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Experimental and numerical study of dynamic regimes
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We investigate nuxon dynamics in underdamped one-dimensional parallel arrays of small Joseph-
son tunnel junctions. The current-voltage characteristics of the arrays show various resonant steps
depending upon the temperature of the sample and the externally applied magnetic field. Ex-
perimental results on Quxon propagation in arrays are compared with that for continuous Joseph-
son transmission lines fabricated on the same chip. By modeling Guxon dynamic states in a one-
dimensional array as a propagation of kinks in a discrete sine-Gordon lattice, we find consistency
between numerical results and the experimental data. This consistency indicates that the concept
of Quxons as moving relativistic particles can be still used even for strongly discrete lines. However,
two important classes of phenomena are found which do not have any counterparts in the continuum
case. These are concerned with the data that we obtain in the short-wavelength limit (determined
by line discreteness) and with damping requirements that are necessary in order to stabilize kink
propagation.

I. INTRODUCTION

The continuum perturbed sine-Gordon equation
(PSGE) is known to be a model for a long Josephson
junctioni where a single magnetic flux quantum (fluxon)
is a soliton-type solution of the equation. Fluxon dynam-
ics in long Josephson junctions has been investigated in
great detail during the last decade using as a solid theo-
retical background the perturbation theory by McLaugh-
lin and Scott based on the integrability of the continuum
sine-Gordon equation. This theory describes fluxon dy-
namics in real junctions under various bias current con-
ditions and structural perturbations. Thus, it has been
possible to verify analytically or in numerical simulations
many experimental features of long Josephson junctions
and their mechanical analogs.

One-dimensional (1D) parallel biased arrays of small
Josephson junctions represent an experimental realiza-
tion of the spatially discrete sine-Gordon lattice (also
known as the Frenkel-Kontorova model). Magnetic flux
dynamics in 1D arrays can be modeled by the discrete
version of the sine-Gordon equation which is known to be
nonintegrable. Although the discrete case is much sim-

pler for numerical studies, this regrettable fact was un-
derstood a long time ago and it represented perhaps one
of the reasons for which very few experiments have been
performed in this field. Peyrard and Kruskal pointed
out that, even with large discreteness, the dynamics of a
localized nonlinear kink in the sine-Gordon lattice may
exhibit some features of solitonic nature (motion through
the lattice with a negligible radiation) very close to the
properties of the continuum sine-Gordon solitons. Thus,
it becomes interesting to investigate parallels and differ-
ences in nonlinear kink propagation for the continuum
and the discrete sine-Gordon systems.

Recently, experimentally measurable features in the

dynamical behavior of underdamped 1D Josephson junc-
tion arrays have been studied in numerical simulations. '

Propagation of fluxons through the underdamped 1D
Josephson junction array with small discreteness should
be evident because of the appearance of current singular-
ities on the current-voltage characteristics (I Vcurve)-
of the array. This phenomenon is analogous to the
effects generated by fluxon motion in long quasi-one-
dimensional Josephson junctions. Depending on the ap-
plied external magnetic field H, one may expect to ob-
serve the so-called zero-field steps (ZFS's), Fiske steps
(FS's), and flux-flow steps (FFS's) (Ref. 1) in the IV-
curves of the 1D arrays. If the discreteness of the ar-
ray becomes larger, deviations &om the continuum case
are expected to appear. Recently, van der Zant et al.
performed experimental and analytical investigation of
linear Fiske modes in short 1D arrays with moderate dis-
creteness. Propagation of a single fluxon (a nonlinear
kink) in the discrete limit has not been studied experi-
mentally so far.

Experimental investigation of 1D arrays is a relevant
issue in superconducting electronics'because discretized
Josephson transmission lines are the basis of the so-
called phase-mode logic. One of the advantages of such
lines is that their inductance by capacitance product
per unit length is smaller than that of a long Joseph-
son junction. Due to this fact the maximum velocity
of electromagnetic wave propagation in a transmission
line (so-called Swihart velocity) is higher than in the
continuum case. This factor increases the operation &e-
quency of the discrete array with respect to the contin-
uum long Josephson junction. Fluxon propagation in
parallel arrays of superconducting quantum interference
devices (SQUID's) is also the principle of operation of
the rapid single flux quantum (RSFQ) circuits. RSFQ
devices use resistively shunted small Josephson junctions
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which provide substantial damping, thus placing these
circuits on the border between the overdamped and the
underdamped limits. Static properties of parallel SQUID
arrays [also called superconducting quantum interfer-
ometer gratings (SQUIG's)] have recently been studied
numerically with the aim of improving the single-loop
SQUID characteristics needed for the magnetometry. Re-
cently discrete arrays of overdamped Josephson junctions
have gained interest after flux-flow devices were built
from high-T, superconducting films. A flux-flow device
consists of a row of weakened superconducting bridges as
suggested by Likharev. In the overdamped limit, flux
flow in discrete arrays has been studied experimentally
and numerically.

