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The in6uence of elastic scatterers, both short ranged as well as long ranged, on the density of
quasiparticle energy states in the vortex cores of high-T superconductors is calculated. For short-
range scatterers, the reduction of the density at energy values corresponding to the clean system's
energy levels is exactly calculated by diagram summation. An expression for the broadening of the
density of states (DOS) as a function of disorder is given. For long-range scatterers, the DOS as a
function of the probability distribution of the scatterers is also calculated. In both cases a similar
broadening of the DOS peaks is predicted. This might be useful in explaining experiments probing
the density of states of vortex excitations.

While mesoscopic properties of low-dimensional, nor-
mal materials are now relatively well understood, elec-
tronic properties of mesoscopic superconductors and
hybrid normal-metal —superconductor structures remain
largely unexplored. Only recently have such hybrid
structures begun to receive attention. For the most
part, experiment and theory have concentrated on elec-
tric properties of hybrid structures consisting of a su-
perconductor with mesoscopic normal islands. If the
characteristic size of these islands does not exceed the su-
perconducting coherence length (, varying in the range
10—1000 A, superconductivity is induced inside the is-
lands due to the proximity efFect. This results in the
appearance of a type of mesoscopic system consisting of
a superconductor with a characteristic size much larger
than the inelastic-scattering length and small regions in
which superconducting excitations are confined due to
Andreev reflection. ~ From this point of view, the cores of
dirty Abrikosov vortices are one of the most easily real-
ized mesoscopic systems of such a type.

In type II superconductors the magnetic field pene-
trates into the sample and forms a lattice of vortices.
Such vortices are penetrated by one quantum flux 4o
each and are arranged in a triangular lattice. Near the
vortices the superconducting gap function b, (r) is re-
duced and there exist low-lying quasiparticle states which
can be thermally excited.

The discrete excitation spectrum was predicted by
Caroli, de Gennes, and Matricon. In accordance with
their theory, the energy scale of the quasiparticle spec-
trum in the vortex is set by the confinement energy
Eo ——h2/mP, where ( is the superconducting coherence
length. For high-temperature superconductors the coher-
ence length is relatively short (of the order of ( 10 A),
and therefore the energy scale (Eo 10 meV) is large
enough to be observed by far-in&ared spectroscopy.

Recent experimental observation of the quasiparticle
excitations in the vortex core confirms this theoretical
picture, ~' although in both these experiments the en-

ergy levels are broadened. For conventional supercon-
ductors the quasiparticle levels are very close to each
other and their discrete nature is lost, while for high-T
superconductors an explicit, rather large, broadening is
measured. This is expected since a set of clearly dis-
tinct excitation levels can exist only in extremely pure
superconductors. In Ref. 11 the influence of nonelastic
scattering of the core excitations was estimated using the
well-known Abrikosov-Edwards theory.

The theoretical treatment of the influence of disorder
on the density of states (DOS) of the vortex state was
given by Kramer, Pesch, and Watts-Tobin ' for con-
ventional superconductors in which ( )) l (where l is the
electron mean &ee path). In that limit the discrete na-
ture of the vortex states is completely lost. In this paper
we shall calculate the contribution of elastic scattering
oK the impurities to the vortex quasiparticle level broad-
ening for high-T, superconductors in which ( l and the
vortex levels remain discrete. This is interesting since
most high-T, superconductors have a high concentration
of impurities, and elastic scattering o8' those impurities
might partially explain the large observed broadening of
the vortex levels. Also, kom the point of view of meso-
scopic systems the vortex has the advantage of being a
kind of naturally occurring mesoscopic system where the
inelastic-scattering length is larger than its typical di-
mensions.

