
PHYSICAL REVIEW 8 VOLUME 51, NUMBER 1 1 JANUARY 1995-I

Mean-field theory for spin-reorientation phase transitions in magnetic thin films
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A mean-field theory for spin-reorientation phase transitions in magnetic thin films is worked out, solv-

ing analytically the relevant differential equation. The role of the exchange stiffness A in the competi-
tion between the in-plane shape anisotropy X„and the perpendicular surface anisotropy X, is addressed.
The spin-reorientation transition from the perpendicular configuration to the in-plane one with increas-
ing thickness is derived. Two different stable spin configurations are presented at large thickness for
K, (Q AIL„and vice versa. The phase transition with temperature is also explored. Asymptotic formu-
las are given for energy stocked in the film per unit area, which enable one to evaluate the surface anisot-
ropy.

I. INTRODUCTION

Much attention has been paid to metallic thin films in
recent years, since sophisticated epitaxial techniques en-
able us to control the thickness, the surface condition,
and the interface smoothness between the film under con-
sideration and substrate, and many new phenomena have
been observed. Among them it is found experimentally
in nonmagnetic-magnetic-nonmagnetic sandwich struc-
tures that, the easy-axis direction for magnetization
changes around a thickness of the transition metallic film:
At lower thickness, it is normal to the film plane, while at
higher thickness, it lies in the film plane. ' A similar
phenomenon has also been discussed in magnetic bilayer
systems used for magneto-optical recording. ' The phase
transition is also observed when the film thickness is
fixed, while the temperature is varied.

From the application point of view, the presence of
perpendicular magnetization in thin film of transition
metal is of great potential for high-density recording.
This phenomenon in thin-film geometry is of fundamental
interest as well. According to the theorem of Mermin
and Wagner, ' no long-range order can exist in two-
dimensional (2D) isotropic Heisenberg system. There-
fore, the magnetization in film should be triggered by an-
isotropy. The group of Mills' has shown with
renormalization-group (RG) approach and Monte Carlo
simulations that a phase transition to ferromagnetism
occurs for arbitrary small anisotropy. In sandwich and
bilayer structures, a surface anisotropy normal to the film
is produced by the breaking of translation invariance at
the interface, as considered first by Neel. ' In contrast
with 3D systems, the magnetization in film also produces
shape anisotropy, which favors in-plane ordering. In the
present paper, we will assume the presence of the long-
range order in the thin film under a surface anisotropy,
and proceed to discuss the spin-reorientation phase tran-
sitions with the variance of the thickness and the temper-
ature.

Although the role played by the anisotropies has been
explored by both experimental and theoretical argu-
ments, the exchange stifFness has not been paid enough

attention to. In most of the literature, the inverse thick-
ness dependence of the effective volume anisotropy is tak-
en as a satisfied fitting of experimental data or as an an-
satz a priori in theory. The effect of the exchange
stifFness was studied first by Rado and his co-workers,
resorting to a linearization procedure to the nonlinear
difFerential equation. ' In the present study we explore
the role of the exchange stifFness in the competition of the
shape anisotropy and the surface anisotropy, both around
the transition point and at large thickness limit, by solv-
ing directly a nonlinear difFerential equation.

The remaining part of this paper is organized as fol-
lows: In Sec. II the formalism is presented briefly and the
phase transition is settled. In Sec. III we show the thick-
ness dependence of the effective anisotropy from our ap-
proach. A summary is given in Sec. IV.

II.SPIN-REORIENTATION TRANSITIONS

Consider a magnetic layer with thickness 2a. Within
it, one has the ferromagnetic exchange stiffness A and a
volume anisotropy K, . At the surface, a perpendicular
surface anisotropy K, is supposed to exist. As a well-
chosen simplification, we take the quadratic Neel-type
approximation. Taking the z axis to be normal to the film
and the origin at the bottom surface as shown in Fig. 1,
half of the total energy per unit area is expressed by

y= f A —K,sin gr dz+IC, sin y(0), (1)
0 8z

Z

2a

FIG. 1. Geometry and coordinates of the system.
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where E, and E„are positive through the present study.
The volume anisotropy IC, includes the shape anisotropy
from the dipole interaction and possibly an intrinsic part.
The stable state is considered to be uniform in the direc-
tions parallel to the surfaces.