In this paper we study experimentally the fluxon dy-
namic regimes in 1D arrays of small underdamped tun-
nel 3osephson junctions and compare the experimental
results with numerical simulations based on the discrete
sine-Gordon model. We have measured the I-V charac-
teristics of 10- and 20-junction arrays as a function of
the external magnetic Beld H at several different tem-
peratures in order to vary the damping and the effective
discreteness in the arrays. For what concerns the simula-
tions we concentrated on the zero-field regimes and their
interpretation based on the discrete sine-Gordon model.
The paper is structured as follows: In the next section
we present measuring techniques and experimental data.
Section III describes the theoretical model and the results
of numerical simulations. In Sec. IV we discuss and com-
pare numerical data and experimental results. Finally,
Sec. V summarizes the paper.

junctions in the arrays had an area of about 7 pm and
were connected by 5 x 8 pm superconducting loops. Ev-
ery chip contained a 150-pm-long 10-junction array, a
300-pm-long 20-junction array, and two long junctions
with dimensions in the plane of 4 pmx100 pm. Tech-
nological details of the sample fabrication are described
elsewhere. The samples were surrounded by a cryoperm
shield with a residual field inside it of about 15 mOe.
The magnetic field perpendicular to the substrate was
applied by a solenoid located inside the cryoperm shield.
The sample was immersed. directly in liquid helium or
kept in gas above the liquid surface and its temperature
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II. EXPERIMENTAL RESULTS

For the problem which we study here, the appropriate
choice of the array geometry and the junction parameters
is essential for an adequate comparison between theory
and experiments. We designed the samples in order to get
the discreteness parameter a = PL, = (27(LoI /4o) ~

of the order of unity at low temperatures. Here I o is the
inductance of a single cell of the array, I, is the critical
current of each junction, and Co = 2.07x 10 Wb is the
magnetic flux quantum. We used the simple linear geom-
etry sketched in Fig. 1(a) vrith the number of junctions
equal to 10 or 20 in different arrays. The choice of the
number of junctions has been made keeping in mind that
the usage of a very large N should lead to discreteness-
induced resonances in the I-V curve very closely spaced
in voltage, thus making diKcult their experimental in-
vestigation. On the other side, N has been taken to be
not too small in order to realize the fluxon propagation
regimes.
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A. Samples and setup

Measurements were performed on parallel arrays of
small niobium-lead tunnel Josephson junctions. Nb films
with a thickness of 200 nm served as the base electrode;
the tunnel barrier, grown by plasma oxidation of Nb,
was covered. by a 350-nm-thick Pb top electrode. The

FIG. l. (a) A sketch of the experimentally studied 1D
Josephson junction array geometry. (b) Equivalent circuit
used as a model for the 1D array (L, = Lo/2).
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was monitored by a silicon diode placed in close thermal
contact with it. The I-V curves were recorded on a stor-
age oscilloscope. The current to the sample was supplied
by a battery-powered current source.

For long junctions from the same chip the follow-
ing parameters were estimated from measured charac-
teristics of our chips at 4.2 K: the critical current den-
sity j, = 160 A/cm, the Josephson penetration depth
A J ——30 pm, the Swihart velocity cf JJ —0.05 co, where
co is the velocity of light in vacuum, and the capacitance
per area for the junction, C, = 2.3 pF/cm . At 4.2 K the
normal resistance of the 10-junction array was measured
to be B = 3.6 O. For the 20-junction array the normal
resistance was B = 1.80. As expected for an array con-
sisting of identical small junctions, the normal resistance
B scales with the number of junctions.