We shall start our treatment of the influence of elastic
scattering on the low-lying quasiparticle vortex levels by
considering the Bogoliubov —de Gennes (BdG) equation

1 6
eQ(r) = p —o' —A + p(r) —Ep o'g(r)

2m C

0 a(r-) )+
I ~*(r-) 0 I @(r)

where the gap function for a vortex centered at the ori-
gin and parallel to z is given in cylindrical coordinates
(r ~ &) by &(r) = ~&(r)~ exp( —ill) ~&(r)~ &or/( f»
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r ( ( and ~A(r)~ Ao for r ) (. o' is a Pauli matrix,
while E~ is the Fermi energy. The short-range impuri-
ties are represented by p(r) = P,. u, b(r —r;), where r,
are random locations of the impurities and u, is their
strength. This is an appropriate approximation for im-
purities of range smaller than the vortex dimensions. We
shall discuss the situation for long-range impurities, i.e. ,
scatterers of range much larger than the vortex dimen-
sion, later on.

For a clean vortex with no impurities (u = 0) Eq. (1)
can be solved for weak magnetic fields H (( H~2. The
eigenfunctions of the low-lying excitations (k~~~(, p
k~~() are, for r ( (,

1/2

( e'(" ~ ie J„ i (k~~r) l
(e*("+ i J„+~ (kyar) )

(2)

2

p(~) = ——) 9f di Gi,~i(, ~),
j=1

(4)

where the two components of the Green function are

where the Fermi wave number kg~ ——k~ coso. ) k~~I
k~ sin o, , and o. is an arbitrary angle. The angular quan-
tum number )L(, = kl/2, +3/2, . . . . For r ) ( the wave
functions fall oK exponentially. The eigenvalues for the
clean case are

p 2PLp
2ky'vy' cos 0!

where a self-consistent logarithmic correction is
neglected.

The DOS for the low-lying vortex states can be calcu-
lated using the definition

FIG. 1. The diagrammatic representation of the first or-
der perturbative expansion of the averaged Green function
given in Eq. (8). Full lines represent the free Green function
G (r, r, e), while the dashed line represents the averaged
scattering potential (p(r)o p(r )(r ) = u Ib(r" —r )

GR(~ ~
) ) ~ ~)d&J( )~ di2( )

(5)+ iI'

and I' is an inelastic broadening which may be due to in-
elastic scattering into chain states or other inelastic pro-
cesses. For a clean system one should replace g„with g
and c„with c„and thus obtain

1 I
~ ~- (.—")2+r"

p, P

which has the expected Lorentzian form.
The inHuence of disorder on the DOS will be taken

into account by a perturbative expansion of the Green
function with regard to the disorder strength. We assume
the usual white noise statistics of the scatterers' positions
and strengths, i.e. ,

(~(r)~') = o,

(p(r)o p(r ')o-') = u Ih(r r'), — (7)
where I is a 2 x 2 unit matrix, and ( ) denotes an
ensemble averaging over diferent realizations of disorder.
Therefore, the averaged Green function to lowest order
in u is given by

(G,
' (r, i, ~)) =u f dr, dr~ G, (i, r, , e) G. (&i,iq, e) G, (iz, i, e) d(i, —r~)

+ 1 2 j 1) ) ~ Gj T) T2) 8 Gj T2) T1) ~ ~ T1 T2

+ 1 dT2 Gj T) Tl) ~ Gj T1) T) E' Gj T2) T2) ~ ~ T1 T2

+~ dT1 dT2 Gj Ti T1 ~ Gj T T2 ~ Gj

which is represented in a diagrammatic way in Fig. 1.
Performing the integrations one obtains that the correc-
tion to the averaged DOS to first order in u is

2u 2

~V - q(e —e„,) + ir&

1
)( (e —eo, ) + iI'y '

where V = 7rI, (2 is the volume of the vortex. In Fig. 2
we plot bp1 as a function of e. It can be seen that the

correction to the DOS has a form of an antipeak around
values of energy corresponding to e . Therefore the total
DOS to the first order in u will have local minima at the
positions of the clean system energy levels, which seems
to be unphysical. The reason for this peculiar behavior
is that it is not suKcient to sum the perturbative expan-
sion to the first order in n . Thus, especially for values
of energy close to e„, higher-order corrections must be
considered.

