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Density of states in layered superconductor-insulator structures
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We study superconductor-insulator layered structures, using a microscopic method based on
the Gor'kov equations. We present our results for the single-particle density of states and the
order parameter (OP) as a function of the experimental parameters, such as the insulating barrier
strength, the coherence length, and the range of transverse momentum of probes. The results
provide a very good fit to the tunneling spectra of Bi2Sr2CaCu208, obtained in a soft-point-contact
scanning-tunneling microscopy measurement. The results also indicate that the OP in strongly
coupled superconducting regions (such as CuO planes in high-temperature superconductors), may
be signi6cantly larger than the energy gap found in experiments. The role of all relevant physical
and geometrical parameters is also discussed.

I. INTRODUCTION

Most of the several classes of high-temperature super-
conductors (HTSC's) exhibit a characteristic inhomoge-
neous, layered structure. The role of this structure and
the function of the various layers in it are still not well
understood. Most models of high-temperature supercon-
ductivity assume that these materials are essentially two
dimensional and in general that superconductivity origi-
nates in certain oxide layers, separated by nonsupercon-
ducting regions. For many purposes the coupling be-
tween neighboring superconducting layers is assumed to
be negligible. However, it has been argued in the context
of other models that this coupling can be extremely im-
portant, and perhaps crucial for an understanding of the
mechanism of high-temperature supercond. uctivity.

HTSC's are customarily classified into "families" de-
pending on the degree of anisotropy present. In Ref. 3
we stud. ied a model for the case where the separation be-
tween strongly superconducting oxide layers is not very
large and the intervening layers can be considered normal
metallic. We showed that good agreement with experi-
mental tunneling results for Nd2 ~Ce Cu04 „can be
obtained from that mod. el. On the other hand, several
experiments4 have reported, in the most inhomogeneous
cases such as the Bi2Sr2CaCu2Os (BSCCO) family, the
observation of "Shapiro steps, " which is an indication
that there are actually insulating layers between the su-
perconducting regions. The existence of these layers can
dramatically affect, e.g. , scanning-tunneling microscopy
(STM) measurements, since the insulating layers would
allow multiple quasiparticle reflections, and therefore cre-
ate the complicated structure which has been observed
in the density of states (DOS).s

Prior to the discovery of HTSC's, layered super-
conductor-insulator (SI) structures had been theoreti-
cally studied mostly in the context of the phenomeno-
logical I awrence-Doniach model, or microscopically in
the context of chemically anisotropic samples. The large
anisotropy of HTSC's and. their short coherence length
have in practice excluded the applicability of any phe-
nomenological theory to the tunneling experiments per-

formed on these materials. Microscopically, the tunneling
spectra of BSCCO have been modeled by considering the
unit cell as a stack of coupled metallic layers with dif-
ferent superconducting coupling strengths. ' However,
these models have a relatively large number of fitting pa-
rameters, some of which cannot be estimated &om the ex-
isting experimental data. Moreover, the existence of the
finite-thickness insulating layer has not yet been taken
into account in calculations of the tunneling spectra, and
in some of the above models the order parameter is as-
sumed constant in each layer, and it is not determined
self-consistently.

In this paper we develop a microscopic self-consistent
theory for short coherence length superconductor-
insulator atomic-scale structures. We present results
for both the superconducting order parameter (OP) and
the tunneling DOS. Just as in Ref. 3, the method used
is based on the self-consistent solution of the Gor'kov
equations, considered in the appropriate geometry. Here
the results are presented as a function of the coherence
length, layer thicknesses, insulator barrier height, and
the range of transverse momentum of the probe, which
has to be taken into account. We study the influence of
these physical parameters on our results. We compare
our results for the DOS with tunneling data obtained
in a soft-point-contact STM measurement, performed on
BSCCO, by making a number of physical assumptions.
In our discussion, we assume that pairing in BSCCO is in
a conventional 8-wave state. This issue is currently con-
troversial in high-temperature superconductors, and is
further briefly addressed in the conclusions. We examine
how the surface quality in experiments can alter their
outcome and show how identical quasiparticle spectral
functions can produce different measured DOS.