B. Static properties: I,(H) dependence

of the parameter Pl. and to an increase of the losses in
the junctions. At temperatures close to the transition
temperature of lead, T —7.2 K, we observed reso-
nant branches similar to that of fluxon oscillations in
long junctions. The I-V characteristic at T = 6.9 K
(Pl, —1) is shown in Fig. 3(a). Due to difFerent critical
temperatures of the top and bottom electrodes a nearly
linear slope appears at voltages below (ANb —Apb)/e.
The enlarged I Vcu-rve is shown in Fig. 3(b). The step
at about 50 pV was stable only in a narrow Geld range
around zero. This is closely reminiscent of the first zero-
field-step (ZFS1) resonance of a long Josephson junction
and corresponds to a single fluxon performing a shut-
tle motion in the array. As expected, for H g 0 we
found the low-order Fiske steps (see next subsection) to
have a voltage spacing LVFs ——0.5 Vzps~ 25 pV. From
the voltage Vzps~ of the zero-Geld step the Swihart ve-
locity of the fluxon moving in the array is estimated to
be c „=0.012co. This is about 4 times smaller than

For the 10-junction array the dependence of the critical
current I on the applied magnetic field H measured at
two difFerent temperatures T = 4.2 K (a) and T = 6.9 K
(b) is shown in Fig. 2. The I (H) curves are appropri-
ately symmetric with respect to H = 0 (the offset due to
the residual field of about 15 mOe has been subtracted
in the horizontal scale) and present a number of maxima
in I spaced by roughly equal H intervals whose value
stands around Hi ——28 mOe . As expected for the mul-
ticontact SQUID characteristics, at each maximum the
critical current I, approximately reaches its value at zero
field. These maxima of I, correspond to the Geld val-
ues H = mes/S where the average magnetic flux per
one cell (of the area S) of the array is an integer number
m = 0, +1,+2, ... of the magnetic flux quanta. We note a
somewhat more complicated (although rather symmetric
with respect to the origin) structure of the peaks with
m ) 1 which can be due to magnetic field penetration
into overlapping parts of Nb and Pb Glms forming each
cell and into the junctions themselves.

Although Fig. 2(a) and Fig. 2(b) show qualitatively the
same behavior, there is a quantitative difference between
them. With respect to the maximum I at H = H, the
relative level of the critical current between the maxima
in Fig. 2(b) is lower than in Fig. 2(a). For a multicon-
tact interferometer it is known that the average level
of the critical current between the maxima depends upon
the SQUID parameter PL, introduced above. When Pl,
increases above unity this level substantially grows; since
PL, I„ these data are consistent with the decrease of
I at higher temperatures. The similar behavior was ob-
served for the 20-junction arrays.
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C. Zero-field steps

Here, we present and discuss the results obtained at
H —0. At T = 4.2 K we did not observe any current
singularities in the I-V characteristic of 1D arrays that
we could attribute to fluxon shuttling oscillations. In
general, increasing the temperature leads to a decrease
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FIG. 2. The dependence of the critical current I of the
10 Josephson junction array (sample No. OB1-3B) on the
magnetic field H at the temperatures T = 4.2 K (a) and
T = 6.9 K (b).
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FIG. 3. Current-voltage (I V) characte-ristics at T = 6.9 K
for the 10-Josephson junction array in zero magnetic field (a);
on an enlarged scale (b) the first zero-field step is seen at
about 50 pV.

the Swihart velocity eppes in the long Josephson junction
measured on the same chip.

The higher steps, which are seen in Fig. 3(b) at the
voltages 150—250 pV, were found to be very stable around
H 0. The voltage spacing between them is clearly
smaller than VzFsq. This behavior difFers from the high
ZFS's in a continuum long Josephson junction, where the
voltage spacing between the low and the high zero-field
steps remains constant. We suggest that these higher-
order ZFS resonances are a fingerprint of the discrete-
ness of the system. As confirmed in Sec. IV by numeri-
cal simulations, they are related to the shortest possible
wavelength of a standing wave in the array.

D. Flux-flow and Fiske steps

In the temperature range 5.4—7.0 K the application of
the external magnetic Geld H gives rise to flux-Qow steps
in I-V curves of the arrays. Preliminary, the experimen-
tal results which we show in this part have been already
presented in Ref. 16. Figure 4 shows the I-V charac-
teristics measured at T = 6.9 K for difFerent values of
the magnetic Geld. When increasing the field from 0 to
Hi/2 = 14 mOe, the voltage VFF of the main flux-flow
step increases [Fig. 4(a)]. The explanation for this is
that from zero field to the field of C'o/2 per cell an in-
creasing number of fluxons (proportional to the applied

-80
-500 0

V(pV)
250 500

FIG. 4. I Vcurves for H-= 15 mOe (a) and H = 19 mOe
(b) taken at T = 6.9 K which show the resonant fiux-fiow
regime in the 10-junction array.

field) enters the array and performs a unidirectional mo-
tion which generates a voltage across the junction. The
behavior looks very similar to the flux-Qow step in a long
Josephson junction. However, at a magnetic field close to
Hi/2 the flux-flow voltage VFF saturates at about 150—
160 pV. When increasing the field further from Hi/2 to
Hi the voltage VFF decreases, as seen in Fig. 4(b). A
possible interpretation is that for fields larger than Hi/2
a fixed number of Quxons which is commensurate with
the lattice remains pinned and the most energetically fa-
vorable dynamical state is a motion of vacancies in this
Quxon chain instead of a motion of all the Quxons them-
selves. A similar behavior has been observed in long
continuous Josephson junctions with a lattice of artifi-
cially prepared inhomogeneities and in overdamped 1D
Josephson junction arrays. As the number of vacancies
decreases with increasing H from Hi/2 to Hi, the step
voltage also decreases.