As can be seen in Eq. (9) for e = eo the main
contribution (as long as the initial level broadening is
smaller than the distance between consecutive energy lev-
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FIG. 2. The first order correction to the DOS hpq(s) as
function of the energy in the vicinity of s~ z, for u/+2VI' =
I/3. The full line corresponds to the clean system DOS po,
the dotted line to bpq, and the dashed line to the 6rst order
DOS pp+ bpg.

FIG. 4. The DOS at e = e„as a function of the disorder

~2vr

and the exact averaged DOS at the original energy level
1s

els, i.e., I' & As = 24p/kpup'cos n) comes from the
pq

——p2 ——p term in the summation. This is correct
for all the diagrams at any order of u. Moreover, at this
point all diagrams of the same order m in u (or in an-
other language, the same number of impurity lines) have
the same contribution

(io)

Therefore at e = e„ the calculation of the mth order
correction to the DOS is reduced to counting the number
of diagrams of the mth order. Examples of such diagrams
are presented in Fig. 3. The number of diagrams of the
mth order is

2m

p(e = s„) = ) hp (s = so).
m=O

For large values of m the most important contribution
to N comes &om the highly connected diagrams which
give a contribution of 2m. (up to logarithmic corrections).
Therefore the summation can be written as

(i4)

This divergent series may be summed using Borel
summation resulting in

a e 'dg
p(s = s„')

mI'

N =2m
li &lg &-"lg

t (lg, l2, . . . , l2 )

2m!f(ly) f(l2) . . f(l2 )
l i +lan+ ".+lg, 2m

1 ~ 2 ~
' 2m ~

where f(l) = (l —I)!/2 for l ) 3 and f(l) = I for l & 3,
and C(lq, l2, . . . l2~) = I/(jq!j2!.. .j2 !) where j, is the
number of summation variables l equal to i. Thus the
correction of the mth order to the DOS is
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FIG. 3. Several diagrams contributing to the second order
correction to the DOS.

FIG. 5. The shape of the DOS in the regime of c = e„.
The full line represents the shape in the absence of scatterers
and the dashed line represents it in the case of ~———1.+2vr
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plotted in Fig. 4. It may be seen that there is a mono-
tonic reduction in the peak height as functioh of the dis-
order u/i/2Vr. Following the previous steps it is also
possible to expand the DOS for values close to c, as
long as (e —e„)/r & 1. Then one obtains

1.0

~(~) - ~(~ = ~')—

OO 2 TTL

x ) (—1) 2m!(m+ 1)(2m+ 1)
~ 2VI )

which after summation results in
2(s —s„'&

C (e) - S (e = s', )—
m I ( I' ) 2 o

—t)2d

0.0 (—
0.0 0.5

u/(2 V) I
1.0

FIG. 6. The relative broadening B(u/v'2VI') of the peak
as a function of disorder.

1
B(u/V'2vr) =— g-t)2dg

plotted in Fig. 6. It is clear that, as the disorder
u/v 2Vr increases, B(u/v 2V1 ) i/2Vr/u decreases,
corresponding to a relative broadening of the DOS as a
function of disorder.

We have until now discussed the inHuence of scatter-
ers which are of smaller dimensions than the vortex cores
(short-range scatterers). In the opposite limit, where the
scattering potential is smooth on the scale of the vor-
tex core, the scattering potential p(r) in Eq. (1) can be
replaced by p; which depends on the particular conHgura-
tion of the scatterers in the vicinity of the vortex. Thus,
according to Eq. (3) the energy levels for a particular vor-
tex will be given by e„,= hpAo/(Ep —p;) cos n which
for p, « E~ may be written as c~, = e (1 + p;/E~)
Therefore, although the Fermi energy is constant across
the sample, there are local shifts in the energy levels of
particular vortices as a result of the renormalization of
the local electron density. Assuming that the distribu-
tion of the local potentials P(p;) is known, the averaged
DOS is given by

I' ~. P(p;)
7r + '

[e —s„(1+p;/Ey)] + r

which for a particular value of disorder strength is plot-
ted in Fig. 5. It is interesting to note that as the degree
of disorder becomes bigger the height of the peak is re-
duced while its width increases. This behavior should
be expected since the number of states does not change
due to the elastic scattering and therefore the total area
of the peak should be conserved. In order to estimate
the degree of broadening of the peak one can compare
the coefficient of [(e —s )/I'] relative to p(e = e ) as a
function of disorder, which for the clean case is equal to
1, while for the disordered case it is equal to

(2O)

which is plotted in Fig. 7. The reduction in the peak
height as well as the broadening of the peak are clearly
seen.