The results given here can be summarized as follows:
We find that our calculated results for the tunneling
spectra in SI-layered compounds, obtained using reason-
able values of the input and fitting parameters, are in
good agreement with the experimental data obtained
for BSCCO. We attribute the characteristic structure ob-
served in these experiments to interference phenomena
occurring because of the insulating barriers. We show
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why one obtains different peaks in the DOS, depend-
ing on the contact position. In comparison to non-self-
consistent models, we find that our self-consistent results
difFer in that the peak structure is substantially shifted.
Our calculation always shows a clear gaplike structure in
the DOS, whi'ch was often impossible to obtain within
non-self-consistent approaches.

This paper is organized as follows: In Sec. II we review
the theoretical model for our self-consistent calculations.
Section III contains the results, their analysis for many
difFerent values of physical parameters, and the compar-
ison with experiment. Finally, in Sec. IV we summarize
our conclusions and discuss the implications and limita-
tions of our results.

II. MODEL
In this section we present the model used to self-

consistently calculate the OP and the tunneling DOS for

a superconductor-insulator-layered system. We consider
a layered structure, consisting of an infinite series of su-
perconducting and insulating slabs, i.e., an infinite sys-
tem uniform in the x, y directions and with alternating
S and I layers, each of thickness ds and dp, respectively,
stacked along the z direction.

Our starting point is the Gor'kov equations for a su-
perconductor in an "external" potential U, which here
accounts for the presence of insulating layers. In the
chosen geometry the potential U(r) is efFectively only a
function of z, i.e., U(r) = U(z). It has a large value in
the insulating layers and is zero in the superconducting
layers. We assume that the fermions interact through a
point-contact attractive interaction of unspecified origin,
acting between fermions within an energy range uo &om
the Fermi surface. In zero applied field, and in the sys-
tem of units where h = k~ ——1, these equations can be
written as

Q2 Q2
iur + + + ' + p —U(r) G(r, r', ~ ) + A(r) I' t(r, r', ~ ) = h(r —r'),

2m b 2m
(2.1a)

Q2 Q2
icy„+— + ' + p —U(r) Et(r, r', u„) = A*(r) G(r, r', u„),

2mab 2mc
(2.1b)

where G and E are the normal and anomalous Green's functions, respectively, m and m b are the efFective masses,
and V' and V'~ the gradients for motion along the t" axis and in the ab plane, respectively. We assume that the
chemical potential p, is equal to the Fermi energy E~, which belongs to a single energy band.

Since the system considered is isotropic in the x-y directions, it is convenient to perform a spatial Fourier transform
in the ab plane. Thus, Eqs. (2.1) become

2
iu + ' + p,, —U(z) G(z, z', k~, u ) + A(z) Ft(z, z', k~, tu ) = b(z —z'),

2mc
(2.2a)

2
—z(d~ + + p~ —U(z) E (z, z, k~, irl~) = 4 (z) G(z) z, k~) (d~),

2m
(2.2b)

where

k~2

IJ~ = P = P e(kL)~
2mab

(2.3)

and k~ is the wave vector in the transverse direction,
k~ = (k, k&). We will be considering an infinite "lat-
tice, " with periodic boundary conditions. Therefore U
can be written as

In general, the system of equations (2.2) and (2.5) is
hard to solve. On the other hand, it is relatively easy,
and as we shall see, very reasonable, to consider a system
of noninteracting fermions in the periodic "external" po-
tential U in the tight-binding approximation. One begins
by solving the eigenvalue problem

V + U(z) 4„(k„z) = E„(k.) 4„(k„z), (2.6)