At nonzero field, small steps at about 25 pV and 50 pV
are observed along with the Qux-Qow step, as shown in
Fig. 4(a). The asymptotic voltages of these steps, within
a 15% accuracy, are half-multiples of the voltage VzFsi
of the zero-Beld step at H 0 shown in Fig. 3(b). We
see in Fig. 4 that the upper part of the flux-Qow step is
split into several close resonances. The voltage spacing
between these resonant steps is clearly smaller than the
voltage spacing between the low-order Fiske steps. The
voltage position of various fine structure steps in the flux-
flow I-V characteristics at the field range 0 ( H C Hq is
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summarized in Fig. 5. Here the first Fiske step and the
second Fiske step (which coincides with ZFS1 at H = 0)
are clearly noticeable at approximately constant voltage
levels of about 25 pV and 50 pV. At high voltages the
distribution of steps looks rather complicated and the
voltage spacing between them is reduced. Except for the
zero-Beld range, this picture is very similar to that ob-
served by van der Zant et al. They also found the satu-
ration of maximum step voltages together with squeezing
of the voltage spacing between high steps and interpreted
them as cavity resonances on the discrete lattice. As dis-
cussed further in Sec. IV, the spacing between high Fiske
steps (HFS's) is decreasing due to the fiattening of the
dispersion relation for linearized waves in the discrete ar-
ray for wave vectors approaching r/ia. We would like
to emphasize that the high zero-field steps (HZFS's) re-
ported in the previous subsection are essentially difj'erent
from the high-order Fiske steps described here and also
analyzed in Ref. 7. HZFS's appear at voltages above
160-180 pV and they are separated from the lower ZFS's
by an instability region on the I Vcurve -[at 60—150 pV
in Fig. 3(b)]. HFS's are always seen at voltages below
160 pV and they are parts of the flux-flow branch which
is separated from the high-voltage linear slope (McCum-
ber live) by the same instability region [at 160—220 pV
in Fig. 4(b)]. For field values ranging in the interval
H & H ( H + Hi/2 [like in Fig. 4(b) for I ) 0]
HZFS's and HFS's coexist, but we never observed any
HZFS's at H H + Hi/2 (where HFS's are mostly
dominating) or any HFS's at H 0 (where ZFS's and
HZFS's are observed).

At the temperatures close to T, , the 20-junction ar-
rays showed behavior similar to that of the 10-junction
arrays. The flux. -flow step reached approximately the
same maximum voltage of about 150 pV for the field
close to Hi/2. .As expected from the fluxon propagation
model for long junctions, the flux-flow voltage depends
only on the density of fluxons and their velocity in the
array, and it does not depend on the length of the sys-

tern. In contrast, the Fiske step voltage spacing (which
is expected to be inversely proportional to the length of
the system) was found to be roughly a factor of 2 smaller
than that of the 10-junction array.

For magnetic fields H ) Hq a very similar flux-flow
behavior to that at 0 & H ( Hj has been found. The
flux-flow steps were observed between the peaks of the
critical current I at H = H . For H H and m ) 1
we did not find any steps at higher voltages (neither the
lower ZFS's nor HZFS's). One possible reason for this
eÃect is that the high I, peaks in Fig. 2 look rather com-
plicated, probably due to nonlinearity of cell inductances
and the field penetration into the junctions.

The typical I-V characteristics of the 10-junction array
in the lower-temperature range (5.0—5.5 K) are shown in