By applying the variational method to energy (I), we
obtain the following differential equation:

90

60.

deg

d g ~ dslng
dz

with boundary conditions

(2)
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The above differential equation can be transformed into a
nonlinear equation, concerning, for example, the direc-
tion of magnetization at z =a:

FIG. 2. Phase transition concerning the magnetization direc-
tion from normal {y =0) to in-plane {q =~/2), where
0—:a +K„/A .

sn [a+E„/A, sing, ]dn [a+%,/A, sing, ]

cn [a+E, /A, sing, ]
aci

for a ~a,),

where y, =qr(a), and sn [x,k], etc., are the Jacobian ellip-
tic functions. The total configuration in the film is ex-
pressed by the variable y, directly as

cn [(a —z)QE„/A, sing, ]
y(z) =sin ' sing,

dn [(a —z)QK„/A, sing, ]

for O~z ~a .

The con5guration in the upper half of the film can be
given by noting the mirror symmetry of the film concern-
ing z =a. This approach is useful for the discussion of
variance of easy axis with the thickness a, since the left-
hand side of (4) is independent of the film thickness.

and depicted in Fig. 2 for y, .

B. I.arge thickness limit

, QASC„
y(0) =sin

E,
Figure 3 shows the thickness dependence of y, and that

as a~~ .

P deg

The behavior of the system with large thickness can
also be investigated by (4). For E, )+AE„, one can set
a —+ oo and q&, =n/2 in (4). .In this case, one has from (4)
and (5)

A. Onset of in-plane magnetization
90

It is found that there is a bifurcation of the solutions to
(4) concerning the thickness with the mechanism dis-
cussed in Ref. 7: Below the bifurcation point there is only
the trivial solution y(z) =0 for 0~z ~2a, the nontrivial
configuration appears only for thicknesses higher than
the bifurcation point. The bifurcation thickness a„ is de-
rived analytically from (4) by noting p, =0:

E,
a, i

=Q A /IC„ tan
+Are„

For values of magnetic quantities like K, =5.0 X 10
mJ/m, A =2.0X10 mJ/m, and K, =1.5 mJ/m, the
above critical thickness is evaluated as a, &-—20 A. The
variance of the direction of magnetization is described by
the exponent P= —,', as

60.

30.

0
0

FIG. 3. Thickness dependence of the magnetization direction
for X,)+AK„.
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ac
FICi. 4. Same as Fig. 3 except for K, & Q AK„.

of g(0). The magnetization in the inner part of the film
saturates to in-plane direction gradually with the thick-
ness, while the direction at the surface insists at about 40'
in Fig. 3.

On the other hand, for K, & Q AK„a different thick-
ness dependence of configuration, as shown in Fig. 4, is
obtained. Namely, there exists a second critical thickness
a,2, above which the magnetization is totally aligned
within the film. The spin-reorientation phase transition is
continuous. The thickness a,2 is again analytically de-
rived from (4) by noting y, =n /2, as

a, ~
=Q A /K„tanh '(X, /Q AK, ) . (9)

C. Phase transition with temperature

It is then clear from (6) and (9) that in the present ap-
proach, one always has a„&a,z for 0&K, /+AK, & l.

For values of magnetic constants given in the preced-
ing subsection, except for K, =0.7 mJ/m, which makes
E, & Q AK„, one has a„=12 A and a,z

——17 A. The
resultant phase diagram is shown in Fig. 5 for the case of
K, &+AX„.

FICx. 5. Phase diagram for K, & Q AK„, where
r =K, /V'AK„. The phase boundaries are given by iX=tanh 'r
(the upper curve) and 5=tan 'r (the lower curve): (I) perpen-
dicular phase, (II) intermediate phase, and (III) in-plane phase.