U(z) = ) v(z —dm), (2.4)

g *(z) = g)z)T) f, (z, z,gt, ),kztz'(2.5)

where v is a "single-layer" potential and d = ds+dy is the
lattice constant. Equations (2.2) must be solved together
with the self-consistency equation

where E„(k,) is the eigenvalue as specified in terms of the
quantum numbers k and v. The latter may be viewed
as a "subband" index of the energy band we consider.
4'„(k„z) is a Bloch function, and k, is the wave vector
of a Bloch particle in the z direction. Provided that the
S layers are sufficiently separated (i.e. , the barrier suffi-
ciently strong), one can seek the solution of Eq. (2.6) in
the tight-binding approximation. @„(k„z)can be writ-
ten as

where g(z) is the spatially dependent superconducting
coupling.

1@„(k„z)= ) p (z —dm) exp(imk, d), (2.7)



3188 BRANKO P. STOJKOVIC AND ORIOL T. VALLS 51

Q2
+ v(z) V -(z) = &- ~-(z).

2m
(2.8)

In the tight-binding approximation one then has

E„(k,) = s„+B + 2A„cos(k, d),

where

(2.9)

Av= dzp z U z —'U z (pv z —8

B„= dzp„*z Uz —v z p„z.

(2.iOa)

(2.10b)

where N is the number of superconducting (insulating)
layers, and p„satisfies

The quantities Av and B„are referred to as the subband
width and the subband shift, respectively. To complete
the solution of the model we have to specify explicitly the
potential v(z). Within the tight-binding approximation,
the validity of which we further discuss below, the exact
form of the barrier is unimportant, since the quantities
(2.10) are all that is required. For simplicity, we will
consider here a square barrier for the insulating layer (as
in the Kronig-Penney model). Thus, we assume that v =
0 (bottom of the band) in the superconducting layer and
v = Vp & Ey' in the insulating region. For this model,
it is an elementary matter to obtain analytic expressions
for y and numerical values for e„.

It is convenient to expand the Green's functions G
and Et, in terms of the complete set of Bloch functions
4„(k,z), defined in Eq. (2.7):

G(z, z', k&, (d„) = ) 4„(k„z)4"„,(k„z') g„"*„,(k&, ur„),
V) V )kz

Ft(z, z', k~, (u„) = ) 4„(k„z)4*„,(k„z') f„"*„,(k~, (u„).
v, v', k,

(2.11a)

(2.lib)

b. (z) = ) 4 „(k„z) b,„(k,) .
V)kz

(2.12)

One easily verifies that in the tight-binding approxima-
tion only b,„(k, = 0) = 4„ is nonvanishing. Then, us-
ing the orthogonality of the Bloch functions, the Gor'kov
equations (2.2) become

In Eqs. (2.11), the Bloch functions have the same index
k, which is a consequence of the tight-binding approxi-
mation and the periodic boundary conditions used. The
sum over subband indices is limited by the condition that
the relevant energies e(k~) + E„(k,) be within a range
of order up from the Fermi surface. In the absence of
applied fields the mean field order parameter has a con-
stant phase throughout a single superconducting layer,
but the phases in two neighboring layers may be difer-
ent. For simplicity, we shall assume that the OP phase is
constant throughout the whole sample, although it is rel-
atively easy to include a varying phase in the formalism.
We then write

G„„=g„*,(k~, ~„),k F„—:f„"*„,(k~, ~„),

X „=[E„(k,) —
)((,,] b„,„, (2.i5)

1F = C —(i(u —X) —(i(u + X) (2.16)

and

1
G = ——(i(u„+ X) F. (2.17)

Defining an e8ective coupling tensor A,

1
A„,„,„=

) (2 dz g(z) &„(z)&„(z)V „(z), (2.18)

the self-consistency equation (2.5) transforms into

and transform the Gor'kov equations (2.13) into a set of
matrix equations, with a formal solution

[iu)„—E„(k,) + )M, ] g„"*,+ ) C„„ f",*, „, = h„„

(2.13a)

d2kg
Agp —T ) A~ ~l ~II ) F~l ~ll

(2 )2
~n

(2.i9)

