed ferro-
magnetic coupling between adjacent Fe layers, so that all V
layers are in similar environments.

The samples reported here were deposited by magnetron
sputtering in 3.25X10 Torr Ar, with a deposition rate of
2 A /s. The base pressure of this system is about 1X10
Torr. The samples were transported in air to the synchrotron
radiation center in Madison, WI, and pieces of them were
inserted into a UHV chamber (base pressure 1X 10 ' Torr)
for XMCD measurements. Samples were magnetized in situ
in 2 kOe fields and measured in remanence, with the sample
normal at ~65' relative to the incident photon beam. This
puts the in-plane rernanant magnetization at a 25 or 155
angle with respect to the photon polarization. The photons
were circularly polarized 85~ 5%, and consecutive spectra
(about 5 min each) were taken at alternating incident angles.
Absorption spectra are collected in the total electron yield
mode, and were subsequently normalized to the total yield of
a clean Cu(111) crystal over the same energy range.

Figure 1 shows the magnetization loop of a piece of the
multilayer sample (as deposited) measured by superconduct-
ing quantum interference device (SQUID) magnetometry
(note that about half the magnetization in this sample origi-
nates from the Fe buffer and overlayers). The magnetic be-
havior of the multilayer is distinct from that of an alloy with
the same composition, since such alloys have a Curie tem-
perature below 200 C.' This loop demonstrates the high
remanent magnetization of this film (78%). The magnetiza-
tion is normalized to the volume of Fe present in the sample,
but the saturation magnetization (1450 emu/cm ) is reduced
from that of bulk Fe (1714 emu/cm ). Taking into account
the V magnetization (see below) one would expect a satura-
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shown to be valid (to within 15%) between Ni and Co. ' We
estimate the assumption of transferability introduces an error
of =+ 25% in the measurement of the total V moment.

In each figure, the dividing line between the Lz and L2
regions (needed for calculation of the spin moment) is shown

by a dashed vertical line. As mentioned earlier, the structure
in the monochromator transmission near the oxygen edge
makes it difficult to establish the zero-dichroism base line on
the high side of the V edge. For this reason, in the V case we
show two results corresponding to the assumption of differ-
ent zero-dichroism base lines above 530 eV.

From Figs. 3 and 4 we find the Fe magnetic moment
is composed of an orbital part of 0.10p~ and a spin part of
2.08pB. The V moment is similarly decomposed, with an
orbital moment of 0.13~0.04p~, and a spin moment of at
least 0.13p,ii. The sign (and to a lesser extent, the magni-
tude) of the measured V moment is consistent with the cal-
culations of Ref. 4, which showed an induced V moment of
0.23p,z aligned antiferromagnetically with Fe for 2 ML V
layers sandwiched between Fe.

The results of Eqs. (2) and (1) indicate that the V orbital
to spin moment ratio is near unity, much higher than in Ni
(0.20), Co (0.16), or Fe (0.09) epitaxial films measured by
the same technique. However, if one compares orbital mo-
ments only, the values for Ni (0.15p,ti), Co (0.40p, tt), and
Fe (0.32pii) are quite similar to that for V (0.13pti). This
would indicate that the estimate of the V spin moment by Eq.
(1) is indeed low, conceivably by as much as a factor of 10.

Such a result cannot be ruled out by the magnetization data,
since the V comprises a rather small component of the total
film.

In the present film, the Fe orbital moment (0.10prt) is
reduced relative to its value in epitaxial Fe. This could be an
indication of hybridization of the Fe and V wave functions
where the electrons associated with the Fe acquire some of
the character (orbital moment) associated with the V elec-
trons. Such a conclusion is supported by the calculations,
which indicate a reduced Fe magnetic moment for Fe atoms
at the Fe/V interface.

In conclusion, we have measured XMCD from a num-
ber of Fe/V structures, focusing on an Fe 4.4 A/V 3 A
multilayer. The total Fe magnetic moment was near that of
bulk Fe, as measured by XMCD, and confirmed by SQUID
magnetometry. The presence of the 0 K& edge complicates
measurement of the V XMCD, whose magnetic moment
was determined to be &0.26p,z, aligned antiferromag-
netically with the Fe. The V orbital moment (0.13pii) is
similar to that observed in ferromagnetic Fe, Co, and Ni.
For the V spin moment, only a lower bound could be de-
termined (0.13pii), and the actual value is likely to be
higher.

The authors gratefully acknowledge K. P. Roche for tech-
nical support. This work was partially supported by the Of-
fice of Naval Research. The Synchrotron Radiation Center is
supported by NSF under Grant No. DMR-9212658.

Present address: Dept. of Physics and Astronomy, Ohio University,

Athens, OH 45701.
S. S. P. Parkin, in Ultra-thin Magnetic Structures, edited by B.

Heinrich and J. A. C. Bland (Springer-Verlag, Berlin, 1994),
Vol. 2.

For an elegant counterexample to this statement, see C. Turtur

and G. Bayreuther, Phys. Rev. Lett. 72, 1557 (1994).
S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).
A. Vega, A. Rubio, L. C. Balbas, J. Dorantes-Davila, S. Bouarab,

C. Demangeat, A. Mokrani, and H. Dreysse, J. Appl. Phys. 69,
4544 (1991).

T. G. Walker and H. Hopster, Phys. Rev. B 49, 7687 (1994).
R. W. C. Hansen, W. L. O' Brien, and B.P. Tonner, Nucl. Instrurn.

Methods (to be published).
W. L. O' Brien, B. P. Tonner, G. R. Harp, and S. S. P. Parkin, J.

Appl. Phys. 76, 6462 (1994); W. L. O' Brien and B. P. Tonner,
Phys. Rev. B 51, 617 (1995).

G. van der Laan and B.T. Thole, Phys. Rev. B 43, 13 401 (1991).
Paolo Carra, B. T. Thole, Massimo Altarelli, and Xindong Wang,

Phys. Rev. Lett. 70, 694 (1993).
B. T. Thole, Paolo Carra, F. Sette, and G. van der Laan, Phys.

Rev. Lett. 68, 1943 (1992).
R. Wu, D. Wang, and A. J. Freeman, Phys. Rev. Lett. 71, 3581

(1993).
K. Adachi, in 3d, 4d, and 5d Elements, Alloys, and Compounds,

edited by H. P. J. Wijn, Landolt-Bornstein, New Series, Group 3,
Vol. 19, Pt. a (Springer-Verlag, Berlin, 1986).

M. G. Sarnant, J. Stohr, S. S. P. Parkin, G. A. Held, B. D. Herms-
meier, F. Herman, M. van Schilfgaarde, L. C. Duda, D. C. Man-
cini, N Wassdahl, and R. Nakajima, Phys. Rev. Lett. 72, 1112
(1994); J. Stohr (private communication).