Fig. 6(a). In a magnetic field HFF 13 mOe a linear
resistive branch is observed in the current-voltage char-
acteristic. In a limited field range (about +1 mOe around
HFF) the voltage of this structure was found to deperid
linearly on H: The increase of H led to a shift of the
whole step to the right along the voltage axis. This step
was always observed to be very smooth, and no Bne struc-
ture resonances in this regime have been found. The I-V
characteristic at the same value of H but for slightly
higher temperature T = 5.7 K is shown in Fig. 6(b).
We clearly observe that with increasing the temperature
the resistive branch evolves into current singularities. It
is essential to note that this behavior is just the oppo-
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FIG. 5. Asymptotic step voltages as function of magnetic
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structure (b) with increasing the temperature
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site to that of a conventional long Josephson junction,
where resonant steps (zero-field steps and Fiske steps)
become much more pronounced with decreasing the tem-
perature. For a Josephson junction in general, increasing
the temperature leads to a decreasing of the quasiparti-
cle resistance and therefore to higher damping. Increas-
ing the temperature, the steps in long junctions become
less steep because of the increasing losses experienced by
moving fluxons. The crossover between Fig. 6(a) and
Fig. 6(b) shows just the opposite: In discrete arrays the
increase of damping leads to the splitting of the linear
flux floiv -branch into several sharp resonantlike steps

III. MODELING AND SIMULATIONS

A 1D parallel array of Josephson junctions can be de-
scribed by the discretized version of the perturbed sine-
Gordon equation

d p~ d(p~ . 1
dt2 dt

+ a + sin%' +'7 ('p 2V' —+ & +i)
Q

where 1 & n & K + 1, N + 1 is the number of junctions,
and. p is the superconducting phase difFerence on the
nth junction. In order to simplify the comparison with
the continuum case all the parameters in Eqs. (1) are
written in the standard notation used for a long Joseph-
son junctions: The spatial coordinate x is normalized
to the effective Josephson penetration depth AJ = D/a
(D is the spatial interval occupied by a single cell of the
array, and a is the discreteness parameter introduced in
Sec. II), the time t is normalized to the inverse plasma
frequency wo

—[4oC/J, ] ~, C is the averaged capac-
itance per unit length of the array, n 1/R is the
dissipation coefficient, and p is the spatial averaged bias
current density normalized to the spatially averaged criti-
cal current density J, = (%+1)I /(DK). The equivalent
circuit described by Equation (1) is shown in Fig. 1(b).
Eq. (1) is written in the simplest approximation where all
mutual inductances between different cells in the array
are neglected. A complete (and more complicated) treat-
ment of this problem with long-range mutual inductances
included has been performed recently by Bock et al.
van der Zant et al. analyzed their experimental results
on 1D arrays using the models with self-inductance only
and with nearest-neighbor inductance included. They
concluded that the effects of the nearest-neighbor induc-
tances M play a rather important role and obtained the
best fit of their data by taking M/Lo ——0.12—0.16. In
the present work we keep our approach simple and fo-
cus on several qualitative features in the behavior of un-
derdamped 1D arrays. Thus, in the following we only
consider the model (1).

In the limit of a -+ 0 the model (1) corresponds to the
continuum model described by the continuous PSGE.
Thus, for a 1D array with small a we might expect a dy-
namical behavior close to that of a long Josephson junc-
tion. This means that in long 1D arrays (Na )) 1) with

sufriciently small a dynamic regimes like ZFS, FS, and
FFS regimes should appear in the I-V characteristics.
The realization of these states depends on the boundary
conditions for such an array, which are given by the mag-
netic field H applied at the boundaries. As a reasonable
approximation, the magnetic field in the first and. the last
cells can be taken equal to the externally applied field:

P2 Pl PN+1 PN =h,
G a (2)

where cu is the frequency of the linear waves (lattice
phonons) and k is their wave number. van der Zant et
al. studied the Fiske modes in a relatively short 1D ar-
rays with rather small discreteness a ( 0.5 and showed
that the voltages of resonant steps observed in I-V char-
acteristics nicely picture the dispersion relation (3). In
that case Fiske steps are essentially cavity resonances in
the applied magnetic field which can be understood in
the framework of the linear model. In the longer arrays
studied. here, due to a nonlinearity which characterizes
the motion of kinks (fluxons), the whole behavior is more
complicated. From pure kinematics, a resonance between
the emitted waves and the moving periodic chain of flux-
ons can occur when the phase velocity of the excited lin-
ear waves coincides with the Huxon velocity. Imposing
further that the period of the linear waves and the pe-
riod of the fluxon chain must commensurate, a resonance
condition can be obtained for fluxon steps.