[
—i~„—E„(k,) + )M ] f"*„,= ) C„„g",, „„(2.13b)

V l l

where we have introduced the matrix C, with matrix
elements

1
,/, ):&.- f«9-(*)p- (~)v- (~) ("4)

v"

As in previous work, 3 one can define matrices G, E, and
X, with matrix elements

Equations (2.19), (2.16), and (2.17) are the central equa-
tions of this paper. In general, they are solved numer-
ically. Self-consistency is obtained using an iteration
procedure, similar to those used in Ref. 3. The proce-
dure is stopped when the maximum relative change in
A(z) (0 ( z ( d), between two successive iterations, is
less than 1 x 10 4.

Once the OP is obtained self-consistently, one
can perform the analytic continuation for G, i e.,
G(z, z', k~, iu ) ~ G(z, z', k~, E), and then calculate
the spectral density:
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1
N(z, kg, E) = ——ImG(z, z, kg, E+ ii) (2.20)

1.2

(where w is a small positive quantity). The DOS can then
be found by integrating N(z, k&, E) over the appropriate
ranges of k~ and z.

It is important to discuss the range of validity of the
tight-binding approximation used here. In general, this
approximation is applicable when the widths A and the
shifts B,defined in Eq. (2.10), are small compared to the
separation of the energy subbands. In other words, both
A„and H„must be small compared to As ~s~ —e'~~i~,
for all relevant v. As discussed in Ref. 11, a typi-
cal measure of Le, in the absence of mass anisotropy
(m s = m, ), is of order E~ (kids), while Eq. (2.10a)
yields A„Ve exp( —rk~d), where K QVp/Ey' —1.
Therefore, the approximation is valid if

1 Vp)) exp( —Kk~d).
F S F

(2.21)

Assuming that Vp —EF is comparable to EF, which is
the case in the experimental situations of interest in this
paper, we have that rc 1 and condition (2.21) becomes

1 )) exp( —k~ d),
F S

(2.22)

which is easily satisfied for kFdp and kFds larger than, or
of order unity. For systems with mass anisotropy, where
m t, g m„Eq. (2.22) becomes

1 ms ( „m,
kzdM m. 4 ms) (2.23)

which means that when m && m g, which is the case in
HTSC s, the tight-binding approximation is even more
favorable.

III. B.ESULTS

In this section we discuss results obtained &om the
methods presented in Sec. II. We study both the OP
and the DOS in the experimentally relevant cases where
dy is small. Results are presented for several values of the
coherence length, thicknesses (geometry), and the ranges
of integration of Eq. (2.20), in order to study the vari-
ation of the results with these parameters. The results
presented are mostly computed in the low-temperature
limit, T —+ 0, and should be valid at T (( T . Finally,
we compare our results to the tunneling spectra obtained
experimentally in the anisotropic cuprate BSCCO. We
explain how the input parameters for the theory are in-
ferred from experiments through the use of a number of
physical assumptions and show that our theoretical re-
sults quantitatively fit the observed experimental data.

There are several physical parameters in our
model, ' ' but only some of their dimensionless ratios
are relevant, since several of the parameters are simply
related to each other. We choose a parametrization sim-
ilar to that used in previous work. The input pa-
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-10 10

FIG. 1. The normalized OP vs Z—:k~z, across a thin
insulating barrier, kiddy

——3, between two thicker supercon-
ducting layers, ks ds = 55, 7l kp'fp = 20. The solid and dashed
lines show the cases when the barrier height is Vo ——3Ep
and Vo = 1.5 EJ-, respectively. The vertical lines mark the SI
interfaces.