Pz.
—1 for T~ T„,

R
(10)

K,
Ao(1 —Tlt /&, )

1/2

It is about Tz ——160 C for the system described above,
which is quite below the Curie temperature.

deg
90

as depicted in Fig. 6. The spin-reorientation transition
temperature is determined by

1/2
TR

AoK, 1 —
)

C

We can also discuss the spin-reorientation phase transi-
tion with temperature in the film with fixed thickness, by
considering (1) as a mean-field expression for the free en-
ergy. For simplicity, the effect of thermal fluctuation is
included only in the exchange stiffness as
A = Ao(1 —T/T, ).

For a film of a = 15 A with T, =270'C, Ao =
2.0X10 mJ/m and with other quantities the same as
those given in Sec. II A, the variance of the spin direction
at z =a is shown in Fig. 6. At the ground state, the per-
pendicular phase is stable. As the temperature increases
to values higher than a critical temperature TR, the free
energy favors the in-plane phase. The onset of in-plane
magnetization in the present approximation is described
by Pr= —,

' as
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FICx. 6. Spin-reorientation phase transition with tempera-
ture.
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III. THICKNESS DKPKNDKNCK OF VOI.UMK ANISOTROPY

Let us investigate the energy stocked in the film per unit area. Integrating (1), one obtains the following energy ex-
pression as a function of y, for a & a„,

2

cn [a+E„/A, sing, ]
y = —aX„sin y, +X,

dn [a+E,/A, sing, ]
sin y,

cn [a QIC„ /2, sing, ]+2 E —,sing, —E sin ,sing,
dn [a+E„/A, sing, ]

cn [a+K, /A, sing&, ]—2cos qv, F —,sing, —F sin , s1Q+g
dn [a+E„/A, sing, ]

(12)

The resultant thickness dependence of the stored ener-

gy is shown in Fig. 7. The effective anisotropy defined by
y = —ak„ is shown in Fig. 8. It is found that its asymp-
tote for large thickness is given as

(13)

AE„
E, =2+RE, —

S

(14)

The result explains analytically the inverse thickness
dependence of the effective anisotropy, which has been
adopted a priori in the literature' ' to explain the experi-
mentally observed spin-reorientation transition. The
quantity E, should be considered as the effective surface
anisotropy, which is observed in experiment. For the
case of IC, & Q AX„, one finds

I

for large thickness limit. Therefore, there are two contri-
butions to the surface energy, one from the energy of the
bending structure +AK, and the other governed by the
ratio between it and the surface anisotropy. For the case
of E, (+AE„, (13) is established exactly for a & a,z. No
energy of the bending structure is involved, and one has
E, =K, .

IV. SUMMARY

A variational study to determine the magnetic
configuration in magnetic thin film is performed. The re-
lation between the exchange stiffness, in-plane volume an-
isotropy, and the perpendicular surface anisotropy is ad-
dressed analytically.

It is found that when the thickness is smaller than a
critical value a, i, the magnetization is aligned normally
to the film. In the case of E, & +AX„, the saturation of
magnetization is gradual, and the direction of magnetiza-
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FICx. 7. Thickness dependence of energy stocked in the film
per unit area, where y =y /Q AX„. Flax. 8. Thickness dependence of effective anisotropy k, .
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tion on the surface takes an intermediate direction even
at the infinite thickness limit. On the other hand, in the
case of K, (+AK„, there exists a second critical thick-
ness a,2, above which the magnetization is aligned com-
pletely in plane. These difFerent stable configurations in
the large thickness limit, coming from the relationship
between the surface anisotropy and the energy of the
bending structure, which is proportional to the domain-
wall energy in bulk, is expected to be detected experimen-
taHy.

The surface anisotropy is treated analytically, and it
becomes clear that the total efFective anisotropy shows an
inverse thickness dependence in a wide range of
thicknesses. Therefore, our result verifies the usually
adopted ansatz. Large-scale Monte Carlo simulations are
now in progress in order to clarify the efFect from Quctua-
tion in the spin-reorientation phase transitions for
Heisenberg models in film geometry, where surface an-
isotropy and dipole-dipole interactions play important
roles.
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