In order to understand our experimental results in the
framework of the discrete sine-Gordon model discussed
above, we performed numerical simulations of the system
of Eqs. (1) and (2) for an array consisting of ten cells. The
integration was made using a fourth-order Runge-Kutta
scheme with the time step equal to 0.02 or 0.05. In or-
der to see the hysteresis between the steps, the current p
was swept up and then down. In each sequential point of
the I-V curve the initial conditions were taken from the
stationary state achieved in the previous point. In order
to eliminate the transient due to the change in p in each
point, the voltage integration was performed over a long
time interval (up to 3000 normalized time units for low

where h = H/(Ag J,) is written in the standard notation
used for long Josephson junctions. Typically, for long
Josephson junctions the ZFS regime is observed for 6
0, the FS regime for h, 1, and that of the FFS for
h ) 2. For the open (h = 0) boundary conditions, the
oscillations of a single Huxon correspond to the first zero-
field step (ZFS1) on the I Vchara-cteristics. The fluxon is
expected to perform a shuttlelike motion in the array and
to reverse its polarity at any collision with a boundary.

When a is of the order of the unity or greater, the
discreteness effects become important. In general, the
kink motion through a discrete lattice leads to radia-
tion of small-amplitude linear waves. With o. = p = 0,
Eq. (1) corresponds to the well-known Frenkel-Kontorova
model. The dispersion relation for linear waves, p
pl ~exp[i(wt —kan)], is known to be

4, (kal
cu = 1+ sin

a2 (2)
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ci). In the numerically calculated I V-curves the volt-
age v is normalized to the asymptotic voltage of the first
Fiske steps of the continuum junction. For experimen-
tally studied 10-junction array, one unit of v corresponds
to a voltage of LVFS —25 pV.

Our experimental estimates for the discreteness param-
eter a is a 1.0 at T = 4.2 K and a —0.6 at T = 6.9 K.
From previous numerical simulations made for a=0.2—
2.5 with o. = 0.1 one learns that in this range of a there
is no strong change in the system behavior. Fluxons can
propagate in the system and the I-V curve should dis-
play resonancelike steps due to their motion. On the
other hand, in experiments the dissipation parameter n
changes from o. = 0.02 at T = 4.2 K to o, = 0.2 at
T = 6.9 K. In order to study the in8uence of the pure
change of the dissipation n on the array properties [in re-
lation with the crossover from Fig. 6(a) to Fig. 6(b) found
experimentally] we performed numerical simulations with
a fixed discreteness parameter a = 1 and varied o. from
0.02 to 0.2.

simulations indicate the resonant zero-field steps. The
lowest step (ZFS1) at v = 1 corresponds to a single fluxon
oscillating in the array, the second step (ZFS2) accounts
for two oscillating fluxons, etc. As in the experiment, we
note that the voltage spacing between the neighboring
high-order steps is clearly smaller than the voltage of
the lowest ZFS's. For ZFS1, on a detailed voltage scale
shown in Fig. 8(b) one can clearly see the fine structure
investigated before in Refs. 6, 19 which is due to the
resonances between the moving Huxon and its radiation
induced by the array discreteness. The fine structure
becomes even more pronounced for the higher steps from
ZFS2 to ZFS4.

In order to understand the magnetic Aux dynamics cor-
responding to di6'erent zero-field steps, we have investi-
gated the spatiotemporal phase patterns of diferent dy-
namic regimes. In a quasicontinuum approximation, we
plotted the spatial and time dependences of the points
where p(x, t) = 2vr j+vr, with j being an arbitrary integer.
These points approximately correspond to the locations
of the Huxon centers of mass in the array. For the point

A. g, (h) dependence

Figure 7 shows the calculated dependence of the criti-
cal current density p vs the normalized magnetic field h
for an array of ten cells with the discreteness parameter
a =-1. In normalized units, for a = 1 the magnetic field
corresponding to one Aux quanta per cell is h = 2m. This
p, (h) curve qualitatively agrees with the experimental
behavior shown in Fig. 2.
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I Ii
I I /Bftc /

B. Zero-Beld I Vcharac-teristics (high damping) 0.2—

Figure 8(a) shows the first quadrant of the calculated
I-V curve of the array for 6 = 0. In agreement with
the experimental data shown in Fig. 3, the numerical
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FIG. 7. The calculated dependence of the critical current
density p vs the normalized magnetic field h for an array of
ten cells with the discreteness parameter a = 1.0.