rameters are k~(o, Dos/~p, and Vo/E~. Note that b, p is
the order parameter at T = 0 for bulk S material, i.e., a
hypothetical infinite (in all directions) S material. In ad-
dition, we specify the geometry by kFds, and kFdr. For
the function g(z) we simply take a constant gs, easily re-
lated to Ao /wo, except, as indicated, in the comparison
with experiment. Similarly, we take the mass anisotropy
into account in the comparison with experiment, but the
other results quoted are obtained using an isotropic ef-
fective mass, m g

——m .
We first study the particular relevance of the in-

put parameters and the relative sensitivity of our re-
sults to their assumed values. At the same time,
we further justify the tight-binding approximation used
here. We begin by showing how the OP extends
through the insulating region between two super-
conducting layers, depending on the barrier height (Fig.
1). Since we assume periodic boundary conditions in
this work, we do not display more than one "cell" in our
plots of A(z). The physical paraineters are kids = 55,
kFd~ —— 3. The coherence length is assumed short,
vrkp(o ——20, and we take b,g/wo ——0.5. The solid
line shows the case where Vo/E~ = 3, and the dashed
line that where Ve/E~ = 1.5. Obviously, in both cases,
the OP extends throughout the insulator only marginally,
thus proving that, when Vp —EF is comparable to EF, the
results are not strongly dependent on Vp and the validity
of the tight-binding approximation is indeed justified [see
Eqs. (2.21) and (2.22)j. Moreover, since the OP here is
calculated using the expansion (2.12), the fact that b, (z)
in the I layer assumes a value much smaller than that
in the S layer indicates that the wave functions obtained
from Eq. (2.8) are indeed well localized and therefore the
Bloch functions we use are a correct complete set of func-
tions for the systems we study.

Next, we show how the barrier thickness aKects the
above considerations. Figure 2 shows the same quantity
as that plotted in Fig. 1: The solid line is identical to that
in Fig. 1, while the dashed line corresponds to the same
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known square root singularity in the density of states.
Note, however, that the same averaging is not justified
when the coherence length is short in which case more
detailed theories must be employed. For the intermediate
(p value shown here some structure still remains at very
low energies.

Finally, we turn to the most important question
of comparison with experiments. Our results should
be compared with experiments performed on those
HTSC compounds which exhibit the largest amount of
anisotropy, such as BSCCO. In particular, it is interest-
ing to compare our results to the tunneling data obtained
in point-contact experiments, where a larger amount of
k& " should be present. Therefore we compare with the
tunneling spectra in BSCCO, recently obtained using a
soft-point-contact STM spectroscopy.

The comparison with experiments involves several im-
portant considerations regarding the applicability of the
theory and the input parameters. We discuss here most
of these questions, particularly those that directly acct
comparison with the data, and refer the reader to the
next section for other related points. First, the crystal
structure of BSCCO is nontrivial: Although its lattice
constant in the c direction is approximately 30.8 A. , the
unit cell of BSCCO can be viewed as consisting of two
shifted. subcells separated by insulating BiO layers, each
having three copper-oxide planes, translated with respect
to each other in the ab plane. Since we assume that the
metallic part of each subcell is uniform in the x, y di-
rections, which is adequate for the study of tunneling
in the c direction, we have d = 15.4 A. . The insulat-
ing layer distance can be estimated from the distance
between neighboring Bi atoms ' as d~ 1.5 A. . We
must also include the large mass anisotropy of BSCCO:
m, /m b has been reported to be anywhere between 60
and 250. However, the obtained results barely depend
on m, /m b, provided m, /m b )) 1. Therefore we as-
sume m, /m b = 100. In addition, in Ref. 5 it was esti-
mated that the coherence length in the c direction, („
is of order 1.6—1.75 A. in BSCCO. In our calculations
we assume (p ——1.6 A.. We obtain k~ 0.5 A. &om
the carrier density reported in Ref. 19. The formula
(m, /m b) ~ 7rk~(p = 2Ep/Ap yields the ratio b, p /E~,
which is the input quantity in the calculation. A simulta-
neous change of the mass anisotropy ratio and the Fermi
wave vector does not afI'ect the computations as long as
E~/b, & remains constant. As pointed out in connection
with Fig. 3, the results for the DOS are not too sensitive
to the choice of Vp in the range considered. Thus, we
have here fixed Vp = 1.5E~. The remaining parameter
b, p /wp is not known a priori We determine its. value as
follows: We calculate the transition temperature T, (in
units of E~) by solving Eqs. (2.16), (2.17), and (2.19) at
increasing temperatures until that at which the OP van-
ishes is found. This is done, as a function of Ap/cup, and
this way, knowing the experimentally, observed T —90
K, we establish the energy scale for our comparison of the
DOS. The best agreement with the experimental energy
scale is achieved by setting bp /up 0.4. This parame-
ter, together with k~(p, is then used to determine g(z).
One can simply assume g(z) = const in the S layer, but it
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FIG. 7. Normalized OP A(z)/Ap, in our model of BSCCO
(see text). The OP assumes larger value in the stronger cou-
pling region of CuO planes, d = 8 A. , in the middle of the S
layer. The vertical lines xnark the insulating region.