In a realistic experimental situation the scatterers are
expected to have a range intermediate between the point
scatterer case described in the beginning of the paper
and the very-long-ranged scatterer case just discussed.
Since both cases give the same qualitative behavior, i.e. , a
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FIG. 7. The DOS in the vicinity of e„z for long-range
scatterers. The full line corresponds to p0 and the dotted line
to the disordered case with s„ iW/E~ = 4I'.

which will result in the broadening of the averaged DOS.
As an example, for a Rat distribution P(p;) = 1/W in
the range —W/2 & p; & W/2 one gets

1 . (s —e„(l + W/2Ey ) i
p(s) = tan '
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broadening of the DOS peak which increases as a function
of disorder, one might expect that the presence of any
kind of elastic scatterers in the superconductor will have
a similar eKect on the DOS. This effect can be measured
by far-in&ared spectroscopy techniques, akin to the ones
used in Ref. 11. Thus, by changing the concentration of
elastic scatterers, their explicit inHuence on the DOS can
be studied.

In conclusion, the inHuence of elastic scatterers on the
averaged DOS of quasiparticles in vortex cores has been
explicitly calculated for point scatterers, using a pertur-
bative expansion, as well as for long-range scatterers. In

both cases a mesoscopic broadening of the DOS peaks is
predicted due to the elastic scatterers. Therefore, in ad-
dition to the usual inelastic broadening traditionally con-
sidered in these systems, a second mechanism of elastic
broadening exists which may explain the experimentally
measured broadening.

We would like to thank Y. Avishai for useful discus-
sions. R.B.would like to thank the Alon Foundation and
the U.S.—Israel Binational Science Foundation for finan-
cial support. B.S. thanks the Guastella foundation and
the Ministry of Science and Arts of Israel for support.

B. Z. Spivak and D. E. Khmelnitskii, JETP Lett. 35, 413
(1982).
B. L. Altshuler and B. Z. Spivak, Sov. Phys. JETP 65, 343
(1987).
C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett.
66, 3056 (1991).
L. I. Glazman and K. A. Matveev, JETP Lett. 49, 659
(1989).
C. W. J. Beenakker, Phys. Rev. Lett. 67, 3863 (1991).
V. C. Hui and C. J. Lambert, Europhys. Lett. 23, 203
(1993).
C. J. Lambert, J. Phys. Condens. Matter 5, 707 (1993).
C. J. Lambert, J. Phys. Condens. Matter 3, 6759 (1991).
A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).
C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9,
307 (1964).

K. Karrai, E. J. Choi, F. Dunmore, S. Liu, H. D. Drew,
Q. Li, D. B. Fenner, Y. D. Zhu, and F. Zhang, Phys. Rev.
Lett. 69, 152 (1992).
H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, Jr. ,
and J. V. Waszczak, Phys. Rev. Lett. 62, 214 (1989); J. D.
Shore et al. , ibid. 62, 3089 (1989).
L. Kramer, W. Pesch, and R. J. Watts-Tobin, Solid State
Commun. 14, 1251 (1974).
L. Kramer, W. Pesch, and R. J. Watts-Tobin, J. Low Temp.
Phys. 14, 29 (1974).
L. Kramer and W. Pesch, Z. Phys. 269, 59 (1974).
T. C. Hsu, Phys. Rev. B 46, 3680 (1992).
C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers (McGraw Hill, N-ew

York, 1978).