FIG. 8. Numerically calculated I-V curves in zero mag-
netic field of 1D array of ten cells with cx = 0.2 and a = 1.0:
(a) full voltage range with resonant steps; (b) the first two
steps (ZFS1 and ZFS2) with enlarged voltage scale. The
dashed line shows another stable solution (with bunched flux-

ons) for ZFS2 obtained using different initial conditions at the
starting point of the simulations (p = 0.4).
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FIG. 11. Numerically calculated I-V curves for n = 0.02
(a) and o = 0.2 (b) which show the chaotic dynamics (a) and
the resonant Rux-flow steps (b) in the 10-cell array.

stationary regime was typically achieved within less than
200 time units. The time-dependent voltage in the array
showed stable periodic oscillations with several harmon-
ics and subharmonics in the Fourier spectrum, depending
on the bias point. In good agreement with experimental
data shown in Fig. 4, the calculated I-V characteristics
consist of well-separated resonant singularities which all
together give rj.se to a profile similar to that of the flux-
How step in a long Josephson junction. The figure shows
the curves calculated for three different values of the nor-
malized magnetic field h: h = 3.0 (C' /4o ——f = 0.5),
h = 4.4 (f ) 0.5), and h = 1.6 (f ( 0.5). In close corre-
spondence with the experimental behavior, increasing 6
&om 0 to about 2.3 the maximum voltage vFF of the high-
est step is also increasing. In the interval 2.2 ( 6 ( 4.0
the voltage vFF saturates at about 6, which agrees with
the experimentally measured saturation at VFF about
6b, VFs —150@V.As we see in Fig. 11(b), an increase of h
above 4.0 leads to a decrease of vFF. As in experiments,
for h = 27r (H = Hi) the flux-flow step disappears.

IV. DISCUSSION

We find a remarkable number of similarities between
the dynamics of one-dimensional parallel arrays of small

Josephson junctions and that of a uniform long Josephson
junction. As in a long junction, in the I-V characteris-
tics we observe zero-Geld step, Fiske steps, and flux-How
steps. Furthermore, the numerical simulations furnish
strong evidence that the observed singularities are gen-
erated by different Huxon dynamical regimes in the dis-
crete system. The discreteness of the system, however,
induces phenomena which do not have parallels in the
continuous system. The saturation of the flux-How step
voltage in the middle between the magnetic field H and
H +i (m = 0, +1,+2, ...) where the fluxon array com-
mensurates the underlying lattice is a clear indication
of the array discreteness. Moreover, when the Hux-How
step is approaching the saturation level the voltage spac-
ing between the high fine structure resonances (which
are expected to be the analog of the Fiske steps in the
discrete array) is noticeably decreasing. This effect has
been found both in experiment [Fig. 4(a)] and in numer-
ical simulations [Fig. 11(b)].

Prom the voltage position of the zero-field step and
the lower Fiske steps the experimental value for the Swi-
hart velocity has been estimated as c „=0.012cp. For
a long overlap junction (L = 100 pm) on the same chip
we found a zero-field step at V = 320 pV which yields
the Swihart velocity of c+JJ —0.05cp. In a long junction
the Swihart velocity is known to be the propagation ve-
locity of electromagnetic waves through a transmission
line with a given capacitance and inductance per unit
length. A natural way of estimating the expected Swi-
hart velocity for the discrete array is to use the average
capacitance and inductance per length. Thus, in order
to evaluate c „for the discrete line we take the capaci-
tance of the small junctions divided by the length of the
array, and the inductance of a single cell divided by the
length of the cell. A rough estimate of the cell induc-
tance can be made using the Jaycox-Ketchen formula for
a square hole in an infinite film of superconductor. A
value of 10pH is found for a loop area of 40 pm . Using
this simple approach the predicted value of the zero-field
step is found to be Vzps = 170 pV, i.e., about 3 times
larger than the experimental value. A better estimate
of the loop inductance can be made using the formula
for a square washer of finite dimensions. This gives an
inductance of 88 pH with a prediction of ZFS1 asymp-
totic voltage V2;Fs ——58 pV in better agreement with the
actually measured value of about 50 pV.

Mutual inductance effects, which are not included in
our model, could have a substantial influence on the ef-
fective inductance per one cell of the array. Also, for
our estimation we take the maximum measured voltage
on the step as the Swihart velocity voltage, whereas the
true asymptotic voltage should be somewhat higher. We
note that numerical simulations of the single-fluxon I-V
characteristics in the 1D array with a 1 show that the
asymptotic voltage of the first zero-field step'which we
measure can be 20%—25% lower than the true value cor-
responding to the Swihart velocity. The explanation of
this phenomenon arises &om the simple intuitive argu-
ment that the I orentz-contracted size of a Huxon cannot
become smaller than the discreteness of the lattice a.
Thus, even for large p a fluxon in the 1D array cannot
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move faster than a certain maximum velocity 6(a) ( l.
An important effect in the discrete system is the mod-

iBed dispersion relation for linearized waves. In the
continuum sine-Gordon system the dispersion relation is