is more realistic, for this compound, to assume g(z) = gq
when z is in a region in the middle of the S layer, centered
around the copper-oxide planes (where the coupling is be-
lieved to be stronger), and g(z) = g2 ( gq in the rest of
the S layer. In our calculation we have fixed g2 ——0.5 gq.
However, provided that the input parameters remain the
same, the DOS depends only very weakly on the specific
form of g(z) chosen, and there is only a slight shift in the
first peak in the DOS.

We begin by presenting our results for the OP in the
superconducting (metallic) layer, as shown in Fig. 7. It
is clear that the OP reaches values on the order of Lp,
in the region where the coupling is larger. Consistently
with the findings of Ref. 3, the OP varies predominantly
inside that region and only slightly elsewhere. As a con-
sequence of the lower OP value in the weaker coupling
region [g(z) = g2], the OP extends into the I layer only
marginally. The larger value of the OP inside of the
stronger coupling region is in agreement with the com-
mon belief that the OP is very large only within the CuO
planes, but can be very small elsewhere.

To calculate the experimentally measured DOS, we
must still consider the appropriate value of k&, since,
as shown in Fig. 5, the DOS results are quite sensitive
to this value. This is nontrivial, since in the experiments
k& itself varies with the bias energy E, i.e., the energy
of the probing particle. It follows &om the discussion
of Eqs. (3.1)—(3.3) that this variation is approximately
linear in E for k~ small. Therefore, we have chosen
kT " = kz (0.04+ 0.1 E/Ez). Here the coefEcients may
be viewed as adjustable parameters, which control the
width and height, but not the position, of the DOS peaks
(see Fig. 5).

Figure 8 shows the Gt of our results (solid line) to the
experimental data (dashed line) of Ref. 5: The energy is
in the same units of voltage as in the experiment, and the
DOS is scaled with respect to its normal-metal limit. The
theoretical curve is shifted by —0.4 for clarity. The linear
background of the experimental data has been included
in a similar manner as in Ref. 5, and the theoretical re-
sult is convolved with a Gaussian of width 10 meV, in
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FIG. 8. Comparison of the theoretical results (solid line)
for the DOS (see text) with the tunneling spectra of BSCCO
(dashed line). The theoretical curve has been shifted verti-
cally by —0.4 for clarity. Here ~kz

~
( kp (0.04 + 0.1 E/Ez)