= 1 + k and the waves approach a constant group
velocity when the wave vector k becomes large. In a dis-
crete system the maximum wave vector inside the Bril-
louin band is k = vr/u. Furthermore, the dispersion re-
lation (3) is difFerent from that of the continuum case.
As schematically shown in Fig. 10, it gives increasingly
densely spaced values of u for equidistantly spaced val-
ues of k close to k = vr/a. This fact explains why in the
10-junction array the flux-flow voltage at the field corre-
sponding to @o/2 per cell (6 m) does not reach 5VzFsi
as is expected in a long Josephson junction. In the array,
the tenth Fiske step (FS10) appears at a voltage signif-
icantly smaller than 5Vzpsq. The experimentally found
ratio VFsip/(5Uzpsi) 0.6 is in good agreement with the
theoretical expectation 2/vr = 0.64.

An alternative model for the HFS's could be the res-
onances between fluxons moving in the discrete system
and the linear waves radiated by them. Such an effect
has been found numerically for an annular array with a
single fluxon circulating in it. However, this approach is
relevant in quasicontinuum approximation, i.e. , when the
kink size and the spacing between the kinks (fluxons) is
much larger than the lattice spacing a. This is not the
case for H Hi/2 where the fiuxon spacing is about 2a.

For future studies it might be interesting to investi-
gate the relative stability and the competition between
different types of resonances (low ZFS's, HZFS's, HFS's)
in the system. Here we only note that there is an insta-
bility region between the lower ZFS's and the HZFS's,
which strongly depends on the dissipation o, and the dis-
creteness parameter a. In the numerical simulations we
did not introduce any noise in the system which might
be essential for a relevant comparison with experiment.
Another interesting problem to look at is the scenario of
the transition to a chaotic dynamical state (linear fiux-
fiow branches at lower temperatures) as a function of n
and a.

We want to emphasize that the chaotic state that we
have found in numerical simulations appears without any
external ac current drive. The existence of spatial chaos
in the discrete sine-Gordon system for the static case has
been demonstrated recently. It is worth noting that the
linear branches in Fig. 6(a) and Fig. 11(a) are reminiscent
of those observed in long Josephson junctions for differ-
ent current and magnetic G.eld biasing conditions. We
suggest that there is a general reason for such behavior.
Due to the nonintegrability of the discrete sine-Gordon
model diferent modes (kinks and small oscillations) are
always present in the system. With decreasing the damp-
ing (temperature in our array experiment) the competi-
tion between these modes causes an increase of the intrin-
sic noise and, finally, a transition to a chaotic dynamic
state. At low temperatures (which corresponds to very
small damping accompanied by substantially increased
discreteness of the arrays) no stable fiuxon dynamic re-
gions have been found in the I-V characteristics.

V. SUMMAB.Y
We reported here experiments and numerical simula-

tions of fluxon dynamics in one-dimensional parallel ar-
rays of small underdamped Josephson tunnel junctions.
Experimental data on fluxon propagation in arrays are
compared with that for continuous junctions made on
the same chip. The current-voltage characteristics of the
arrays show various resonant steps corresponding to the
fluxon oscillations. In particular, here we observed a zero-
Beld step corresponding to a single fluxon shuttling in
the array. Our experimental data supported by numer-
ical simulations suggest that the concept of a fluxon as
a moving relativistic particle can be still used even for
strongly discrete lines. In the shortest-wavelength limit
(determined by the line discreteness) we find new fea-
tures in the dynamic behavior which do not exist in the
continuum case.

The most prominent feature of discrete arrays is the
squeezing of the voltage spacing between higk. -order res-
onant steps in I-V characteristics. In addition to the
squeezed high-order Fiske steps (which appear at the top
of the flux-flow branch starting from zero voltage) previ-
ously reported by van der Zant et al. , we observed also
high-order squeezed zero-field steps (which appear at the
bottom of the linear McCumber slope). Our numerical
simulations show a rather simple qualitative model which
explains the physical mechanism for these resonances as
due to cavity waves in a discrete line.

Measurements have been performed at different tem-
peratures which allowed us to vary the damping and the
effective discreteness in the arrays. At high tempera-
tures the I-V curves display most of the characteristic
regimes usually associated with long continuum under-
damped Josephson junctions, although with a somewhat
more complicated structure of the resonant steps. De-
creasing the temperature these steps cause them to evolve
into smaller and more linearlike branches which can be
tuned by H. At low temperatures (which correspond
to very small damping accompanied by a substantially
increased discreteness of the arrays) no fiuxon dynamic
regimes have been found in the I-V characteristics. We
note that substantial damping is needed in a real system
to stabilize kink propagation through the discrete lattice;
otherwise a transition to a chaotic regime is observed.
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