IV. CONCLUSIONS

In this paper we have performed a study of super-
conductor-insulator inhomogeneous sup erconducting
structures, using a microscopic Inethod based on the
Gor'kov equations. We have expanded these equations
in terms of appropriately chosen Bloch functions in the
tight-binding approximation. The equations then trans-
form into a set of matrix equations which we solve self-
consistently to obtain the order parameter (pair poten-

order to account for the finite energy widths found in the
experiment. Obviously the agreement is quite good, and
in fact significantly better than that obtained in Ref. 5,
where a non-self-consistent approach was employed. The
fit could be further improved by a more detailed study of
the k& dependence, surface roughness, or the impurity
scattering in the experiment. A more detailed knowl-
edge of the experimental setup might remove all fitting
parameters &om our model. What is remarkable is that
the peak positions and their rather intricate shape are
matched almost perfectly, indicating that our model can
account quantitatively for the experimental data (even if
there are fitting parameters in the integration over k~).
This was not possible using non-self-consistent theories,
since only a self-consistent calculation could produce the
relatively large "energy gap" values (located by the po-
sition of the first peak), seen in the actual experiinent,
and due to the fact that the OP never goes to zero in
the superconducting layer. Just as in Refs. 3 and 20,
the "energy gap" is not equal to the maximum value of
the OP in the S layer. The most important difference,
however, comes &om the fact that the pattern is due to
resonant scattering on the insulating layers, rather than
on the S-N interfaces. Moreover, in Ref. 5 it was found
that the DOS pattern may vary in different experimental
situations, and &om our study it follows that the differ-
ence should be attributed to a variation of k&

" and the
energy resolution, rather than to whether the outermost
layer is a superconducting or a normal-metal one.

tial) and the tunneling density of states.
In the study of the experimentally relevant situations

where the size of the insulating barrier is small, we find
that the minimum OP value in an I layer is very low,
provided that the barrier height is suFiciently above the
Fermi energy. This justifies the use of the tight-binding
approximation for this system. We find that this method
is correct even when the barrier is relatively thin. On the
other hand, the local DOS is a stronger function of the
barrier width in that the observed peaks are somewhat
shifted. We also find that the calculated DOS depends
significantly on the range of k~ included in the calcu-
lation, than in the SN multilayer case studied in Ref.
3, for the thickness ranges considered. The consequence
is that, since the k~ range varies with a particular ex-
perimental situation, similar experiments may produce
difFerent results, depending on the sample quality or the
experimental setup.

When comparing to experiments, we find that the
calculated DOS agrees very well with the spectra ob-
tained in a soft-point-contact STM tunneling measure-
ment. Therefore, our conclusion is that the interference
pattern, seen in the experiment, is due to the presence
of insulating layers, and that the difFerent patterns ob-
served at different positions of the same crystal can in
fact be explained by the above mentioned variation of
the k~ range involved, certainly present in point-contact
experiments. Of course, comparison of theoretical results
with a single experiment, no matter how successful, can-
not be viewed as conclusive proof of the soundness of the
applicability of the theory to that specific experimental
situation, particularly when the comparison involves a
number of assumptions for the input parameters. Never-
theless, our results strongly suggest that the presence of
the finite thickness insulating layers should be seriously
taken into account in tunneling experiments on BSCCO
compounds.

The limitations present in this theory are as in previous
work:s i2 Since we are dealing with short (o materials, the
superconducting coupling may be large, and one should
consider a strong-coupling formalism. One might even
object to the representation of the insulating layers as
an "external" potential in the Gor'kov equations on the
grounds that this should be done only when the spatial
variation of U(z) and other quantities is slow, compared
to interatomic distances. However, our use of U(z) is
not less justified than that of pseudopotentials in band
structure calculations. In addition, we have excluded the
experimentally confirmed ab-plane anisotropy, but this
is only a minor qualm, since this anisotropy should only
marginally affect the e-axis tunneling discussed here. We
have used a conventional 8-wave pairing state, which may
not be correct for high-temperature superronductors of
the BSCCO class, as suggested by angle-resolved photo-
emission spectroscopy. Moreover, the temperature and
the impurity concentration dependence of the results may
be nontrivial. Nevertheless, the conclusions regarding
geometric resonances in the DOS should remain approx-
imately the same in any system with a similar energy
spectrum, with only possibly shifts in the size and posi-
tions of the peaks.
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